
CUDA Programming on NVIDIA GPUs
Mike Giles

Practical 3: Laplace solver

The main objectives in this practical are to learn about:

• a simple “naive” implementation of a finite difference solver

• how improved performance can be achieved by using shared memory to
enable data re-use, but it requires very careful attention to detail to
achieve memory coalescence

What you are to do is as follows:

1. Using the Makefile, compile and run the code laplace3d naive.

2. Read through laplace3d naive.cu, laplace3d naive kernel.cu and
laplace3d gold.cpp (the CPU reference code).

In particular, note:

• The total grid size is NX×NY×NZ, where NX, NY, NZ are parameters
set in the host code.

• The grid is cut into pieces of size BLOCK X×BLOCK Y in the x− y
direction, and each thread block uses BLOCK X*BLOCK Y threads, with
each thread processing one point in each 2D plane. The parameters
BLOCK X, BLOCK Y are defined as literal constants in the host code.

• The blocks and the threads are both identified with 2D indices, unlike
the 1D indices used in Practicals 1 and 2.

• In the kernel code, IOFF, JOFF, KOFF give the memory offsets in the
three coordinate directions.

• A variable active is used to limit computation to points within the
grid.

• There is a “gold” computation on the CPU to check that the results
produced by the GPU are correct. This kind of validation is used in
most of the CUDA SDK examples.

The code is relatively short, so try to understand it completely. Please ask
questions if anything is not clear.

1



3. Why does active need to be defined and used the way it is? Can you
identify particular threads in certain blocks which lie outside the
computational grid? Hint: NX is not a multiple of BLOCK X.

4. Try varying the values of BLOCK X, BLOCK Y to see if you can get the code
to run faster.

5. By modifying the Makefile (removing all naive bits) compile and run the
code laplace3d.

6. Have a look also at laplace3d.cu and laplace3d kernel.cu and the
notes in laplace3d.pdf which are also available at
http://people.maths.ox.ac.uk/∼gilesm/codes/laplace3d/laplace3d.pdf
The main thing to note is how much more complex the programming is. In
this simple example which involves very little computation it gives
approximately a factor 3 improvement in performance, but in cases
involving more computational effort the “naive” version will probably be
almost as efficient and involve much simpler programming.

Also note the cudaMallocPitch memory allocation in the main code
which rounds up the memory allocation for each row in the first (x)
coordinate direction so that each row starts on a multiple of 16. This
ensures memory coalescence later on when reading from the u1 array and
writing to the u2 array, but it complicates things by requiring the use of
the pitch variable to get the correct memory offsets.

7. Try commenting out the syncthreads(); instructions in
laplace3d kernel.cu. See what happens to the error which is computed
as the difference between the GPU results and the CPU results.

I think the difference in performance bewteen the “naive” and the optimized
implementations will disappear on the new Fermi GPUs. In fact the “naive”
version will probably be faster because it is simpler and involves fewer integer /
indexing operations.

2

http://people.maths.ox.ac.uk/~gilesm/codes/laplace3d/laplace3d.pdf

