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Probability basics

Defn: a scalar random variable X has continuous
probability density p(x) if

P[X ∈ (x, x+dx)] = p(x) dx+ o(dx)

so we then have

E[f(X)] =

∫
f(x) p(x) dx.

Defn: the variance V[X] is

V[X] = E
[
(X−E[X])2

]
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Probability basics

For any scalar random variable X and constants µ, λ,

E[X + µ] = E[X] + µ

V[X + µ] = V[X]

E[λX] = λ E[X]

V[λX] = λ2V[X]
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Probability basics

Defn: a pair of scalar random variables X,Y has joint
p.d.f. p(x, y) if

P[X ∈ (x, x+dx), Y ∈ (y, y+dy)] = p(x, y) dx dy + o(dx dy)

and therefore

E[f(X,Y )] =

∫
f(x, y) p(x, y) dx dy

We clearly have

E[X + Y ] = E[X] + E[Y ]
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Probability basics

We also have

V[X + Y ] = V[X] + 2Cov[X,Y ] +V[Y ]

where the covariance is defined as

Cov[X,Y ] ≡ E

[
(X − E[X]) (Y − E[Y ])

]

Note: E[(X−λY )2] ≥ 0, so put λ =
√

E[X2]/E[Y 2] and
re-arrange to get

E[X Y ] ≤
√

E[X2] E[Y 2]

and hence ∣∣∣Cov[X,Y ]
∣∣∣ ≤

√
V[X] V[Y ]
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Probability basics

X,Y are independent iff the joint p.d.f. is a product of their
individual p.d.f.’s:

p(x, y) = pX(x) pY (y)

In this case we get

E[f(X) g(Y )] = E[f(X)] E[g(Y )]

and then Cov[X,Y ] = 0 and hence

V[X + Y ] = V[X] +V[Y ]
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Probability basics

Notation: X ∼ N(µ, σ2) means X has the distribution of a

Normal random variable with mean µ and variance σ2.

The p.d.f. is

p(x) =
1√
2πσ2

exp

(
− (x−µ)2

2σ2

)

If

X ∼ N(µ, σ2)

then

X + λ ∼ N(µ+λ, σ2)

λX ∼ N(λµ, λ2σ2)
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Probability basics

If X,Y are independent, and X ∼ N(µX , σ2X),

Y ∼ N(µY , σ
2
Y ), then

X + Y ∼ N(µX+µY , σ
2
X+σ2Y )

Proof: see Wikipedia article
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Probability basics

If Z ∼ N(0, 1) (a unit / standard Normal random variable)
then for integer n we have

E[Z2n+1] = 0

and

E[Z2n] =
(2n−1)!

(n−1)! 2n−1

Proof: integration by parts
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Monte Carlo estimation

Given a random variable X we want to estimate E[X].

We do so by taking N independent samples to obtain the
estimate

EN = N−1
N∑

n=1

X(n).

Note that E[EN ] = E[X] so it is an unbiased estimate.

Also, due to independence

V[EN ] = N−1
V[X]
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Central Limit Theorem

Define

error εN = EN − E[X]

RMSE, “root-mean-square-error” =
√
E[ε2N ]

Loosely speaking, the Central Limit Theorem proves that for
large N

εN ∼ σ N−1/2Z

with Z a N(0, 1) random variable and σ2 = V[X]
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Central Limit Theorem

More precisely, provided σ is finite, then as N −→ ∞,

CDF(N1/2σ−1εN ) −→ CDF(Z)

so that

P

[
N1/2σ−1εN < s

]
−→ P [Z < s] = Φ(s)

and

P

[∣∣∣N1/2σ−1εN

∣∣∣ > s
]

−→ P [|Z| > s] = 2 Φ(−s)

P

[∣∣∣N1/2σ−1εN

∣∣∣ < s
]

−→ P [|Z| < s] = 1− 2 Φ(−s)
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Variance estimation

Given N samples, the empirical variance is

σ̃2 = N−1
N∑

n=1

(
X(n) − EN

)2
= E

(2)
N − (EN )2

where

EN = N−1
N∑

n=1

X(n), E
(2)
N = N−1

N∑

n=1

(
X(n)

)2

σ̃2 is a slightly biased estimator for σ2; an unbiased
estimator is

σ̂2 = (N−1)−1
N∑

n=1

(
X(n) − EN

)2
=

N

N−1

(
E

(2)
N − (EN )2

)
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Confidence interval

Objective: want an accuracy of ε with confidence c.
i.e. |ε| < ε with probability c.

How many samples do we need to use?

Recall,

P

[
N1/2σ−1|ε| < s

]
≈ 1− 2 Φ(−s),

so define function s(c) such that

1− 2 Φ(−s) = c ⇐⇒ s = −Φ−1((1−c)/2)
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Confidence interval

c 0.683 0.9545 0.9973 0.99994

s 1.0 2.0 3.0 4.0

Then |ε| < N−1/2 σ s(c) with probability c, so to get |ε| < ε
we can put

N−1/2 σ̂ s(c) = ε =⇒ N =

(
σ̂ s(c)

ε

)2

.

Note: twice as much accuracy requires 4 times as many
samples.
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Biased estimation

Sometimes unable to generate samples X(n) from the

correct distribution, and instead generate samples X̂(n)

from a similar distribution.

Estimator is then

EN = N−1
N∑

n=1

X̂(n)

with expected value E[X̂ ] and variance N−1V[X̂].
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Biased estimation

The Mean Square Error is

E

[
(EN − E[X])2

]
= E

[(
EN−E[X̂] + E[X̂]−E[X]

)2
]

= E

[
(EN−E[X̂ ])2

]
+
(
E[X̂ ]−E[X]

)2

= N−1
V[X̂ ] +

(
E[X̂ ]−E[X]

)2

first term is due to the variance of estimator

second term is square of bias due to (weak)
approximation error
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