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Outline

Objective of this research was faster Monte Carlo simulation
of path dependent options to estimate values and Greeks.

Several separate ingredients:

multilevel method

quasi-Monte Carlo

adjoint pathwise Greeks

parallel computing on NVIDIA graphics cards

Emphasis in this presentation was on multilevel QMC
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Generic Problem

Stochastic differential equation with general drift and
volatility terms:

dS(t) = a(S, t) dt+ b(S, t) dW (t)

We want to compute the expected value of an option
dependent on S(t). In the simplest case of European
options, it is a function of the terminal state

P = f(S(T ))

with a uniform Lipschitz bound,

|f(U)− f(V )| ≤ c ‖U − V ‖ , ∀ U, V.
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Simplest MC Approach

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

Estimator for expected payoff is an average of N
independent path simulations:

Ŷ = N−1
N∑

i=1

f(Ŝ
(i)
T/h

)

weak convergence – O(h) error in expected payoff

strong convergence – O(h1/2) error in individual path
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Simplest MC Approach

Mean Square Error is O
(
N−1 + h2

)

first term comes from variance of estimator

second term comes from bias due to weak convergence

To make this O(ε2) requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this cost to O
(
ε−p

)
, with p as small as

possible, ideally close to 1.

Note: for a relative error of ε = 0.001, the difference between
ε−3 and ε−1 is huge.
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Standard MC Improvements

variance reduction techniques (e.g. control variates,
stratified sampling) improve the constant factor in front

of ε−3, sometimes spectacularly

improved second order weak convergence (e.g. through
Richardson extrapolation) leads to h = O(

√
ε), giving

p=2.5

quasi-Monte Carlo reduces the number of samples

required, at best leading to N≈O(ε−1), giving p≈2 with
first order weak methods

Multilevel method gives p=2 without QMC, and at best
p ≈ 1 with QMC.
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MLMC Approach

Consider multiple sets of simulations with different

timesteps hℓ = 2−ℓ T, ℓ = 0, 1, . . . , L, and payoff P̂ℓ

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key point: approximate E[P̂ℓ−P̂ℓ−1] using Nℓ simulations

with P̂ℓ and P̂ℓ−1 obtained using same Brownian path.

Ŷℓ = N−1
ℓ

Nℓ∑

i=1

(
P̂

(i)
ℓ −P̂

(i)
ℓ−1

)
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MLMC Approach

Using independent paths for each level, the variance of the
combined estimator is

V

[
L∑

ℓ=0

Ŷℓ

]
=

L∑

ℓ=0

N−1
ℓ Vℓ, Vℓ ≡ V[P̂ℓ−P̂ℓ−1],

and the computational cost is proportional to

L∑

ℓ=0

Nℓ h
−1
ℓ .

Hence, the variance is minimised for a fixed computational

cost by choosing Nℓ to be proportional to
√

Vℓ hℓ.

The constant of proportionality can be chosen so that the

combined variance is O(ε2).
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Multilevel MC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and P̂ℓ the discrete approximation using a timestep hℓ = M−ℓ T .

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo

samples, and positive constants α≥ 1
2 , β, c1, c2, c3 such that

i) E[P̂ℓ − P ] ≤ c1 h
α
ℓ

ii) E[Ŷℓ] =

{
E[P̂0], l = 0

E[P̂ℓ − P̂ℓ−1], l > 0

iii) V[Ŷl] ≤ c2N
−1
l hβl

iv) Cℓ, the computational complexity of Ŷℓ, is bounded by

Cℓ ≤ c3Nℓ h
−1
ℓ
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Multilevel MC Approach

then there exists a positive constant c4 such that for any ε<e−1 there

are values L and Nl for which the multi-level estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]
< ε2

with a computational complexity C with bound

C ≤





c4 ε
−2, β > 1,

c4 ε
−2(log ε)2, β = 1,

c4 ε
−2−(1−β)/α, 0 < β < 1.
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Milstein Scheme

The theorem suggests use of Milstein scheme —
better strong convergence, same weak convergence

Generic scalar SDE:

dS(t) = a(S, t) dt+ b(S, t) dW (t), 0<t<T.

Milstein scheme:

Ŝn+1 = Ŝn + a h+ b∆Wn + 1
2 b

′ b
(
(∆Wn)

2 − h
)
.
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Milstein Scheme

In scalar case:

O(h) strong convergence

O(ε−2) complexity for Lipschitz payoffs – trivial

O(ε−2) complexity for Asian, lookback, barrier and
digital options using carefully constructed estimators
based on Brownian interpolation or extrapolation
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Milstein Scheme

Brownian interpolation: within each timestep, model the
behaviour as simple Brownian motion conditional on the
two end-points

Ŝ(t) = Ŝn + λ(t)(Ŝn+1 − Ŝn)

+ bn

(
W (t)−Wn − λ(t)(Wn+1−Wn)

)
,

where

λ(t) =
t− tn

tn+1 − tn

There then exist analytic results for the distribution of the
min/max/average over each timestep.
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Milstein Scheme

Brownian extrapolation for final timestep:

ŜN = ŜN−1 + aN−1 h+ bN−1∆WN

– considering all possible ∆WN gives Gaussian distribution,
for which a digital option has a known conditional
expectation (Glasserman)

This payoff smoothing can be generalised to multivariate
cases, and leads to a “vibrato” Monte Carlo technique
which is suitable for both efficient multilevel analysis and
the computation of Greeks
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Results

Geometric Brownian motion:

dS = r S dt+ σ S dW, 0 < t < T,

with parameters T =1, S(0)=1, r=0.05, σ=0.2

European call option: exp(−rT ) max(S(T )− 1, 0)

European digital call: exp(−rT )1S(T )>1

Down-and-out barrier option: same as call provided
S(t) stays above B=0.9
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MLMC Results

GBM: European call

0 2 4 6 8
-30

-25

-20

-15

-10

-5

0

l

lo
g 2 v

ar
ia

nc
e

 

 

P
l

P
l
- P

l-1

0 2 4 6 8
-20

-15

-10

-5

0

l

lo
g 2 |m

ea
n|

 

 

P
l

P
l
- P

l-1

Multilevel Monte Carlo – p. 16



MLMC Results

GBM: European call
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MLMC Results

GBM: digital call
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MLMC Results

GBM: digital call
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MLMC Results

GBM: barrier option
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MLMC Results

GBM: barrier option
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Quasi-Monte Carlo

well-established technique for approximating
high-dimensional integrals

for finance applications see papers by l’Ecuyer and
book by Glasserman

Sobol sequences are perhaps most popular;
we used rank-1 lattice rules (Sloan & Kuo)

two important ingredients for success:

randomized QMC for confidence intervals

good identification of “dominant dimensions”
(Brownian Bridge and/or PCA)

Multilevel Monte Carlo – p. 22



Quasi-Monte Carlo

Approximate high-dimensional hypercube integral

∫

[0,1]d
f(x) dx

by

1

N

N−1∑

i=0

f(x(i))

where

x(i) =

[
i

N
z

]

and z is a d-dimensional “generating vector”.
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Quasi-Monte Carlo

In the best cases, error is O(N−1) instead of O(N−1/2) but
without a confidence interval.

To get a confidence interval, let

x(i) =

[
i

N
z + x0

]
.

where x0 is a random offset vector.

Using 32 different random offsets gives a confidence
interval in the usual way.
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Quasi-Monte Carlo

For the path discretisation we can use

∆Wn =
√
h Φ−1(xn),

where Φ−1 is the inverse cumulative Normal distribution.

Much better to use a Brownian Bridge construction:

x1 −→ W (T )

x2 −→ W (T/2)

x3, x4 −→ W (T/4),W (3T/4)

. . . and so on by recursive bisection
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Multilevel QMC

rank-1 lattice rule developed by Sloan, Kuo &
Waterhouse at UNSW

32 randomly-shifted sets of QMC points gives unbiased
estimate and confidence interval for multilevel correction

MLQMC algorithm uses same heuristic as MLMC
algorithm to estimate weak error and choose optimal
number of levels

MLQMC algorithm repeatedly doubles the number of
points on the level with greatest variance/cost ratio,
until desired accuracy is achieved

results show QMC to be particularly effective on lowest
levels with low dimensionality
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MLQMC Results

GBM: European call
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MLQMC Results

GBM: European call
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MLQMC Results

GBM: barrier option
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MLQMC Results

GBM: barrier option
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2015 postscript

This research (and almost all of the presentation) comes
from 2007.

In May-June 2015, Adrien Grumberg repeated everything
using Sobol points with Matousek–Owen digital scrambling.

The results were very similar – if anything, the Sobol results
were slightly better.

A. Grumberg. “On Multilevel Quasi-Monte Carlo Methods”,
MSc dissertation, Oxford, 2015.

people.maths.ox.ac.uk/gilesm/files/Adrien Grumberg.pdf
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Conclusions

initial MLQMC research came very soon after MLMC

numerical results were very encouraging, but there was
no supporting numerical analysis

Frances Kuo and Ian Sloan later developed MLQMC for
SPDEs, in collaboration with Rob Scheichl, Christoph
Schwab, and others – also made good progress on the
numerical analysis

Future:

more experiments

new applications
(e.g. continuous-time Markov processes)

more numerical analysis
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