CUDA Programming on NVIDIA GPUs
Mike Giles

Practical 2: Monte Carlo

The main objectives in this practical are to learn about:

e how to use constant memory on the graphics card, initialising it from the
host

e how to use CUDA’s timing functions to measure kernel execution times

e the importance of ensuring “coalescence” when reading from (or writing
to) the main graphics memory

What you are to do is as follows:

1. Read through the prac2.cu source file.

Note the use of __constant__ memory defined to have global scope for all
kernel routines (i.e. it is defined for the lifetime of the entire application,
not just the lifetime of a single kernel routine, and it can be referenced by
any kernel routine) and the way in which the data is initialised by copying
values over from the host.

Note also the use of hTimer to time the execution of various parts of the
code. The line

cutilSafeCall(cudaThreadSynchronize());

is required to ensure that the previous operations have completed before
the timer is stopped. This is because some operations such as kernel
launching are asynchronous, i.e. the program starts the operation but
doesn’t wait for it to complete. This has the potential to give improved
performance in some cases by over-lapping execution and communication,
but it also has the potential to cause confusion when timing things.

. Use the Makefile to compile the code (no debug or emulation) and then
run the code and see the timings it gives.

. In the source file, uncomment the “Version 2” lines of code, and comment
out the “Version 1” lines. Re-compile and re-run the code to see the effect
of this on the kernel execution time.

. Think about what happens when there is just 1 block of 32 threads, and
we have just 1 timestep (i.e. N=1). Work out which random numbers are
read in by each thread, to understand why Version 1 has coalesced reads
(the 32 threads read in a contiguous block of 32 numbers at the same time)
whereas Version 2 does not.

If in doubt, change the program parameters to reduce the number of
paths, and run in debug mode with print statements to print out the array
elements being referenced.

. Write your own small program to compute the average value of
az? +bz+c

where z is a standard Normal random variable (i.e. zero mean and unit
variance, which is what the random number generator produces) and a,b, ¢
are constants which you should store in __constant__ memory.

I suggest you use each thread to average over 100 values, and then write
this to a device array which gets copied back to the host for the averaging
over the contributions from each of the threads.

. Continue browsing the NVIDIA SDK examples. There are several Monte
Carlo and random number generation examples.

