
Use of GPUs for Explicit and Implicit
Finite Difference Methods

Mike Giles

Mathematical Institute, Oxford University

Oxford-Man Institute of Quantitative Finance

Oxford e-Research Centre

Endre László, István Reguly (Oxford + PPKE, Budapest)
Jeremy Appleyard, Julien Demouth (NVIDIA)

QuanTech Conference, London

April 22nd, 2016

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 1 / 26

GPUs

In the last few years, GPUs have emerged as a major new technology in
computational finance, as well as other areas in HPC:

over 1000 GPUs at JP Morgan, and also used at a number of other
Tier 1 banks and financial institutions

use is driven by both energy efficiency and price/performance, with
main concern the level of programming effort required

Monte Carlo simulations are naturally parallel, so ideally suited to
GPU execution:

◮ averaging of path payoff values using binary tree reduction
◮ implementations exist also for Longstaff-Schwartz least squares

regression for American options – STAC-A2 testcase
◮ key requirement is parallel random number generation, and that is

addressed by libraries such as CURAND

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 2 / 26

Finite Difference calculations

Focus of this work is finite difference methods for approximating
Black-Scholes and other related multi-factor PDEs

explicit time-marching methods are naturally parallel – again a good
target for GPU acceleration

implicit time-marching methods usually require the solution of lots of
tridiagonal systems of equations – not so clear how to parallelise this

key observation is that cost of moving lots of data to/from the main
graphics memory can exceed cost of floating point computations

NVIDIA Kepler GPU (current double-precision GPU, about to be
superseded by new Pascal GPU)

◮ 288 GB/s bandwidth
◮ 5.0 TFlops (single precision) / 1.7 TFlops (double precision)

=⇒ should try to avoid this data movement

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 3 / 26

1D Finite Difference calculations

In 1D, a simple explicit finite difference equation takes the form

un+1
j = aj u

n
j−1 + bj u

n
j + cj u

n
j+1

while an implicit finite difference equation takes the form

aj u
n+1
j−1 + bj u

n+1
j + cj u

n+1
j+1 = unj

requiring the solution of a tridiagonal set of equations.

What performance can be achieved?

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 4 / 26

1D Finite Difference calculations

grid size: 256 points

number of options: 2048

number of timesteps: 50000 (explicit), 2500 (implicit)

K40 capable of 5 TFlops (single prec.), 1.7 TFlops (double prec.)

single prec. double prec.

msec GFlops msec GFlops

explicit1 224 700 258 610

explicit2 52 3029 107 1463

implicit1 19 1849 57 892

How is this performance achieved?

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 5 / 26

NVIDIA Kepler GPU

SMX SMX SMX SMX

1.5MB L2 cache

SMX SMX SMX SMX

64kB L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 6 / 26

1D Finite Difference calculations

Approach for explicit time-marching:

each thread block (256 threads) does one or more options

3 FMA (fused multiply-add) operations per grid point per timestep

doing an option calculation within one thread block means no need to
transfer data to/from graphics memory – can hold all data in SMX

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 7 / 26

1D Finite Difference calculations

explicit1 holds data in shared memory

each thread handles one grid point

performance is limited by speed of shared memory access,
and cost of synchronisation

__shared__ REAL u[258];

...

utmp = u[i];

for (int n=0; n<N; n++) {

utmp = utmp + a*u[i-1] + b*utmp + c*u[i+1];

__syncthreads();

u[i] = utmp;

__syncthreads();

}

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 8 / 26

1D Finite Difference calculations

explicit2 holds all data in registers

each thread handles 8 grid points, so each warp (32 threads which
act in unison) handles one option

no block synchronisation required

data exchange with neighbouring threads uses shuffle instructions
(special hardware feature for data exchange within a warp)

r r r r r r r r r r

tid−1 thread tid tid+1

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 9 / 26

1D Finite Difference calculations

for (int n=0; n<N; n++) {

um = __shfl_up(u[7], 1);

up = __shfl_down(u[0], 1);

for (int i=0; i<7; i++) {

u0 = u[i];

u[i] = u[i] + a[i]*um + b[i]*u0 + c[i]*u[i+1];

um = u0;

}

u[7] = u[7] + a[7]*um + b[7]*u[7] + c[7]*up;

}

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 10 / 26

1D Finite Difference calculations

Bigger challenge is how to solve tridiagonal systems for implicit solvers.

want to keep computation within an SMX and avoid data transfer
to/from graphics memory

prepared to do more floating point operations if necessary to avoid
the data transfer

need lots of parallelism to achieve good performance

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 11 / 26

Solving Tridiagonal Systems

On a CPU, the tridiagonal equations

ai ui−1 + bi ui + ci ui+1 = di , i = 0, 1, . . . ,N−1

would usually be solved using the Thomas algorithm – essentially just
standard Gaussian elimination exploiting all of the zeros.

inherently sequential algorithm, with a forward sweep and then a
backward sweep

would require each thread to handle separate option

threads don’t have enough registers to store the required data
– would require data transfer to/from graphics memory to hold /
recover data from forward sweep

not a good choice – want an alternative with reduced data transfer,
even if it requires more floating point ops.

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 12 / 26

Solving Tridiagonal Systems

PCR (parallel cyclic reduction) is a highly parallel algorithm.

Starting with

ai ui−1 + ui + ci ui+1 = di , i = 0, 1, . . . ,N−1,

where uj =0 for j<0, j≥N, can subtract multiples of rows i±1, and
re-normalise, to get

a′i ui−2 + ui + c ′i ui+2 = d ′

i , i = 0, 1, . . . ,N−1,

Repeating with rows i±2 gives

a′′i ui−4 + ui + c ′′i ui+4 = d ′′

i , i = 0, 1, . . . ,N−1,

and after log2N repetitions end up with solution because ui±N = 0.

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 13 / 26

1D Finite Difference calculations

implicit1 uses a hybrid Thomas / PCR algorithm:

follows data layout of explicit2 with each thread handling 8 grid
points – means data exchanges can be performed by shuffles

each thread uses Thomas algorithm to obtain middle values as a
linear function of two (not yet known) “end” values

uJ+j = AJ+j + BJ+j uJ + CJ+j uJ+7, 0 < j < 7

the reduced tridiagonal system of size 2× 32 for the “end” values
is solved using PCR

total number of floating point operations is approximately double
what would be needed on a CPU using the Thomas algorithm
(but CPU division is more expensive, so similar Flop count overall?)

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 14 / 26

1D Finite Difference calculations





















x x x

x x x

x x x

x x x

x x x

x x x

x x x

x x x





















=⇒





















x x x

x 1 x

x 1 x

x 1 x

x 1 x

x 1 x

x 1 x

x x x





















Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 15 / 26

1D Finite Difference calculations

For comparison, we developed an implementation for two 8-core
“Sandy Bridge” Xeon E5-2690 CPUs

OpenMP used for multi-threading

each core has two 256-bit AVX vector units (ADD and MUL)

two CPUs are capable of 740 GFlops (single), 370 GFlops (double)

a variety of possible vectorisation approaches
◮ compiler auto-vectorisation
◮ low-level vector intrinsics
◮ OpenCL
◮ Cilk Plus

each core has a large 256kB L2 cache for temporary variables,
so Thomas algorithm best for implicit solver

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 16 / 26

1D Finite Difference calculations

Performance on two 8-core “Sandy Bridge” Xeon E5-2690 CPUs

single prec. double prec.

msec GFlop/s msec GFlop/s

explicit1 563 279 1188 132

explicit2 398 394 781 201

implicit1 187 139 470 48

implicit2 157 166 473 47

explicit1 uses compiler auto-vectorisation (data in L1 cache)

explicit2 uses low-level vector intrinsics and a similar approach
to the GPU implementation (data in L1 cache)

implicit1 uses compiler auto-vectorisation (data in L2 cache)

implicit2 uses low-level vector intrinsics (data in L2 cache)

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 17 / 26

3D Finite Difference calculations

What about a 3D extension on a 2563 grid?

memory requirements imply one kernel with multiple thread
blocks to handle a single option

kernel will need to be called for each timestep, to ensure that
the entire grid is updated before the next timestep starts

13-point stencil for explicit time-marching

✟✟✟✟
✟✟✟✟

✟✟✟✟

✟✟✟✟
✟✟✟✟

✟✟✟✟

✟✟✟✟
✟✟✟✟

✟✟✟✟

t
t t

t t
t t❢ t

t t

t t
t

implementation uses a separate thread for each grid point in
2D x-y plane, then marches in z-direction

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 18 / 26

3D Finite Difference calculations

grid size: 2563 points

number of timesteps: 500 (explicit), 100 (implicit)

K40 capable of 5.0 TFlops (single prec.), 1.7 TFlops (double prec.)
and 288 GB/s

single prec. double prec.

msec GFlops GB/s msec GFlops GB/s

explicit1 747 597 100 1200 367 127

explicit2 600 760 132 923 487 144

implicit1 447 406 146 889 243 144

Performance as reported by nvprof, the NVIDIA Visual Profiler

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 19 / 26

3D Finite Difference calculations

explicit1 relies on L1/L2 caches for data reuse – compiler does an
excellent job of optimising loop invariant operations

u2[indg] = t23 * u1[indg-KOFF-JOFF]

+ t13 * u1[indg-KOFF-IOFF]

+ (c1_3*S3*S3 - c2_3*S3 - t13 - t23) * u1[indg-KOFF]

+ t12 * u1[indg-JOFF-IOFF]

+ (c1_2*S2*S2 - c2_2*S2 - t12 - t23) * u1[indg-JOFF]

+ (c1_1*S1*S1 - c2_1*S1 - t12 - t13) * u1[indg-IOFF]

+ (1.0f - c3 - 2.0f*(c1_1*S1*S1 + c1_2*S2*S2 + c1_3*S3*S3

- t12 - t13 - t23)) * u1[indg]

+ (c1_1*S1*S1 + c2_1*S1 - t12 - t13) * u1[indg+IOFF]

+ (c1_2*S2*S2 + c2_2*S2 - t12 - t23) * u1[indg+JOFF]

+ t12 * u1[indg+JOFF+IOFF]

+ (c1_3*S3*S3 + c2_3*S3 - t13 - t23) * u1[indg+KOFF]

+ t13 * u1[indg+KOFF+IOFF]

+ t23 * u1[indg+KOFF+JOFF];

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 20 / 26

3D Finite Difference calculations

explicit2 uses extra registers to hold values which will be needed again

u = t23 * u1_om

+ t13 * u1_mo

+ (c1_3*S3*S3 - c2_3*S3 - t13 - t23) * u1_m;

u1_mm = u1[indg-JOFF-IOFF];

u1_om = u1[indg-JOFF];

u1_mo = u1[indg-IOFF];

u1_pp = u1[indg+IOFF+JOFF];

u = u + t12 * u1_mm

+ (c1_2*S2*S2 - c2_2*S2 - t12 - t23) * u1_om

+ (c1_1*S1*S1 - c2_1*S1 - t12 - t13) * u1_mo

+ (1.0f - c3 - 2.0f*(c1_1*S1*S1 + c1_2*S2*S2 + c1_3*S3*S3

- t12 - t13 - t23)) * u1_oo

+ (c1_1*S1*S1 + c2_1*S1 - t12 - t13) * u1_po

+ (c1_2*S2*S2 + c2_2*S2 - t12 - t23) * u1_op

+ t12 * u1_pp;

indg += KOFF;

u1_m = u1_oo;

u1_oo = u1[indg];

u1_po = u1[indg+IOFF];

u1_op = u1[indg+JOFF];

u = u + (c1_3*S3*S3 + c2_3*S3 - t13 - t23) * u1_oo

+ t13 * u1_po

+ t23 * u1_op;

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 21 / 26

3D Finite Difference calculations

The implicit ADI discretisation requires the solution of tridiagonal
equations along each coordinate direction.

The implicit1 code has the following structure:

kernel similar to explicit kernel to produce r.h.s.

separate kernel for tridiagonal solution in each coordinate direction

very important to ensure each warp loads a contiguous vector of data
(coalesced read) as much as possible

requires some careful transposition of data using shared memory

Distinctly non-trivial, so check out the paper and the code on my webpage!

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 22 / 26

3D Finite Difference calculations

Performance on two 8-core “Sandy Bridge” Xeon E5-2690 CPUs, with
combined 100 GB/s bandwidth to main memory (66 GB/s observed)

Dual-socket Intel Xeon E5-2690

single prec. double prec.

msec GFlop/s GB/s msec GFlop/s GB/s

explicit1 1903 233 34 3911 114 33

implicit1 2561 82 23 4966 42 23

explicit1 uses compiler auto-vectorisation

implicit1 uses compiler auto-vectorisation

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 23 / 26

Final GPU / CPU comparison

Best explicit/implicit one-factor (1F) and three-factor (3F) times (ms)
on one K40 GPU versus two Intel E5-2690 Xeon CPUs

K40 GPU 2 Xeon CPUs

SP DP SP DP

1F explicit 52 107 398 781

1F implicit 19 57 157 473

3F explicit 600 923 1903 3911

3F implicit 447 889 2561 4966

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 24 / 26

Conclusions

GPUs can deliver excellent performance for financial finite difference
calculations, as well as for Monte Carlo

some parts of the implementation are straightforward, but others
require a good understanding of the hardware and parallel algorithms
to achieve the best performance

some of this work will be built into NVIDIA CUSPARSE library

results show one K40 GPU is 7−8× (1F) and 3−5.5× (3F) faster
than two 8-core Xeon E5-2690 CPUs

For further info, see software and other details at
http://people.maths.ox.ac.uk/gilesm/codes/BS 1D/

http://people.maths.ox.ac.uk/gilesm/codes/BS 3D/

http://people.maths.ox.ac.uk/gilesm/cuda slides.html

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 25 / 26

Kepler versus newly announced Pascal

Biggest innovations in Pascal architecture:

HBM2 stacked memory – very high memory bandwidth

160GB/s NVLink between GPUs (and IBM Power8+ CPU)

https://devblogs.nvidia.com/parallelforall/inside-pascal/

card Tesla K40 Tesla P100

GPU Kepler GK110B Pascal GP100

cores 2880 3584

clock 750 – 875GHz 1300 – 1500 GHz

memory 12GB (GDDR5) 16GB (HBM2)

bandwidth 288 GB/s 720GB/s

registers 4MB 14MB

SP 4.3 TF 10.6 TF

DP 1.4 TF 5.3 TF

Mike Giles (Oxford University) PDEs on GPUs April 22nd, 2016 26 / 26

