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Generation of scalar random variables

To generate scalar random variables X with a known Cumulative
Distribution Function (CDF)

C (x) = P[X ≤ x ]

one approach is to create a (0, 1) uniform random variable, and then
apply the inverse CDF

X = C−1(U)

This works for discrete distributions if C−1(U) is defined appropriately.
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Generation of Poisson random variables

Previous work on the efficient generation of Poisson random variables
used an inverse of the incomplete gamma function

C
−1
λ (u) = bC−1λ (u)c

where C
−1
λ (u) is the inverse CDF for the Poisson distribution for rate λ,

and C−1λ (u) is the inverse of the incomplete gamma function:

Cλ(x) =
1

Γ(x)

∫ ∞
λ

e−t tx−1 dt.

This led to accurate and efficient software on both CPUs and GPUs.
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Generation of Binomial random variables

The present work has a similar motivation, to generate Binomial
random variables, for which we now have two parameters: n, p.

The approach is also the same, using an inverse of the incomplete beta
function and then rounding down to the nearest integer:

C
−1
n,p(u) = bC−1n,p (u)c

where C
−1
n,p(u) is the inverse CDF for the Binomial distribution, and

C−1n,p (u) is an inverse of the incomplete gamma function:

Cn,p(x) ≡ I1−p(n+1−x , x) =
n!

(x−1)! (n−x)!

∫ 1−p

0
tn−x(1−t)x−1 dt
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Illustration of rounding down procedure

Plot of C (x) (dashed line) and C (x) (solid line) for n = 20, p = 0.25
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Generation of Binomial random variables

Two notes:

We want the inverse of Cn,p(x) ≡ I1−p(n+1−x , x) with respect to x ;
this is different to other inverses for which software exists

Small errors in approximating Q(u) ≡ C−1n,p (u) can only lead to
incorrect rounding for the binomial r.v.’s when near an integer.

The final software will use a correction process in this case, so we
don’t need exceptional accuracy – prepared to tradeoff accuracy
versus cost
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Normal asymptotic approximation

As n→∞, binomial CDF approaches Normal CDF with mean np and
variance npq, where q = 1− p. This motivates a change of variables

x = np +
√
npq y , t = q +

√
pq/n (z−y),

with y the deviation from the mean, normalised by the standard deviation.

This leads to

C (x) =
1√
2π

∫ y

y−
√

nq/p
J dz ,

where

log J = 1
2 log(2π) + log Γ(n+1)− log Γ(x)− log Γ(n−x+1)

+(n−x) log t + (x−1) log(1−t) + 1
2 log(pq/n).
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Normal asymptotic approximation

An expansion in powers of n−1/2, followed by exponentiation and a second
expansion in powers of n−1/2, yields

J(y , z) = exp(−1
2z

2)

(
1 +

∞∑
m=1

n−m/2em(p, y , z)

)

where em(p, y , z) are polynomial in p, y and z . Integrating by parts then
gives

C (x) = Φ(y) + φ(y)

(
3∑

m=1

n−m/2f̃m + O(n−2)

)
where Φ(y) is the Normal CDF function, φ(y) = Φ′(y) is the Normal
probability density function, and f̃1, f̃2, f̃3 are polynomial in both p and y .
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Normal asymptotic approximation

Inverting this expansion, gives the final asymptotic expansion in which
w = Φ−1(u),

Q(u) = np +
√
npq w +

(
2 + 2p + (q − p)w2

)
/6

+
(
(−2 + 14pq)w + (−1− 2pq)w3

)
/(72
√
npq)

+ (p − q)(2 + pq)(16− 7w2 − 3w4)/ (1620 npq) + O(n−3/2),

providing the following three approximations:

Q̃N1(u) = np +
√
npq w +

(
2 + 2p + (q − p)w2

)
/ 6

Q̃N2(u) = Q̃N0(u) +
(
(−2 + 14pq)w + (−1− 2pq)w3

)
/(72
√
npq)

Q̃N3(u) = Q̃N1(u) + (p − q)(2 + pq)(16− 7w2 − 3w4) /(1620 npq).

The first corresponds to the Cornish-Fisher expansion with skewness
correction based on the binomial mean, variance and skew.
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Normal asymptotic approximation

Maximum errors for p = 0.25

Odd “glitch” is because we limit range to |w | < 3 and 10 < x < n−9;
final software will use other methods outside that region
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GST expansion

Gil, Segura, Temme (2020) proved that

C (x) ≈ Φ(−η
√
ν)

where ν = n+1, ξ = x/ν and η is given by

η =

√
−2

(
ξ log

p

ξ
+ (1−ξ) log

1−p
1−ξ

)
≡ hp(ξ),

Hence, to leading order

x = Q̃T0(U) ≡ ν ξ0 ≡ ν h−1p (η0)

where η0 ≡ −w/
√
ν with w = Φ−1(U).
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GST expansion

Gil, Segura, Temme (2020) also derived an improved representation

C (x) = Φ(−η
√
ν) + Rν(η)

with an expansion for Rν(η).

This leads to an improved approximation

Q̃T1(u) = ν ξ0 + gp(η0),

where

gp(η0) =
{
η−10 log

(√
ξ0(1−ξ0)η0/(p−ξ0)

)}
×
{
−η0

/(
log

(1−ξ0)p

(1−p)ξ0

)}
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GST approximation

Maximum errors for p = 0.25, |w | < 10, 10 < x < ν−9.
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GPU software plans

Algorithm for vector implementation (with different n, p, u for each
element):

use “bottom-up” or “top-down” summation (i.e. direct summation
to compute C (m) or 1−C (m) ) when npq is small

otherwise, construct Q̃T1 approximation with error bound
I use “bottom-up” or “top-down” summation when x<10 or x>n−9

I if Q̃T1 is too close to an integer, evaluate Cn,p(x) to determine correct
rounded value

Note: corrections will be needed very rarely, so excellent vector
performance – justifies higher cost of GST approximation
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CPU software plans

Algorithm for scalar implementation:

use “bottom-up” or “top-down” summation when npq is small

otherwise, define w = Φ−1(u) and if |w | < 3 construct Q̃N2

approximation, with error bound based on Q̃N3 − Q̃N2

I if |w | ≥ 3 or if Q̃N2 is too close to an integer, switch to Q̃T1

approximation

I use “bottom-up” or “top-down” summation when x<10 or x>n−9

I if necessary evaluate Cn,p(x) to determine correct rounded value

Note: reduced cost most of the time, but more corrections needed
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