Multilevel quasi-Monte Carlo path simulation

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute
Oxford-Man Institute of Quantitative Finance

Acknowledgments: Frances Kuo, Ian Sloan, Ben Waterhouse (UNSW – 2007) and Adrien Grumberg (Oxford – 2015)

Outline

Objective of this research was faster Monte Carlo simulation of path dependent options to estimate values and Greeks.

Several separate ingredients:

- multilevel method
- quasi-Monte Carlo
- adjoint pathwise Greeks
- parallel computing on NVIDIA graphics cards

Emphasis in this presentation was on multilevel QMC

Generic Problem

Stochastic differential equation with general drift and volatility terms:

$$dS(t) = a(S, t) dt + b(S, t) dW(t)$$

We want to compute the expected value of an option dependent on S(t). In the simplest case of European options, it is a function of the terminal state

$$P = f(S(T))$$

with a uniform Lipschitz bound,

$$|f(U) - f(V)| \le c \|U - V\|, \quad \forall U, V.$$

Simplest MC Approach

Euler discretisation with timestep *h*:

$$\widehat{S}_{n+1} = \widehat{S}_n + a(\widehat{S}_n, t_n) h + b(\widehat{S}_n, t_n) \Delta W_n$$

Estimator for expected payoff is an average of N independent path simulations:

$$\widehat{Y} = N^{-1} \sum_{i=1}^{N} f(\widehat{S}_{T/h}^{(i)})$$

- weak convergence O(h) error in expected payoff
- strong convergence $O(h^{1/2})$ error in individual path

Simplest MC Approach

Mean Square Error is $O(N^{-1} + h^2)$

- first term comes from variance of estimator
- second term comes from bias due to weak convergence

To make this $O(\varepsilon^2)$ requires

$$N = O(\varepsilon^{-2}), \quad h = O(\varepsilon) \implies \cos t = O(N h^{-1}) = O(\varepsilon^{-3})$$

Aim is to improve this cost to $O\left(\varepsilon^{-p}\right)$, with p as small as possible, ideally close to 1.

Note: for a relative error of $\varepsilon=0.001$, the difference between ε^{-3} and ε^{-1} is huge.

Standard MC Improvements

- variance reduction techniques (e.g. control variates, stratified sampling) improve the constant factor in front of ε^{-3} , sometimes spectacularly
- improved second order weak convergence (e.g. through Richardson extrapolation) leads to $h=O(\sqrt{\varepsilon})$, giving $p\!=\!2.5$
- quasi-Monte Carlo reduces the number of samples required, at best leading to $N \approx O(\varepsilon^{-1})$, giving $p \approx 2$ with first order weak methods

Multilevel method gives p=2 without QMC, and at best $p \approx 1$ with QMC.

MLMC Approach

Consider multiple sets of simulations with different timesteps $h_{\ell} = 2^{-\ell} T$, $\ell = 0, 1, ..., L$, and payoff \widehat{P}_{ℓ}

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{\ell=1}^L \mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}]$$

Expected value is same – aim is to reduce variance of estimator for a fixed computational cost.

Key point: approximate $\mathbb{E}[\widehat{P}_{\ell}-\widehat{P}_{\ell-1}]$ using N_{ℓ} simulations with \widehat{P}_{ℓ} and $\widehat{P}_{\ell-1}$ obtained using <u>same</u> Brownian path.

$$\widehat{Y}_{\ell} = N_{\ell}^{-1} \sum_{i=1}^{N_{\ell}} \left(\widehat{P}_{\ell}^{(i)} - \widehat{P}_{\ell-1}^{(i)} \right)$$

MLMC Approach

Using independent paths for each level, the variance of the combined estimator is

$$\mathbb{V}\left[\sum_{\ell=0}^{L} \widehat{Y}_{\ell}\right] = \sum_{\ell=0}^{L} N_{\ell}^{-1} V_{\ell}, \qquad V_{\ell} \equiv \mathbb{V}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}],$$

and the computational cost is proportional to $\sum_{\ell=0}^{L} N_{\ell} h_{\ell}^{-1}$.

Hence, the variance is minimised for a fixed computational cost by choosing N_{ℓ} to be proportional to $\sqrt{V_{\ell} h_{\ell}}$.

The constant of proportionality can be chosen so that the combined variance is $O(\varepsilon^2)$.

Multilevel MC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e., and \widehat{P}_{ℓ} the discrete approximation using a timestep $h_{\ell} = M^{-\ell} T$.

If there exist independent estimators \widehat{Y}_ℓ based on N_ℓ Monte Carlo samples, and positive constants $\alpha \geq \frac{1}{2}, \beta, c_1, c_2, c_3$ such that

i)
$$\mathbb{E}[\widehat{P}_{\ell} - P] \leq c_1 h_{\ell}^{\alpha}$$

ii)
$$\mathbb{E}[\widehat{Y}_\ell]=\left\{egin{array}{ll} \mathbb{E}[\widehat{P}_0], & l=0 \\ \mathbb{E}[\widehat{P}_\ell-\widehat{P}_{\ell-1}], & l>0 \end{array}
ight.$$

iii)
$$\mathbb{V}[\widehat{Y}_l] \leq c_2 N_l^{-1} h_l^{\beta}$$

iv) C_{ℓ} , the computational complexity of \widehat{Y}_{ℓ} , is bounded by

$$C_{\ell} \le c_3 \, N_{\ell} \, h_{\ell}^{-1}$$

Multilevel MC Approach

then there exists a positive constant c_4 such that for any $\varepsilon < e^{-1}$ there are values L and N_l for which the multi-level estimator

$$\widehat{Y} = \sum_{\ell=0}^{L} \widehat{Y}_{\ell},$$

has Mean Square Error
$$MSE \equiv \mathbb{E}\left[\left(\widehat{Y} - \mathbb{E}[P]\right)^2\right] < \varepsilon^2$$

with a computational complexity C with bound

$$C \leq \begin{cases} c_4 \, \varepsilon^{-2}, & \beta > 1, \\ c_4 \, \varepsilon^{-2} (\log \varepsilon)^2, & \beta = 1, \\ c_4 \, \varepsilon^{-2 - (1 - \beta) / \alpha}, & 0 < \beta < 1. \end{cases}$$
 Multilevel Monte Carlo – p. 10

The theorem suggests use of Milstein scheme — better strong convergence, same weak convergence

Generic scalar SDE:

$$dS(t) = a(S, t) dt + b(S, t) dW(t), 0 < t < T.$$

Milstein scheme:

$$\widehat{S}_{n+1} = \widehat{S}_n + ah + b\Delta W_n + \frac{1}{2}b'b\left((\Delta W_n)^2 - h\right).$$

In scalar case:

- O(h) strong convergence
- $O(\varepsilon^{-2})$ complexity for Lipschitz payoffs trivial
- $O(\varepsilon^{-2})$ complexity for Asian, lookback, barrier and digital options using carefully constructed estimators based on Brownian interpolation or extrapolation

Brownian interpolation: within each timestep, model the behaviour as simple Brownian motion conditional on the two end-points

$$\widehat{S}(t) = \widehat{S}_n + \lambda(t)(\widehat{S}_{n+1} - \widehat{S}_n) + b_n \left(W(t) - W_n - \lambda(t)(W_{n+1} - W_n) \right),$$

where

$$\lambda(t) = \frac{t - t_n}{t_{n+1} - t_n}$$

There then exist analytic results for the distribution of the min/max/average over each timestep.

Brownian extrapolation for final timestep:

$$\widehat{S}_N = \widehat{S}_{N-1} + a_{N-1} h + b_{N-1} \Delta W_N$$

– considering all possible ΔW_N gives Gaussian distribution, for which a digital option has a known conditional expectation (Glasserman)

This payoff smoothing can be generalised to multivariate cases, and leads to a "vibrato" Monte Carlo technique which is suitable for both efficient multilevel analysis and the computation of Greeks

Results

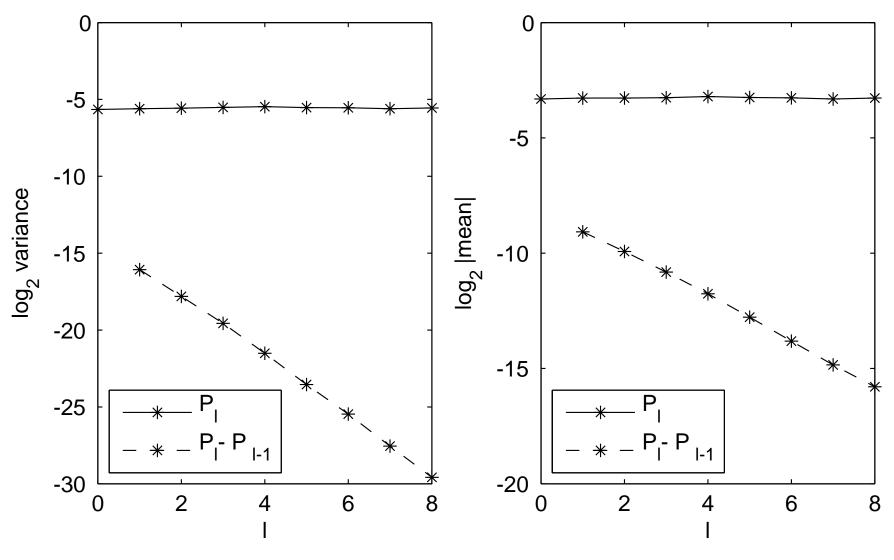
Geometric Brownian motion:

$$dS = r S dt + \sigma S dW, \qquad 0 < t < T,$$

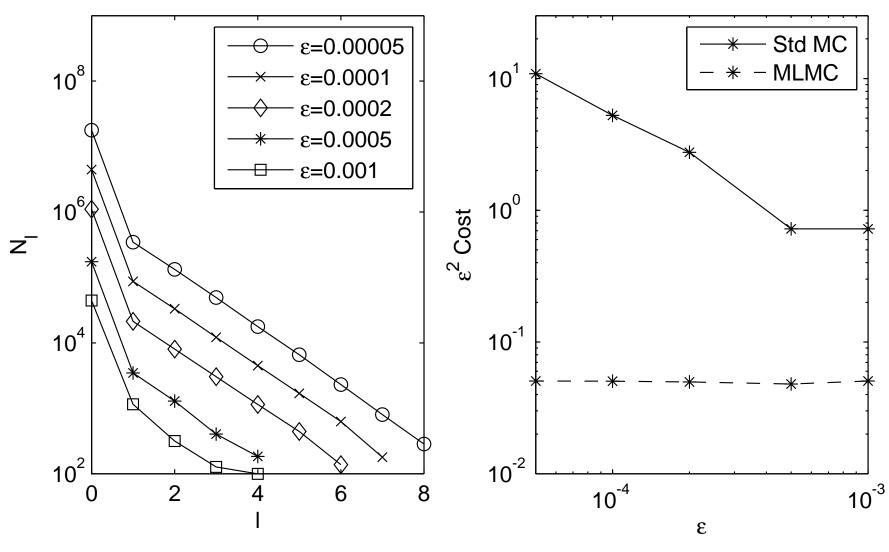
with parameters T = 1, S(0) = 1, r = 0.05, $\sigma = 0.2$

- European call option: $\exp(-rT) \max(S(T) 1, 0)$
- European digital call: $\exp(-rT) \mathbf{1}_{S(T)>1}$
- Down-and-out barrier option: same as call provided S(t) stays above B = 0.9

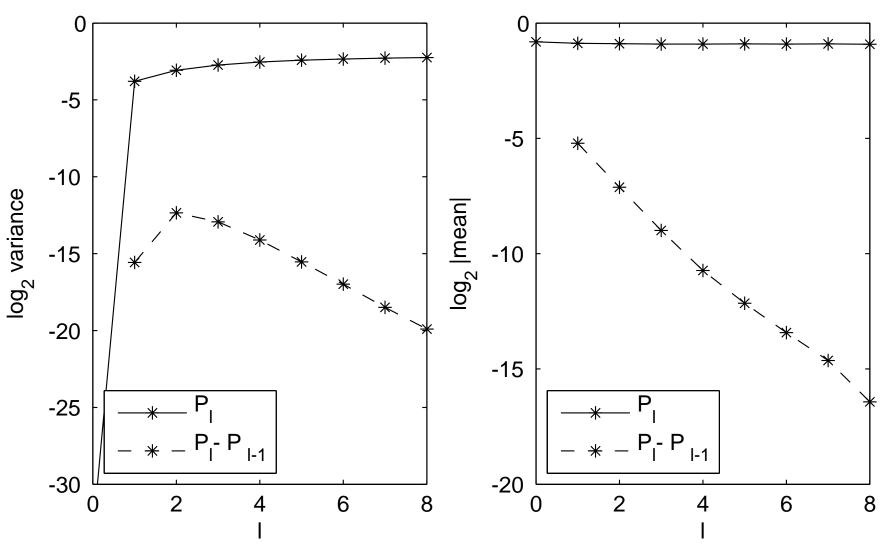
GBM: European call



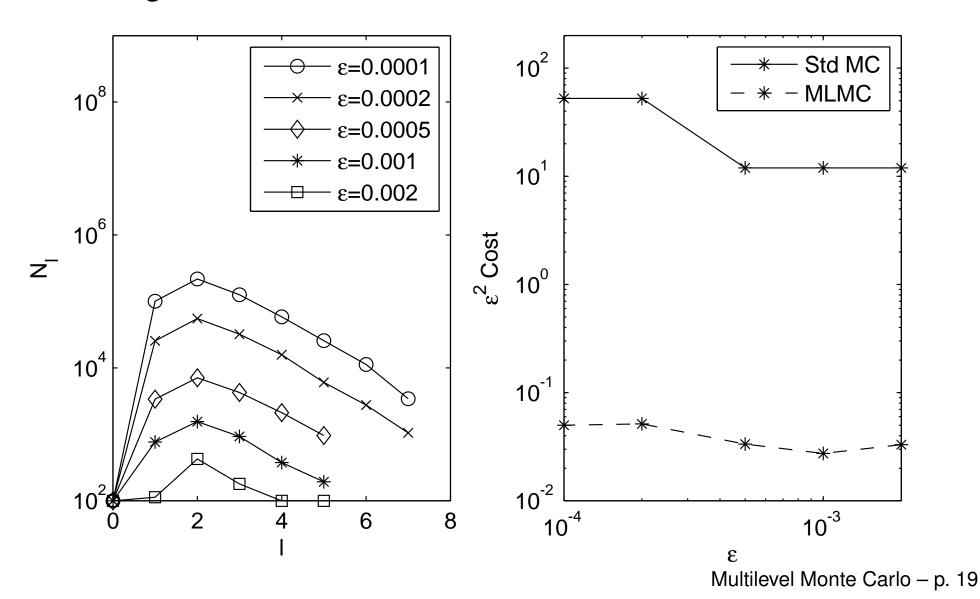
GBM: European call



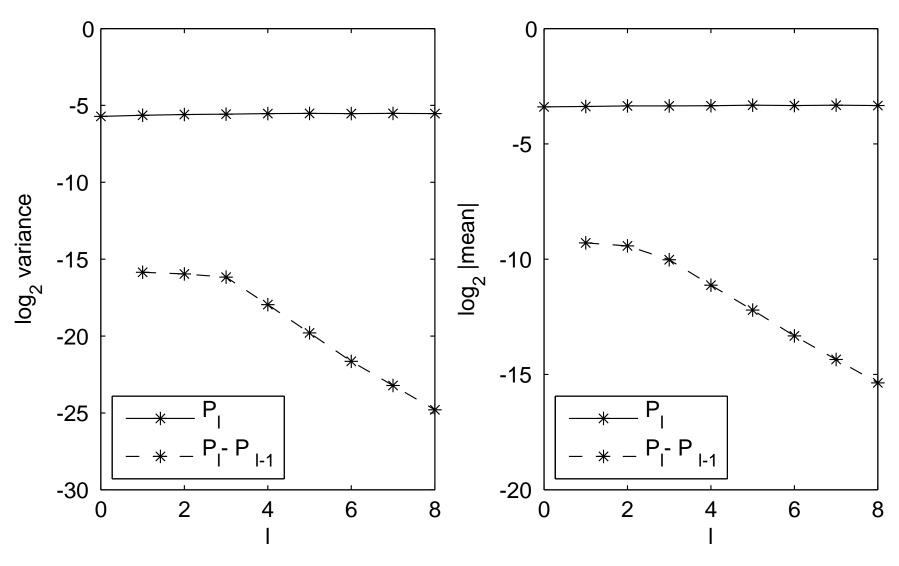
GBM: digital call



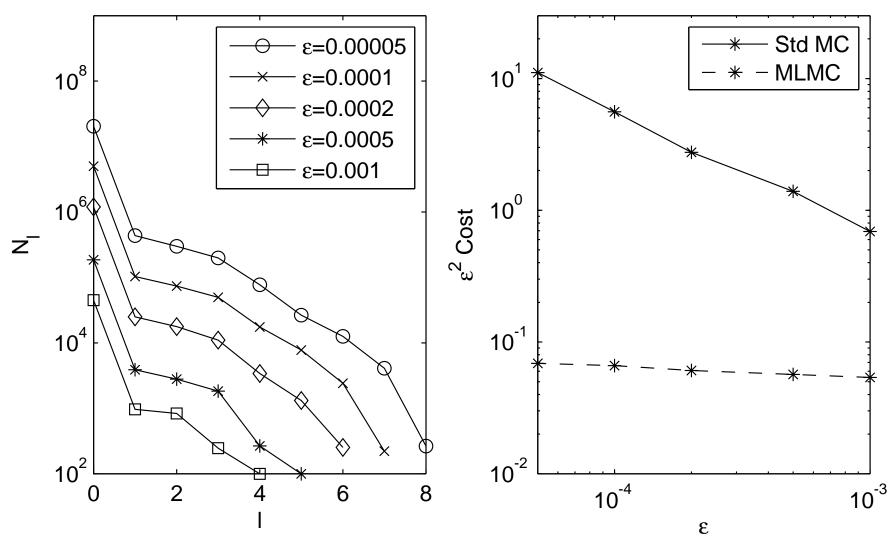
GBM: digital call



GBM: barrier option



GBM: barrier option



- well-established technique for approximating high-dimensional integrals
- for finance applications see papers by l'Ecuyer and book by Glasserman
- Sobol sequences are perhaps most popular;
 we used rank-1 lattice rules (Sloan & Kuo)
- two important ingredients for success:
 - randomized QMC for confidence intervals
 - good identification of "dominant dimensions" (Brownian Bridge and/or PCA)

Approximate high-dimensional hypercube integral

$$\int_{[0,1]^d} f(x) \, \mathrm{d}x$$

by

$$\frac{1}{N} \sum_{i=0}^{N-1} f(x^{(i)})$$

where

$$x^{(i)} = \left\lceil \frac{i}{N} z \right\rceil$$

and z is a d-dimensional "generating vector".

In the best cases, error is $O(N^{-1})$ instead of $O(N^{-1/2})$ but without a confidence interval.

To get a confidence interval, let

$$x^{(i)} = \left[\frac{i}{N}z + x_0\right].$$

where x_0 is a random offset vector.

Using 32 different random offsets gives a confidence interval in the usual way.

For the path discretisation we can use

$$\Delta W_n = \sqrt{h} \; \Phi^{-1}(x_n),$$

where Φ^{-1} is the inverse cumulative Normal distribution.

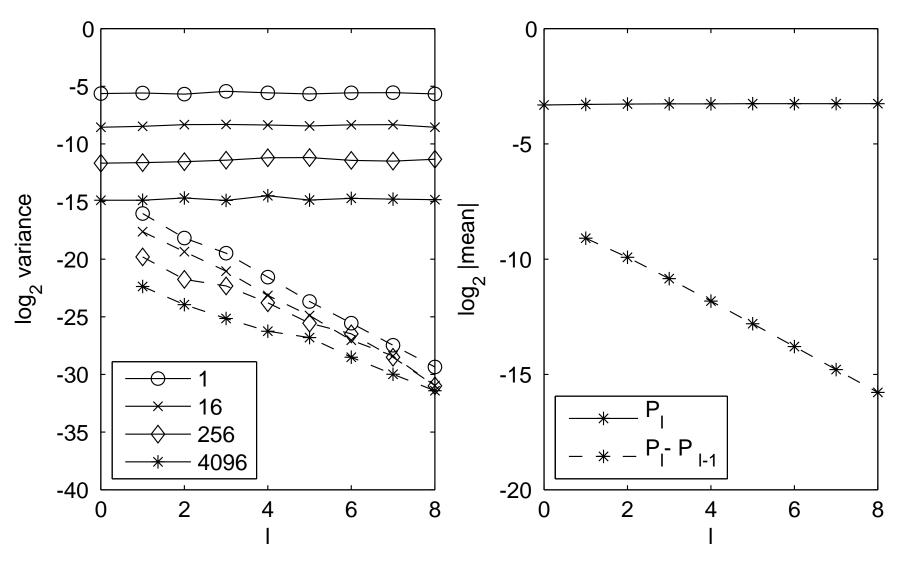
Much better to use a Brownian Bridge construction:

- \bullet $x_2 \longrightarrow W(T/2)$
- \bullet $x_3, x_4 \longrightarrow W(T/4), W(3T/4)$
- ... and so on by recursive bisection

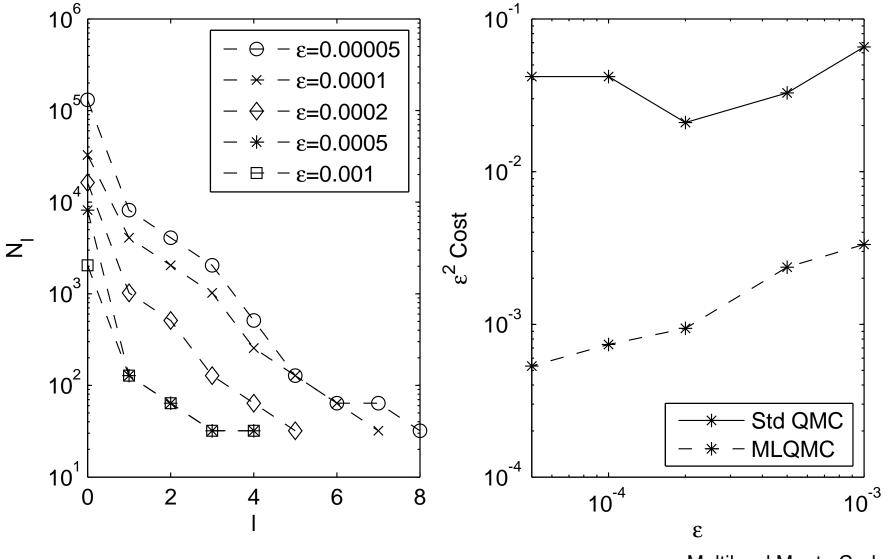
Multilevel QMC

- rank-1 lattice rule developed by Sloan, Kuo & Waterhouse at UNSW
- 32 randomly-shifted sets of QMC points gives unbiased estimate and confidence interval for multilevel correction
- MLQMC algorithm uses same heuristic as MLMC algorithm to estimate weak error and choose optimal number of levels
- MLQMC algorithm repeatedly doubles the number of points on the level with greatest variance/cost ratio, until desired accuracy is achieved
- results show QMC to be particularly effective on lowest levels with low dimensionality

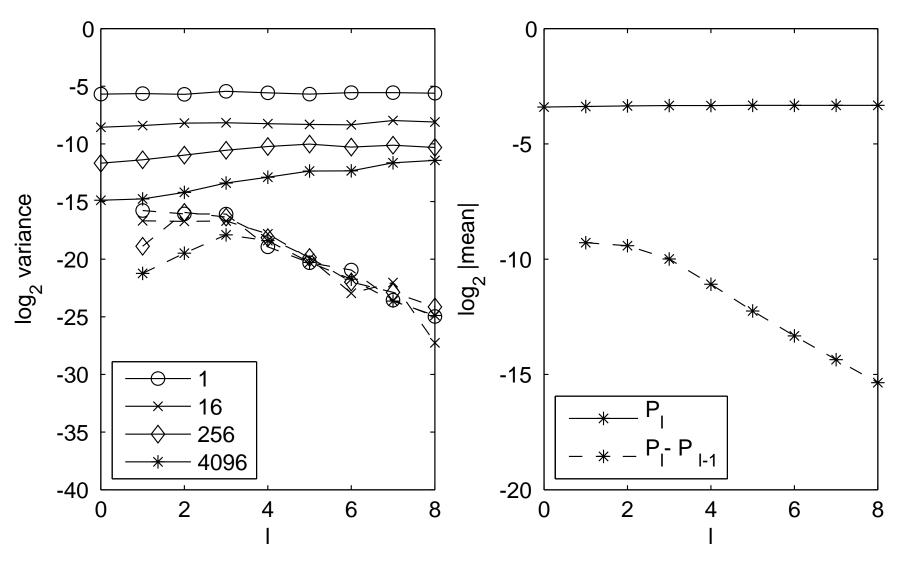
GBM: European call



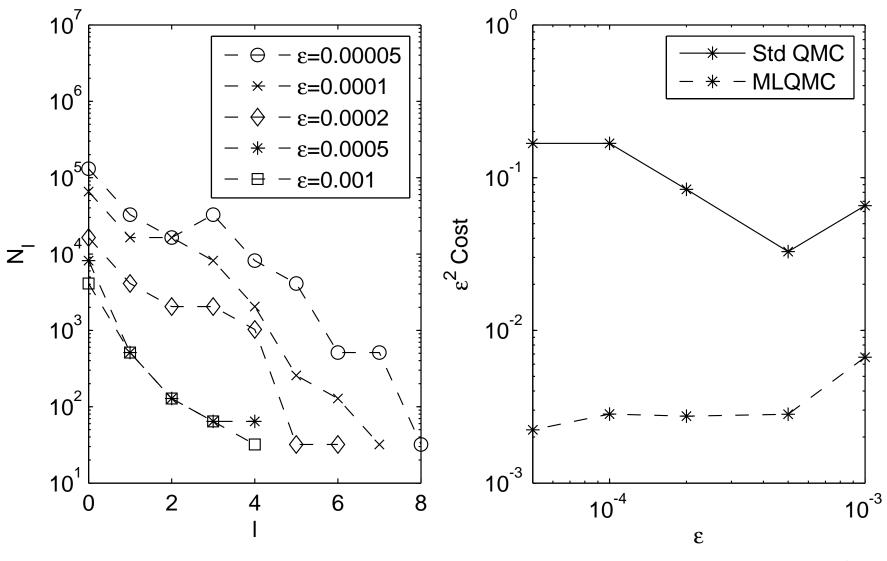
GBM: European call



GBM: barrier option



GBM: barrier option



2015 postscript

This research (and almost all of the presentation) comes from 2007.

In May-June 2015, Adrien Grumberg repeated everything using Sobol points with Matousek—Owen digital scrambling.

The results were very similar – if anything, the Sobol results were slightly better.

A. Grumberg. "On Multilevel Quasi-Monte Carlo Methods", MSc dissertation, Oxford, 2015.

people.maths.ox.ac.uk/gilesm/files/Adrien_Grumberg.pdf

Conclusions

- initial MLQMC research came very soon after MLMC
- numerical results were very encouraging, but there was no supporting numerical analysis
- Frances Kuo and Ian Sloan later developed MLQMC for SPDEs, in collaboration with Rob Scheichl, Christoph Schwab, and others – also made good progress on the numerical analysis

Future:

- more experiments
- new applications
 (e.g. continuous-time Markov processes)
- more numerical analysis

Papers

- M.B. Giles, "Multilevel Monte Carlo path simulation", *Operations Research*, 56(3):607-617, 2008.
- M.B. Giles, "Improved multilevel convergence using the Milstein scheme", pp.343-358 in *MCQMC06* proceedings, Springer-Verlag, 2008.
- M.B. Giles, B. Waterhouse, "Multilevel quasi-Monte Carlo path simulation", pp.165-181 in *Advanced Financial Modelling*, in Radon Series on Computational and Applied Mathematics, de Gruyter, 2009.

```
people.maths.ox.ac.uk/gilesm/mlmc.html
people.maths.ox.ac.uk/gilesm/acta/
people.maths.ox.ac.uk/gilesm/mlmc_community.html
```