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MLMC variance analysis

Today we are looking at the error analysis in

M.B. Giles, D.J. Higham and X. Mao. ’Analysing multilevel
Monte Carlo for options with non-globally Lipschitz payoff’.
Finance and Stochastics, 13(3):403-413, 2009

This is based on

scalar SDE satisfying usual conditions

Euler-Maruyama discretisation

various different financial options

and is really doing the numerical analysis for the testcases
in the original MLMC paper in Operations Research
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MLMC variance analysis

European option with Lipschitz payoff:

P = f(ST )

Lookback option with Lipschitz payoff:

P = f

(
inf
[0,T ]

St, ST

)

Digital call option:

P = H(ST−K)

Barrier down-and-out option:

P = f(ST ) H( inf
[0,T ]

St −B)
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MLMC variance analysis

The objective is to bound V[P̂ℓ−P̂ℓ−1].

Since

P̂ℓ − P̂ℓ−1 = (P̂ℓ − P )− (P̂ℓ−1 − P )

we will do this by using

V[P̂ℓ−P̂ℓ−1] ≤ E[(P̂ℓ−P̂ℓ−1)
2]

≤ 2 E[(P̂ℓ−P )2] + 2 E[(P̂ℓ−1−P )2]

and then bounding E[(P̂ℓ−P )2].
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European Lipschitz payoff

This case is easy.

If the payoff function is L-Lipschitz, so that

|f(x1)− f(x2)| ≤ L |x1 − x2|

then

E[(P̂−P )2] ≤ L2
E[(Ŝ(T )−S(T ))2]

≤ C h

due to O(h1/2) strong convergence.

This extends to E[(P̂−P )2] = O(h2) when using the Milstein
approximation.
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Lookback Lipschitz payoff

This case is very similar

If the payoff function is L-Lipschitz, so that

|f(x1, y1)− f(x2, y2)| ≤ L (|x1 − x2|+ |y1 − y2|)

then

E[(P̂−P )2] ≤ 2L2

(
E[(Ŝmin− inf

[0,T ]
St)

2] + E[(Ŝ(T )−ST )
2]

)

The questions are:

how is Ŝmin defined?

what is the bound on E[(Ŝmin−inf St)
2] ?
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Lookback Lipschitz payoff

In this paper we chose to use the minimum of the discrete
timestep values

Ŝmin ≡ min
n

Ŝn ≡ inf
t
Ŝ(t)

where Ŝ(t) is defined by piecewise linear interpolation

between the discrete values Ŝn (not the usual
Kloeden-Platen interpolant).

There is a theoretical result by Müller-Gronbach (2002)
which says that

E

[
sup
t

|Ŝ(t)− St|
p

]
≤ C |h log h|p/2
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Lookback Lipschitz payoff

For any two processes At, Bt,

sup
t

At ≤ sup
t

Bt + sup
t
(At−Bt)

sup
t

Bt ≤ sup
t

At + sup
t
(Bt−At)

Hence

| sup
t

At − sup
t

Bt| ≤ sup
t

|At−Bt|

and also, by considering Ct = −At, Dt = −Bt,

| inf
t
At − inf

t
Bt| ≤ sup

t
|At−Bt|
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Lookback Lipschitz payoff

Therefore

=⇒
(
inf
t
Ŝ(t)− inf

t
St

)2
≤ E

[
sup
t

|Ŝ(t)− St|
2

]

and hence

E[(Ŝmin−inf
t
St)

2] ≤ C h | log h|

which gives us the final bound

E[(P̂−P )2] = O(h | log h|)
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Digital payoff

The digital payoff is

P = H(ST > K)

and the numerical approximation is

P̂ = H(Ŝ(T ) > K).

The exact and numerical payoffs differ only when one
solution exceeds K and the other does not, so

E(|P̂ − P |2) = P({ST > K} ∩ {Ŝ(T ) ≤ K})

+ P({ST ≤ K} ∩ {Ŝ(T ) > K})
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Digital payoff

For any 0 < δ < 1
2 , we have

P({ST > K} ∩ {Ŝ(T ) ≤ K})

= P

(
{K + h1/2−δ/2 > ST > K} ∩ {Ŝ(T ) ≤ K}

)

+ P

(
{ST ≥ K + h1/2−δ/2} ∩ {Ŝ(T ) ≤ K}

)

< P

(
K + h1/2−δ/2 > ST > K

)

+ P

(
ST − Ŝ(T ) ≥ h1/2−δ/2

)

We assume that ST has a bounded p.d.f., so then

P

(
K+h1/2−δ/2 > ST > K

)
= O(h1/2−δ/2) = o(h1/2−δ)
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Digital payoff

Remember from Markov inequality (lecture 5) that

E[|h−1/2(Ŝ(T )− ST )|
p] < ∞

for all p > 0 implies that for any δ > 0 can prove that

P

(
|Ŝ(T )− ST | ≥ h1/2−δ/2

)
= o(hq)

for any q > 0.

The other term is treated similarly, and hence

E(|P̂−P |2) = o(h1/2−δ) for any δ > 0.

Using the Milstein approximation, this would change to

E(|P̂−P |2) = o(h1−δ)
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Digital payoff

In later research I found a simple proof of a generalisation
previously derived by Rainer Avikainen:

Thm: if a scalar r.v. τ has a p.d.f. with maximum density ρsup,

and τ̂ is an approximation to τ , then for any s

E[(1τ<s − 1τ̂<s)
2] ≤ cp ρ

p/(p+1)
sup E[ |τ−τ̂ |p]1/(p+1)

Proof: define

Ω1 = {|τ − s| ≤ X} ,

Ω2 = {|τ − τ̂ | ≥ X} ∩ Ωc
1,

Ω3 = Ωc
1 ∩ Ωc

2,

then if ω ∈ Ω3 we have 1τ<s − 1τ̂<s = 0.
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Digital payoff

Hence,

E[(1τ<s − 1τ̂<s)
2] ≤ P1 + P2 ≤ 2 ρsupX +X−p

E[ |τ−τ̂ |p]

with the second step using the Markov inequality.

Differentiating the upper bound w.r.t. X, we find that it is
minimised by choosing

Xp+1 =
p

2 ρsup
E[ |τ−τ̂ |p]

and we then get the bound

E[(1τ<s − 1τ̂<s)
2] ≤ cp ρ

p/(p+1)
sup E[ |τ−τ̂ |p]1/(p+1)
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Barrier payoff

Payoff function:

P = f(ST ) H( inf
[0,T ]

St −B)

with |f(x)− f(y)| ≤ |x− y|.

Numerical approximation:

P̂ = f(Ŝ(T )) H(Ŝmin −B)

with Ŝmin as defined before.

What is the difficulty?

For some paths, an O(h1/2) fraction, St crosses B

but Ŝ(t) does not, or vice versa, giving P̂−P = O(1)
Stoch. NA, Lecture 8 – p. 15



Barrier payoff

First the analysis when f(S) is bounded, so |f(S)| < fmax.

Define F = {inf
t
St ≥ B}, G = {inf

t
Ŝ(t) ≥ B}, and then

E(|P−P̂ |2) = E(|f(ST )1F − f(Ŝ(T ))1G|
2)

= E(|f(ST )− f(Ŝ(T ))|21{F∩G})

+ E(|f(ST )|
2
1{F∩Gc}) + E(|f(Ŝ(T ))|21{G∩F c})

≤ E(|S(T )− Ŝ(T )|21{F∩G})

+ f2max P(F ∩Gc) + f2max P(G ∩ F c)

≤ E(|S(T )−Ŝ(T )|2) + f2max [P(F ∩Gc) + P(G ∩ F c)]

≤ O(h) + f2max[P(F ∩Gc) + P(G ∩ F c)]
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Barrier payoff

ω ∈ F ∩Gc requires

inf
t
St ∈ [B,B+h1/2−δ/2] or

inf
t
St − inf

t
Ŝ(t) > h1/2−δ/2

Hence

P(F ∩Gc) ≤ P

(
inf
t
St ∈ [B,B+h1/2−δ/2]

)

+ P

(
inf
t
St − inf

t
Ŝ(t) > h1/2−δ/2

)
≤ O(h1/2−δ/2)

It’s similar for P(F c ∩G) so for any δ > 0 we get

E(|P̂−P |2) = o(h1/2−δ).
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Barrier payoff

What happends if f(S) is not bounded?

There is a simpler analysis than given in the paper.

We know that E[|f(ST )|
p], E[|f(Ŝ(T ))|p] are bounded for

all p > 2. How do we use this?

Answer: Hölder inequality.
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Barrier payoff

E
[
|f(ST )|

2
1{F∩Gc}

]
≤

(
E[|f(ST )|

2p]
)1/p (

E[(1{F∩Gc})
q]
)1/q

≤
(
E[|f(ST )|

2p]
)1/p (

E[1{F∩Gc}]
)1/q

≤ O(h(1/2−δ/2)/q)

where 1/p+ 1/q = 1.

Choose q very close to 1 so that (1/2− δ/2) / q > 1/2− δ
which needs q < (1− δ)/(1− 2 δ) and then we get

E
[
|f(ST )|

2
1{F∩Gc}

]
= o(h1/2−δ)

as before, and we can do the same for E
[
|f(ST )|

2
1{F c∩G}

]

to obtain E(|P̂−P |2) = o(h1/2−δ).
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