
OP2: An Active Library Framework for Solving
Unstructured Mesh-based Applications on
Multi-Core and Many-Core Architectures

Mike Giles, Gihan Mudalige, István Reguly

Carlo Bertolli, Paul Kelly

Oxford e-Research Centre / Imperial College

InPar 2012: Innovative Parallel Computing

May 13, 2012

Mike Giles (OeRC) OP2 May 13, 2012 1 / 23

Outline

structured and unstructured grids

software challenge

user perspective (i.e. application developer)
I API
I build process

implementation issues
I hierarchical parallelism on GPUs
I data dependency
I code generation
I auto-tuning

Mike Giles (OeRC) OP2 May 13, 2012 2 / 23

Structured and unstructured grids

r r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r rr r r r r r r r
��

���

A
A
A

�
�
�
��

��
���

@
@
@
A
A
A

�
�
�
PPPPPA
A
A

�
�
�A
A
A

��
�

�
�
�
��r

r

r
r

r

r
r

r
r

Structured grids:

logical (i , j) indexing in 2D, (i , j , k) in 3D, with implicit connectivity

easy to parallelize, including on GPUs with L1/L2 caches

Unstructured grids:

a collection of nodes, edges, etc., with explicit connectivity –
e.g. mapping tables define connections from edges to nodes

much harder to parallelize (not in concept so much as in practice)
but a lot of existing literature on the subject

Mike Giles (OeRC) OP2 May 13, 2012 3 / 23

Software Challenge

Application developers want the benefits of the latest hardware
but are very worried about the development effort required

Want to exploit GPUs using CUDA, and CPUs using OpenMP/AVX

However, hardware is likely to change rapidly in next few years, and
developers can’t afford to keep changing their codes

Solution?

high-level abstraction to separate the user’s specification of the
application from the details of the parallel implementation

aim to achieve application level longevity together with near-optimal
performance through re-targetting the back-end implementation

Mike Giles (OeRC) OP2 May 13, 2012 4 / 23

OP2

open source project

based on OPlus (Oxford Parallel Library for Unstructured Solvers)
developed over 10 years ago for industrial CFD code on
distributed-memory clusters

supports application codes written in C++ or FORTRAN

looks like a conventional library, but uses code transformation to
generate CUDA for NVIDIA GPUs and OpenMP/AVX for CPUs/MIC

keeps OPlus abstraction, but slightly modifies API

Mike Giles (OeRC) OP2 May 13, 2012 5 / 23

OP2 Abstraction

sets (e.g. nodes, edges, faces)

datasets (e.g. flow variables)

mappings (e.g. from edges to nodes)

parallel loops
I operate over all members of one set
I datasets have at most one level of indirection
I user specifies how data is used

(e.g. read-only, write-only, increment)

Restrictions:

set elements can be processed in any order, doesn’t affect result to
machine precision

I explicit time-marching, or multigrid with an explicit smoother is OK
I Gauss-Seidel or ILU preconditioning is not

static sets and mappings (no dynamic grid adaptation)

Mike Giles (OeRC) OP2 May 13, 2012 6 / 23

OP2 API

void op init(int argc, char **argv)

op set op decl set(int size, char *name)

op map op decl map(op set from, op set to,

int dim, int *imap, char *name)

op dat op decl dat(op set set, int dim,

char *type, T *dat, char *name)

void op decl const(int dim, char *type, T *dat)

void op exit()

Mike Giles (OeRC) OP2 May 13, 2012 7 / 23

OP2 API

Example of parallel loop syntax for a sparse matrix-vector product:

op par loop(res,"res", edges,

op arg dat(A,-1,OP ID, 1,"float",OP READ),

op arg dat(u, 0,col,1,"float",OP READ),

op arg dat(du,0,row,1,"float",OP INC));

This is equivalent to the C code:

for (e=0; e<nedges; e++)

du[row[e]] += A[e] * u[col[e]];

where each “edge” corresponds to a non-zero element in the matrix A, and
row, col give the corresponding row and column indices.

Mike Giles (OeRC) OP2 May 13, 2012 8 / 23

User build processes

Using the same source code, the user can build different executables for
different target platforms:

sequential single-thread CPU execution
I no code generation – just uses a header file
I purely for program development and debugging

CUDA (and OpenCL in the future) for single GPU

OpenMP (and AVX in the future) for multicore CPU systems

MPI plus any of the above for clusters

Mike Giles (OeRC) OP2 May 13, 2012 9 / 23

CUDA build process
Preprocessor parses user code and generates new code:

jac.cpp

?�
�

�
�op2.m preprocessor

? ? ?

jac op.cpp jac kernels.cu res kernel.cu
update kernel.cu

op lib.cu

? ? ?

�

�
�

�
�make / nvcc / g++

Mike Giles (OeRC) OP2 May 13, 2012 10 / 23

Implementation Approach

The question now is how to deliver good performance on multiple GPUs

MPI distributed-memory parallelism (1-100)
I one MPI process for each GPU, with standard partitioning so that each

partition fits within global memory of GPU
I only halos need to be transferred from one GPU to another

block parallelism (100-2000)
I on each GPU, data is broken into mini-partitions, worked on separately

and in parallel by different Streaming Multiprocessors within the GPU
I each mini-partition is sized so that all of the indirect data can be held

in shared memory and re-used as needed

thread parallelism (64-256)
I each mini-partition is worked on by a block of threads in parallel

Mike Giles (OeRC) OP2 May 13, 2012 11 / 23

Data dependencies

Key technical issue is data dependency when incrementing
indirectly-referenced arrays.

e.g. potential problem when two edges update same node

��
��
��
�

A
A
A
AA

�
�
�
�
�
�
�

��
��

��
�

@
@
@
@@
A
A
A
AA

�
�
�
��
PPPPPPP
A
A
A
AA

�
�
�
��A
A
A
AA

��
�
��

�
�
�
�
�
�
�

s
s

s
s

s

s
s

s

s

Mike Giles (OeRC) OP2 May 13, 2012 12 / 23

Data dependencies

MPI level: “owner” of nodal data does edge computation

drawback is redundant computation when the two nodes have
different “owners”

��
��
��
�

A
A
A
AA

�
�
�
�
�
�
�

��
��

��
�

@
@
@
@@
A
A
A
AA

�
��

�
��

s
s

s
s

s

�
��

�
��

PPPPPPP
A
A
A
AA
A
A
A
AA

��
�
��

�
�
�
�
�
�
�

s
s

s

s

Mike Giles (OeRC) OP2 May 13, 2012 13 / 23

Data dependencies

Thread level: “color” edges so no two edges of the same color update the
same node

compute increments in parallel, then apply them color by color with
synchronisation between

similar strategy also used at thread block level to avoid race condition

s
s

s
s

s

s
s

s

s
�
�
�
�
�
�
�

�
�
�
��

PPPPPPP

A
A
A
AA

@
@
@
@@

A
A
A
AA

�
�
�
�
�
�
�

��
��
��
�

��
��

��
�

A
A
A
AA

A
A
A
AA

��
�
��

�
�
�
��

Mike Giles (OeRC) OP2 May 13, 2012 14 / 23

Other implementation issues

array-of-structs storage preferred to struct-of-arrays
I better cache hits for indirect addressing
I transfers between graphics memory and GPU still largely “coalesced”

auto-tuning very useful to optimize size of partitions and number of
threads

Mike Giles (OeRC) OP2 May 13, 2012 15 / 23

Airfoil test code

2D Euler equations, cell-centred finite volume method with scalar
dissipation

two test cases:
I 1.5M edges, 0.75M cells
I 15M edges, 7.5M cells

5 parallel loops:
I save soln (direct over cells)
I adt calc (indirect over cells)
I res calc (indirect over edges)
I bres calc (indirect over boundary edges)
I update (direct over cells with RMS reduction)

Mike Giles (OeRC) OP2 May 13, 2012 16 / 23

Airfoil test code

Library is instrumented to give lots of diagnostic info:

new execution plan #1 for kernel res_calc

number of blocks = 11240

number of block colors = 4

maximum block size = 128

average thread colors = 4.00

shared memory required = 3.72 KB

average data reuse = 3.20

data transfer (used) = 87.13 MB

data transfer (total) = 143.06 MB

factor 2-4 data reuse in indirect access, but up to 40% of cache lines
not used on average

Mike Giles (OeRC) OP2 May 13, 2012 17 / 23

Airfoil test code

Single precision performance for 1000 iterations on an NVIDIA C2070
using initial parameter values:

mini-partition size (PS): 256 elements

blocksize (BS): 256 threads

count time GB/s GB/s kernel name

1000 0.23 107.8 save soln
2000 1.26 61.0 63.1 adt calc
2000 5.10 32.5 53.4 res calc
2000 0.11 4.8 18.4 bres calc
2000 1.07 110.6 update

TOTAL 7.78

Second B/W column includes whole cache line

Mike Giles (OeRC) OP2 May 13, 2012 18 / 23

Airfoil test code

Single precision performance for 1000 iterations on an NVIDIA C2070
using auto-tuned values:

count time GB/s GB/s kernel name PS BS

1000 0.22 101.8 save soln 512
2000 1.09 74.1 75.4 adt calc 256 128
2000 4.95 36.9 60.6 res calc 128 128
2000 0.10 5.3 20.0 bres calc 64 128
2000 1.03 94.7 update 64

TOTAL 7.40

This is a 5 % improvement relative to baseline calculation.
Switching from AoS to SoA storage would increase res calc data transfer
by approximately 120%.

Mike Giles (OeRC) OP2 May 13, 2012 19 / 23

Airfoil test code

Double precision performance for 1000 iterations on an NVIDIA C2070
using auto-tuned values:

count time GB/s GB/s kernel name PS BS

1000 0.44 104.9 save soln 512
2000 2.62 52.9 53.8 adt calc 256 128
2000 10.35 30.5 50.8 res calc 128 128
2000 0.08 11.2 27.9 bres calc 64 128
2000 1.87 104.5 update 64

TOTAL 15.36

This is a 7.5 % improvement relative to baseline calculation.
Switching from AoS to SoA storage would again increase res calc data
transfer by approximately 120%.

Mike Giles (OeRC) OP2 May 13, 2012 20 / 23

Airfoil test code

Single precision performance on two Intel “Westmere” 6-core 2.67GHz
X5650 CPUs using auto-tuned values:

Optimum number of OpenMP threads: 16

count time GB/s GB/s kernel name PS

1000 1.68 13.7 save soln
2000 11.15 7.3 7.5 adt calc 128
2000 16.57 10.3 11.2 res calc 1024
2000 0.16 3.2 11.9 bres calc 64
2000 4.67 20.9 update

TOTAL 34.25

Minimal gain relative to baseline calculation with 12 threads and
mini-partition sizes of 1024.

Mike Giles (OeRC) OP2 May 13, 2012 21 / 23

Airfoil test code

Double precision performance on two Intel “Westmere” 6-core 2.67GHz
X5650 CPUs using auto-tuned values:

Optimum number of OpenMP threads: 12

count time GB/s GB/s kernel name PS

1000 2.51 18.3 save soln
2000 11.68 11.8 11.9 adt calc 1024
2000 20.99 12.8 13.5 res calc 1024
2000 0.17 5.0 12.4 bres calc 512
2000 9.29 21.1 update

TOTAL 44.64

Minimal gain relative to baseline calculation with 12 threads and
mini-partition sizes of 1024.

Mike Giles (OeRC) OP2 May 13, 2012 22 / 23

Conclusions

have created a high-level framework for parallel execution of
unstructured grid algorithms on GPUs
and other many-core architectures

looks encouraging for providing ease-of-use, high performance and
longevity through new back-ends

auto-tuning is useful for code optimisation, and a new flexible
auto-tuning system has been developed

C2070 GPU speedup versus two 6-core Westmere CPUs is roughly 5×
in single precision, 3× in double precision

currently working on MPI layer in OP2 for computing on GPU clusters

key challenge then is to build user community

Mike Giles (OeRC) OP2 May 13, 2012 23 / 23

