
Using GPUs for Monte Carlo
and Finite Difference Computations

Mike Giles

Oxford-Man Institute of Quantitative Finance
Oxford e-Research Centre

Julien Demouth, Jeremy Appleyard (NVIDIA), Endre László (Oxford)

New Thinking in Finance

Feb. 12th, 2014

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 1 / 25



GPUs

In the last 6 years, GPUs have emerged as a major new technology in high
performance computing:

approximately 20% of the Top500 supercomputer list

two large systems in the UK – Emerald and Wilkes

over 1000 GPUs used at JP Morgan, and over 200 at Bloomberg

also used at a number of other banks and financial institutions

use is driven by both energy efficiency and price/performance

(even my MacBook has 384 graphics cores)

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 2 / 25



GPU hardware

The organisation and capabilities of a GPU are well illustrated by an
NVIDIA K20X:

2688 cores arranged in 14 SMX functional units

each SMX has
I 192 cores, which can be viewed as 6 vector units of length 32
I 64kB local shared memory / L1 cache

shared 1.5MB L2 cache

288GB/s bandwidth to 6GB of GDDR5 graphics memory

8GB/s PCIe connection to CPU

up to 3.9 TFlops in single precision, 1.3 TFlops in double precision

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 3 / 25



GPU software

For NVIDIA GPUs, software is written in CUDA, an extension of C/C++:

host code on CPU; kernel code on GPU

host launches multiple instances of a kernel known as thread blocks
on the GPU, with each thread block running on one of the SMX units

each thread block runs independently of the others

within a thread block:
I threads work in vector groups of 32 known as a warp
I threads can communicate through local shared memory

within a warp:
I threads can exchange register data through a shuffle instruction

usually have multiple active threads per core to hide memory latencies
– often 10,000 active threads on a single GPU

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 4 / 25



Monte Carlo simulations

Monte Carlo simulations are naturally parallel – ideally suited to GPU
execution:

each path calculation is independent

averaging of values computed by each thread is parallelised by
using binary tree reduction:

I sum in pairs recursively, until only one value per thread block
I pass sums back to CPU by final summation

or use atomic operations with data in graphics memory

key requirement is parallel random number generation

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 5 / 25



Random number generation
Key is to use well-tested efficient libraries

NVIDIA’s CURAND library

NAG’s GPU library

Both offer a number of generators:

mrg32k3a

Mersenne Twister

Sobol quasi-random

. . . and others

and a number of output distributions:

uniform

Normal / log-Normal

Gamma (NAG only?)

Poisson (CURAND only?)

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 6 / 25



CURAND performance

Double precision performance – Gsamples / sec

uniform Normal

mrg32k3a 10.5 3.5

Sobol 14.8 6.3

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 7 / 25



Monte Carlo simulations

Two approaches:

pre-compute and store a huge set of random numbers
I separate random number generation from path calculation
I needs distribution to be known beforehand
I no registers required in path calculation, but small performance penalty

in reading in random numbers
I need to ensure that each thread gets a different random number, and

each thread warp loads in a contiguous block of random numbers
(non-trivial with rejection sampling)

generate them on-the-fly as needed
I only option when distribution is not known a priori (e.g. Poisson

distribution with path-dependent rate)
I minimises data transfer, but needs registers to hold state of random

number generator (can limit number of threads, and hence hit
performance)

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 8 / 25



Monte Carlo simulations

Additional complications?

local volatility surface:
I store volatility surface data in shared memory for use by all threads

Longstaff-Schwartz regression for American options:
I compute paths in parallel and store in 6GB of graphics memory
I work backwards in time, use binary tree summation method to assemble

regression matrices and r.h.s. to obtain approximate exercise value
I see recent paper by Massimiliano Fatica (NVIDIA)

(STAC-A2 report: http://www.stacresearch.com/node/15807)

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 9 / 25



Monte Carlo simulations

Final comment: see talk tomorrow at 4:00 by Hicham Lahlou (Xcelerit)
on “Running Credit Value Adjustment on GPUs”

Xcelerit software uses a high-level C++ approach so that application
developers can write CPU host code which gets automatically
transformed into GPU code.

See www.xcelerit.com for more details.

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 10 / 25



Finite Difference calculations

Explicit time-marching methods are naturally parallel – again a good
target for GPU acceleration

Implicit time-marching methods usually require the solution of lots of
tridiagonal systems of equations – not so clear how to parallelise this.

Other key observation is that when moving lots of data to/from the main
graphics memory, the cost of this may exceed the cost of the floating point
computations – hence, try to avoid this data transfer.

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 11 / 25



Finite Difference calculations

In 1D a simple explicit finite difference equation takes the form

un+1
j = aj un

j−1 + bj un
j + cj un

j+1

while an implicit finite difference equation takes the form

aj un+1
j−1 + bj un+1

j + cj un+1
j+1 = un

j

requiring the solution of a tridiagonal set of equations.

What performance can be achieved?

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 12 / 25



Finite Difference calculations

grid size: 256 points

number of options: 2048

number of timesteps: 50000 (explicit), 2500 (implicit)

results are for a K20c, about 20% slower than a K20X

single prec. double prec.

msec GFlops msec GFlops

explicit1 347 454 412 382

explicit2 89 1763 160 980

implicit1 28 1308 80 637

implicit2 33 1377 88 685

implicit3 14 1103 30 505

Testing by Jorg Lotze (Xcelerit) shows implicit3 speeds are 12-14× faster
than a pair of 8-core Intel Xeon E5-2670 CPUs, using full AVX vectoristion.

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 13 / 25



Finite Difference calculations

Approach:

each thread block does one or more options

doing an option calculation within one thread block means no need to
transfer data to/from graphics memory – can hold all data in SMX

explicit1 holds data in shared memory – performance is limited by the
speed of shared memory access

explicit2 holds all data in registers
I each thread handles 8 grid points, so each warp handles one option
I exchange of data with neighbouring threads is performed using shuffle

instructions
I 3 FMA (fused multiply-add) operations per grid point per timestep

– 90% of theoretical peak performance in double precision

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 14 / 25



Finite Difference calculations

Interesting challenge is how best to solve tridiagonal systems for implicit
solvers.

want to keep computation within an SMX and avoid data transfer
to/from graphics memory

prepared to do more floating point operations if necessary to avoid
the data transfer

need parallelism to achieve good performance

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 15 / 25



Finite Difference calculations

On a CPU, the tridiagonal equations

ai ui−1 + bi ui + ci ui+1 = di , i = 0, 1, . . . ,N−1

would usually be solved using the Thomas algorithm – essentially just
standard Gaussian elimination exploiting all of the zeros.

inherently sequential algorithm, so would require each thread to
handle separate option

threads don’t have enough registers to store the required data
– would require additional data transfer (almost double) to/from
graphics memory to hold / recover data from “forward sweep”

not a good choice – want an alternative with reduced data transfer,
even if it requires more floating point ops.

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 16 / 25



Finite Difference calculations

PCR (parallel cyclic reduction) is an alternative parallel algorithm.

Starting with

ai ui−1 + ui + ci ui+1 = di , i = 0, 1, . . . ,N−1,

where uj =0 for j <0, j≥N, can subtract multiples of rows i±1, and
re-normalise, to get

a′i ui−2 + ui + c ′i ui+2 = d ′i , i = 0, 1, . . . ,N−1,

Repeating with rows i±2 gives

a′′i ui−4 + ui + c ′′i ui+4 = d ′′i , i = 0, 1, . . . ,N−1,

and after log2 N repetitions end up with solution because ui±N = 0.

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 17 / 25



Finite Difference calculations

Using PCR we would have:

1 grid point per thread

multiple warps for each option, so data exchange via shared memory
– not ideal

O(N log2 N) floating point operations – quite a bit more than
Thomas algorithm

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 18 / 25



Finite Difference calculations

This leads us to a hybrid algorithm: implicit1.

follows data layout of explicit2 with each thread handling 8 grid
points – means data exchanges can be performed by shuffles

each thread uses Thomas algorithm to obtain middle values as a
linear function of two (not yet known) “end” values

uJ+j = AJ+j + BJ+j uJ + CJ+j uJ+7, 0 < j < 7

the reduced tridiagonal system of size 2× 32 for the “end” values
is solved using PCR

total number of floating point operations is approximately double
what would be needed on a CPU using the Thomas algorithm

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 19 / 25



Finite Difference calculations

implicit2 is very similar to implicit1, but instead of solving

aj un+1
j−1 + bj un+1

j + cj un+1
j+1 = un

j

it instead computes the change ∆uj ≡ un+1
j − un

j by solving

aj ∆uj−1 + bj ∆uj + cj ∆uj+1 = dn
j

and then updates uj . This gives better accuracy, which might be
important if working in single precision.

If the matrices do not change each timestep, then some parts of the
tridiagonal solution do not need to be repeated each time – implicit3
exploits this, but is otherwise the same as implicit1.

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 20 / 25



Finite Difference calculations

What about a 3D extension on a 2563 grid?

memory requirements imply one kernel with multiple thread blocks
to handle a single option

kernel will need to be called for each timestep, to ensure that the
entire grid is updated before the next timestep starts

based on previous experience with a 3D Jacobi iteration, initial
implementation of explicit algorithm uses a separate thread for each
grid point in 2D x-y plane, then marches in z-direction

initial implementation relies on cache for data re-use – performance
appears to be bandwidth-limited, achieving roughly 25% of peak
bandwidth

will experiment with the use of shared memory for better data re-use,
at the expense of nastier programming

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 21 / 25



Finite Difference calculations

For implicit time-marching, the ADI discretisation requires the solution
of a tridiagonal equations along each line in the x-direction, and then
the same in the y - and z-directions.

Jeremy Appleyard (NVIDIA) has developed library software for this, based
on the 1D hybrid PCR code – better than the Thomas method because it
involves less data transfer to/from graphics memory. The clever part of
his implementation is in the data transpositions required to maximise
bandwidth – a bit like transposing a matrix.

The final code will have the following structure:

kernel similar to explicit kernel to produce matrices and r.h.s.

3 calls by host code to batch tridiagonal solver to perform the
tridiagonal solutions in each direction

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 22 / 25



Batch Tridiagonal Solver

Hybrid PCR vs. Thomas algorithm for different tridiagonal system lengths

Note: at least 40 bytes/element =⇒ 1.4E-10 secs at max. bandwidth
and Hybrid PCR compute time =⇒ 0.7E-10 secs / element

0.E+00

1.E-10

2.E-10

3.E-10

4.E-10

5.E-10

6.E-10

7.E-10

8.E-10

9.E-10

1.E-09

0 50 100 150 200 250 300 350

T
im

e
 p

e
r 

e
le

m
e

n
t 

(s
)

System side-length

New solver vs Thomas in double precision (K20X) 

x

z

y

Thomas z

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 23 / 25



Finite Difference calculations

Other dimensions?

2D:

if the grid is small (1282?) one option could fit within a single SMX
I in this case, could adapt the 1D hybrid PCR method for the 2D ADI

solver
I main complication would be transposing the data between the x-solve

and y -solve so that each tridiagonal solution is within a single warp

otherwise, will have to use the 3D approach, but with solution of
multiple 2D problems to provide more parallelism

4D:

same as 3D, provided data can fit into graphics memory (otherwise
buy a K40 with 12GB graphics memory!)

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 24 / 25



Conclusions

GPUs can deliver excellent performance for both Monte Carlo and
finite difference calculation

some parts of the implementation are straightforward, but others
require a good understanding of the hardware and parallel algorithms
to achieve the best performance

the key is to use libraries as much as possible, or alternative high-level
approaches like Xcelerit

For further info see
http://people.maths.ox.ac.uk/gilesm/codes/BS 1D/

and also attend Hicham Lahlou’s talk tomorrow at 4:00.

Mike Giles (Oxford) HPC Trends Feb. 12th, 2014 25 / 25


