OP2: An Active Library Framework for Solving Unstructured Mesh-based Applications on Multi-Core and Many-Core Architectures

#### Mike Giles, Gihan Mudalige, István Reguly Carlo Bertolli, Paul Kelly

Oxford e-Research Centre / Imperial College

InPar 2012: Innovative Parallel Computing

May 13, 2012

## Outline

- structured and unstructured grids
- software challenge
- user perspective (i.e. application developer)
  - API
  - build process
- implementation issues
  - hierarchical parallelism on GPUs
  - data dependency
  - code generation
  - auto-tuning

# Structured and unstructured grids



Structured grids:

- logical (i, j) indexing in 2D, (i, j, k) in 3D, with implicit connectivity
- $\bullet\,$  easy to parallelize, including on GPUs with L1/L2 caches

Unstructured grids:

- a collection of nodes, edges, etc., with explicit connectivity e.g. mapping tables define connections from edges to nodes
- much harder to parallelize (not in concept so much as in practice) but a lot of existing literature on the subject

# Software Challenge

- Application developers want the benefits of the latest hardware but are very worried about the development effort required
- Want to exploit GPUs using CUDA, and CPUs using OpenMP/AVX
- However, hardware is likely to change rapidly in next few years, and developers can't afford to keep changing their codes

Solution?

- high-level abstraction to separate the user's specification of the application from the details of the parallel implementation
- aim to achieve application level longevity together with near-optimal performance through re-targetting the back-end implementation

- open source project
- based on OPlus (Oxford Parallel Library for Unstructured Solvers) developed over 10 years ago for industrial CFD code on distributed-memory clusters
- supports application codes written in C++ or FORTRAN
- looks like a conventional library, but uses code transformation to generate CUDA for NVIDIA GPUs and OpenMP/AVX for CPUs/MIC
- keeps OPlus abstraction, but slightly modifies API

# **OP2** Abstraction

- sets (e.g. nodes, edges, faces)
- datasets (e.g. flow variables)
- mappings (e.g. from edges to nodes)
- parallel loops
  - operate over all members of one set
  - datasets have at most one level of indirection
  - user specifies how data is used
    - (e.g. read-only, write-only, increment)

Restrictions:

- set elements can be processed in any order, doesn't affect result to machine precision
  - explicit time-marching, or multigrid with an explicit smoother is OK
  - Gauss-Seidel or ILU preconditioning is not
- static sets and mappings (no dynamic grid adaptation)

伺 ト く ヨ ト く ヨ ト

#### OP2 API

void op\_init(int argc, char \*\*argv)

op\_set op\_decl\_set(int size, char \*name)

void op\_decl\_const(int dim, char \*type, T \*dat)

void op\_exit()

= 990

(人間) くちり くちり

Example of parallel loop syntax for a sparse matrix-vector product:

```
op_par_loop(res, "res", edges,
op_arg_dat(A,-1,OP_ID, 1, "float", OP_READ),
op_arg_dat(u, 0, col, 1, "float", OP_READ),
op_arg_dat(du, 0, row, 1, "float", OP_INC));
```

This is equivalent to the C code:

```
for (e=0; e<nedges; e++)
du[row[e]] += A[e] * u[col[e]];</pre>
```

where each "edge" corresponds to a non-zero element in the matrix A, and row, col give the corresponding row and column indices.

◆□▶ ◆帰▶ ◆三▶ ◆三▶ 三 ののべ

Using the same source code, the user can build different executables for different target platforms:

- sequential single-thread CPU execution
  - no code generation just uses a header file
  - purely for program development and debugging
- CUDA (and OpenCL in the future) for single GPU
- OpenMP (and AVX in the future) for multicore CPU systems
- MPI plus any of the above for clusters

## CUDA build process

Preprocessor parses user code and generates new code:



3. 3

#### Implementation Approach

The question now is how to deliver good performance on multiple GPUs

- MPI distributed-memory parallelism (1-100)
  - one MPI process for each GPU, with standard partitioning so that each partition fits within global memory of GPU
  - only halos need to be transferred from one GPU to another
- block parallelism (100-2000)
  - on each GPU, data is broken into mini-partitions, worked on separately and in parallel by different Streaming Multiprocessors within the GPU
  - each mini-partition is sized so that all of the indirect data can be held in shared memory and re-used as needed
- thread parallelism (64-256)
  - each mini-partition is worked on by a block of threads in parallel

### Data dependencies

Key technical issue is data dependency when incrementing indirectly-referenced arrays.

e.g. potential problem when two edges update same node



## Data dependencies

MPI level: "owner" of nodal data does edge computation

• drawback is redundant computation when the two nodes have different "owners"



# Data dependencies

Thread level: "color" edges so no two edges of the same color update the same node

- compute increments in parallel, then apply them color by color with synchronisation between
- similar strategy also used at thread block level to avoid race condition



## Other implementation issues

- array-of-structs storage preferred to struct-of-arrays
  - better cache hits for indirect addressing
  - transfers between graphics memory and GPU still largely "coalesced"
- auto-tuning very useful to optimize size of partitions and number of threads

- 2D Euler equations, cell-centred finite volume method with scalar dissipation
- two test cases:
  - 1.5M edges, 0.75M cells
  - 15M edges, 7.5M cells
- 5 parallel loops:
  - save\_soln (direct over cells)
  - adt\_calc (indirect over cells)
  - res\_calc (indirect over edges)
  - bres\_calc (indirect over boundary edges)
  - update (direct over cells with RMS reduction)

Library is instrumented to give lots of diagnostic info:

new execution plan #1 for kernel res\_calc number of blocks = 11240 number of block colors = 4 maximum block size = 128 average thread colors = 4.00 shared memory required = 3.72 KB average data reuse = 3.20 data transfer (used) = 87.13 MB data transfer (total) = 143.06 MB

 factor 2-4 data reuse in indirect access, but up to 40% of cache lines not used on average

伺 ト イヨ ト イヨ ト ・ ヨ ・ ク へ (や

Single precision performance for 1000 iterations on an NVIDIA C2070 using initial parameter values:

- mini-partition size (PS): 256 elements
- blocksize (BS): 256 threads

| count | time | GB/s  | GB/s | kernel name |
|-------|------|-------|------|-------------|
| 1000  | 0.23 | 107.8 |      | save_soln   |
| 2000  | 1.26 | 61.0  | 63.1 | adt₋calc    |
| 2000  | 5.10 | 32.5  | 53.4 | res_calc    |
| 2000  | 0.11 | 4.8   | 18.4 | bres_calc   |
| 2000  | 1.07 | 110.6 |      | update      |
| TOTAL | 7.78 |       |      |             |

Second B/W column includes whole cache line

Single precision performance for 1000 iterations on an NVIDIA C2070 using auto-tuned values:

| count | time | GB/s  | GB/s | kernel name | PS  | BS  |
|-------|------|-------|------|-------------|-----|-----|
| 1000  | 0.22 | 101.8 |      | save_soln   |     | 512 |
| 2000  | 1.09 | 74.1  | 75.4 | $adt_calc$  | 256 | 128 |
| 2000  | 4.95 | 36.9  | 60.6 | res_calc    | 128 | 128 |
| 2000  | 0.10 | 5.3   | 20.0 | bres_calc   | 64  | 128 |
| 2000  | 1.03 | 94.7  |      | update      |     | 64  |
| TOTAL | 7.40 |       |      |             |     |     |

This is a 5 % improvement relative to baseline calculation.

Switching from AoS to SoA storage would increase res\_calc data transfer by approximately 120%.

Double precision performance for 1000 iterations on an NVIDIA C2070 using auto-tuned values:

| count | time  | GB/s  | GB/s | kernel name | PS  | BS  |
|-------|-------|-------|------|-------------|-----|-----|
| 1000  | 0.44  | 104.9 |      | save_soln   |     | 512 |
| 2000  | 2.62  | 52.9  | 53.8 | adt_calc    | 256 | 128 |
| 2000  | 10.35 | 30.5  | 50.8 | res₋calc    | 128 | 128 |
| 2000  | 0.08  | 11.2  | 27.9 | bres_calc   | 64  | 128 |
| 2000  | 1.87  | 104.5 |      | update      |     | 64  |
| TOTAL | 15.36 |       |      |             |     |     |

This is a 7.5 % improvement relative to baseline calculation. Switching from AoS to SoA storage would again increase res\_calc data transfer by approximately 120%.

Single precision performance on two Intel "Westmere" 6-core 2.67GHz X5650 CPUs using auto-tuned values:

Optimum number of OpenMP threads: 16

| count | time  | GB/s | GB/s | kernel name | PS   |
|-------|-------|------|------|-------------|------|
| 1000  | 1.68  | 13.7 |      | save_soln   |      |
| 2000  | 11.15 | 7.3  | 7.5  | adt_calc    | 128  |
| 2000  | 16.57 | 10.3 | 11.2 | res_calc    | 1024 |
| 2000  | 0.16  | 3.2  | 11.9 | bres_calc   | 64   |
| 2000  | 4.67  | 20.9 |      | update      |      |
| TOTAL | 34.25 |      |      |             |      |

Minimal gain relative to baseline calculation with 12 threads and mini-partition sizes of 1024.

Double precision performance on two Intel "Westmere" 6-core 2.67GHz X5650 CPUs using auto-tuned values:

Optimum number of OpenMP threads: 12

| count | time  | GB/s | GB/s | kernel name | PS   |
|-------|-------|------|------|-------------|------|
| 1000  | 2.51  | 18.3 |      | save_soln   |      |
| 2000  | 11.68 | 11.8 | 11.9 | adt_calc    | 1024 |
| 2000  | 20.99 | 12.8 | 13.5 | res_calc    | 1024 |
| 2000  | 0.17  | 5.0  | 12.4 | bres_calc   | 512  |
| 2000  | 9.29  | 21.1 |      | update      |      |
| TOTAL | 44.64 |      |      |             |      |

Minimal gain relative to baseline calculation with 12 threads and mini-partition sizes of 1024.

## Conclusions

- have created a high-level framework for parallel execution of unstructured grid algorithms on GPUs and other many-core architectures
- looks encouraging for providing ease-of-use, high performance and longevity through new back-ends
- auto-tuning is useful for code optimisation, and a new flexible auto-tuning system has been developed
- C2070 GPU speedup versus two 6-core Westmere CPUs is roughly  $5 \times$  in single precision,  $3 \times$  in double precision
- currently working on MPI layer in OP2 for computing on GPU clusters
- key challenge then is to build user community