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Outline

introduction to key ideas

some example applications

challenges and generalisations

my current research
◮ dynamics of long-chain molecules
◮ high-dimensional PDEs

Mike Giles (Oxford) Multilevel Monte Carlo 2 / 43



Objectives

In presenting the multilevel Monte Carlo method, I hope to emphasise:

the simplicity of the idea

its flexibility

that it’s not prescriptive, more an approach

scope for improved performance through being creative

lots of people working on a variety of applications

I will focus on ideas rather than lots of numerical results.
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Monte Carlo method

Given a function f of a random input ω, to estimate the value of E[f ]
we can use the Monte Carlo estimate

N−1
N∑

n=1

f (ω(n)).

based on N independent samples ω(n).

By the Central Limit Theorem, as N → ∞, the error in this estimate
becomes Normally distributed, with variance N−1

V[f ].

The error lies within 3 s.d. with probability 99.7%, giving us a confidence
interval.
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Control variate

Classic approach to variance reduction: approximate E[f ] using

N−1
N∑

n=1

{
f (ω(n))− λ

(
g(ω(n))− E[g ]

)}

where

control variate g has known expectation E[g ]

g is well correlated with f , and optimal value for λ can be estimated
by a few samples

For the optimal value of λ, the variance is reduced by factor (1−ρ2),
where ρ is the correlation between f and g .
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Two-level Monte Carlo

If we want to estimate E[f1] but it is much cheaper to simulate f0 ≈ f1,
then since

E[f1] = E[f0] + E[f1−f0]

we can use the estimator

N−1
0

N0∑

n=1

f
(0,n)
0 + N−1

1

N1∑

n=1

(
f
(1,n)
1 − f

(1,n)
0

)

Two differences from standard control variate method:

E[f0] is not known, so has to be estimated

λ = 1

Benefit: if f1−f0 is small, won’t need many samples to accurately estimate
E[f1−f0], so cost will be reduced greatly.
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Multilevel Monte Carlo

Natural generalisation: given a sequence f0, f1, . . . , fL

E[fL] = E[f0] +

L∑

ℓ=1

E[fℓ−fℓ−1]

we can use the estimator

N−1
0

N0∑

n=1

f
(0,n)
0 +

L∑

ℓ=1

{
N−1
ℓ

Nℓ∑

n=1

(
f
(ℓ,n)
ℓ − f

(ℓ,n)
ℓ−1

)}

with independent estimation for each level
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Multilevel Monte Carlo

If we define

C0,V0 to be cost and variance of f0

Cℓ,Vℓ to be cost and variance of fℓ−fℓ−1

then the total cost is
L∑

ℓ=0

Nℓ Cℓ and the variance is
L∑

ℓ=0

N−1
ℓ Vℓ.

Using a Lagrange multiplier µ2 to minimise the cost for a fixed variance

∂

∂Nℓ

L∑

k=0

(
Nk Ck + µ2N−1

k Vk

)
= 0

gives
Nℓ = µ

√
Vℓ/Cℓ =⇒ Nℓ Cℓ = µ

√
Vℓ Cℓ
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Multilevel Monte Carlo

Setting the total variance equal to ε2 gives

µ = ε−2

(
L∑

ℓ=0

√
Vℓ Cℓ

)

and hence, the total cost is

L∑

ℓ=0

Nℓ Cℓ = ε−2

(
L∑

ℓ=0

√
VℓCℓ

)2

in contrast to the standard cost which is approximately ε−2 V0 CL.

The MLMC cost savings are therefore:

VL/V0, if
√
VℓCℓ increases with level

C0/CL, if
√
VℓCℓ decreases with level
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Multilevel Monte Carlo

This analysis treated the Nℓ as real variables. Rounding them up to the
nearest integer gives the following result:

Theorem: With Vℓ and Cℓ as defined previously, an estimate Ŷ with RMS
accuracy ε,

MSE ≡ E

[
(Ŷ − E[fL])

2
]

≤ ε2

can be obtained at computational cost

ε−2

(
L∑

ℓ=0

√
VℓCℓ

)2

+

L∑

ℓ=0

Cℓ

Note: this assumes perfect knowledge of Vℓ and Cℓ. In practice Vℓ at least
usually needs to be estimated.
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Multilevel Path Simulation

Motivated by computational finance applications, in 2006 I introduced
MLMC for SDEs (stochastic differential equations).

dSt = a(St , t) dt + b(St , t)dWt

Level ℓ corresponds to approximation using 2ℓ timesteps, giving
approximate payoff P̂ℓ.

Choice of finest level L depends on weak error (bias).

Multilevel decomposition gives

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]
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Multilevel Monte Carlo

Simplest estimator for E[P̂ℓ−P̂ℓ−1] for ℓ>0 is

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂
(n)
ℓ −P̂

(n)
ℓ−1

)

using same driving Brownian path for both levels

Standard analysis gives MSE =
(
E[P̂L]−E[P ]

)2
+

L∑

ℓ=0

N−1
ℓ Vℓ

To make RMS error less than ε

choose L so that
(
E[P̂L]−E[P ]

)2
< 1

2 ε
2

choose Nℓ ∝
√

Vℓ/Cℓ so total variance is less than 1
2 ε

2
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MLMC Theorem

(Slight generalisation of original version)

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2]
< ε2

with an expected computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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MLMC Theorem

Two observations of optimality:

MC simulation needs O(ε−2) samples to achieve RMS accuracy ε.
When β > γ, the cost is optimal — O(1) cost per sample on average.

(Would need multilevel QMC to further reduce costs)

When β < γ, another interesting case is when β = 2α, which

corresponds to E[Ŷℓ] and
√

E[Ŷ 2
ℓ ] being of the same order as ℓ → ∞.

In this case, the total cost is O(ε−γ/α), which is the cost of a single
sample on the finest level — again optimal.
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MLMC generalisation

The theorem is for scalar outputs P , but it can be generalised to
multi-dimensional (or infinite-dimensional) outputs with

i)
∥∥∥E[P̂ℓ−P ]

∥∥∥ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≡ E

[∥∥∥Ŷℓ − E[Ŷℓ]
∥∥∥
2
]
≤ c2 N

−1
ℓ 2−β ℓ

Original multilevel research by Heinrich in 1999 did this for parametric
integration, estimating g(λ) ≡ E[f (x , λ)] for a finite-dimensional r.v. x .

Mike Giles (Oxford) Multilevel Monte Carlo 16 / 43



MLMC Challenges

not always obvious how to couple coarse and fine levels

i.e. what does P̂ℓ(ω
(n))−P̂ℓ−1(ω

(n)) mean?

some creativity required to handle discontinuous functionals,
where a small difference between the underlying coarse and fine
simulations can produce an O(1) difference in the output

numerical analysis to determine the decay rate of Vℓ can be tough
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Brownian Diffusion SDEs

Brownian increments for coarse path obtained by summing increments for
fine path – very simple and natural

I like the Milstein discretisation which gives first order strong convergence

(
E

[
sup
[0,T ]

‖St − Ŝt‖2
])1/2

= O(h)

so for payoffs which are Lipschitz functions of the final state we get

P̂ℓ − P̂ℓ−1 = O(hℓ)

and hence Vℓ = O(h2ℓ ).

However, not so easy for lookback, digital and barrier options. Also, in
multiple dimensions sometimes requires Lévy areas, but can be avoided
by an antithetic treatment, (G & Szpruch, 2013).
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Financial application

basket of 5 underlying assets, modelled by Geometric Brownian
Motion

dSi = r Si dt + σi Si dWi

with correlation between 5 driving Brownian motions

Milstein numerical approximation

standard call option is piecewise linear function of average at final
time T

digital call option is discontinuous function of average
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Financial application

Standard call option:
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Financial application

Standard call option:
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Digital options

In a digital option, the payoff is a discontinuous function of the final state.

Using the Milstein approximation, first order strong convergence means
that O(hℓ) of the simulations have coarse and fine paths on opposite sides
of a discontinuity.

Hence,

P̂ℓ − P̂ℓ−1 =

{
O(1), with probability O(hℓ)

O(hℓ), with probability O(1)

so
E[P̂ℓ−P̂ℓ−1] = O(hℓ), E[(P̂ℓ−P̂ℓ−1)

2] = O(hℓ),

and hence Vℓ = O(hℓ), not O(h2ℓ )
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Digital options

Three fixes:

Conditional expectation: using the Euler discretisation instead of
Milstein for the final timestep, conditional on all but the final
Brownian increment, the final state has a Gaussian distribution, with
a known analytic conditional expectation in simple cases

Splitting: split each path simulation into M paths by trying M

different values for the Brownian increment for the last fine path
timestep

Change of measure: when the expectation is not known, can use a
change of measure so the coarse path takes the same final state as
the fine path — difference in the “payoff” now comes from the
Radon-Nikodym derivative

These all effectively smooth the payoff – end up with Vℓ = O(h
3/2
ℓ ).

Mike Giles (Oxford) Multilevel Monte Carlo 23 / 43



Financial application

Digital call option:

0 2 4 6 8
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Financial application

Digital call option:
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SPDEs

quite natural application, with better cost savings than SDEs
due to higher dimensionality

range of applications
◮ Graubner & Ritter (Darmstadt → Kaiserslautern) – parabolic
◮ G, Reisinger (Oxford) – parabolic
◮ Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) – elliptic
◮ Barth, Jenny, Lang, Meyer, Mishra, Müller, Schwab, Sukys, Zollinger

(ETH Zürich) – elliptic, parabolic, hyperbolic
◮ Harbrecht, Peters (Basel) – elliptic
◮ Efendiev (Texas A&M) – numerical homogenization
◮ Vidal-Codina, G, Peraire (MIT) – reduced basis approximation
◮ G, Hou, Zhang (Caltech) – numerical homogenization
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Engineering Uncertainty Quantification

consider 3D elliptic PDE, with uncertain boundary data

use grid spacing proportional to 2−ℓ on level ℓ

cost is O(2+3ℓ), if using an efficient multigrid solver

2nd order accuracy means that

P̂ℓ(ω)− P̂(ω) ≈ c(ω) 2−2ℓ

=⇒ P̂ℓ−1(ω)− P̂ℓ(ω) ≈ 3 c(ω) 2−2ℓ

hence, α=2, β=4, γ=3

cost is O(ε−2) to obtain ε RMS accuracy
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Other MLMC Applications

parametric integration, integral equations (Heinrich)

multilevel QMC (Dick, G, Kuo, Scheichl, Schwab, Sloan)

Lévy-driven SDEs (Dereich, Heidenreich)

stochastic chemical reactions (Anderson & Higham, Tempone)

mixed precision computation on FPGAs (Korn, Ritter, Wehn)

MLMC for MCMC (Scheichl, Schwab, Stuart, Teckentrup)

Coulomb collisions in plasma (Caflisch)

nested simulation (Haji-Ali & Tempone, Hambly & Reisinger)
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Recent MLMC Extensions

unbiased estimation through randomisation of levels (Glynn, Rhee)
◮ good for β > γ

Richardson/Romberg extrapolation (Lemaire, Pagès)
◮ good for β < γ

Multi-Index Monte Carlo (Haji-Ali, Nobile, Tempone)
◮ combines MLMC with sparse grid methods
◮ potentially very important for SPDE applications

Mike Giles (Oxford) Multilevel Monte Carlo 29 / 43



New project 1: FENE molecules in a fluid (Süli, Ye)

long-chain molecules in a fluid

modelled as ball-and-spring systems, subject to
◮ force due to Finitely Extensible Nonlinear Elastic bond energy
◮ force due to local rate-of-strain tensor ∂v/∂x
◮ random forcing due to fluid fluctuations
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Modelling

The coupled system of SDEs can be written collectively as

dq = (K q − D∇V )dt +
√
2 L dW

where

V (q) ≡∑i Ui(‖qi‖2/2) is the total bond energy, with

Ui(‖qi‖2/2) → ∞ as ‖qi‖2 → 1

K is block diagonal, due to the fluid strain-rate tensor ∂v/∂x

L and D are of the form

L =




−I I

−I I

−I I


 , D =




2I −I

−I 2I −I

−I 2I


 = L LT .
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Numerical approximation

The SDE is approximated as

qn+1 = qn + (K qn − D∇V (qn)) hn +
√
2 L ∆Wn

using an adaptive timestep hn.

No bond length should exceed 1 – try to ensure this through the
restrictions:

hn U
′

i (‖qi ,n‖2/2) ‖qi ,n‖ ≤ 1− ‖qi ,n‖
5
√

2 hn ≤ 1− ‖qi ,n‖

where qi ,n is the i th bond vector at timestep n (and then use clamping
if this fails).

This sets an upper bound on the timestep – smaller values need to be
chosen for accuracy.
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Multilevel Monte Carlo simulation

First challenge: how does MLMC work with adaptive time-stepping?

Actually, surprisingly easy — on level ℓ use

hn = 2−ℓ mini(1−‖qi ,n‖)2
max(2β, 50)

Coarse and fine paths each compute their own adaptive timesteps
independently – this ensures the telescoping sum works correctly

But what is involved in coarse and fine paths using same driving Brownian
motion?
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Multilevel Monte Carlo simulation

As time proceeds, Brownian increments are generated as needed at
discretisation times which are a union of coarse and fine path times:

coarse path

fine path

t

✲✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

The fact that the timesteps are not nested is not a problem – strong
convergence still ensures a strong coupling between the coarse and fine
paths, because both approximate the true path.
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Multilevel Monte Carlo simulation

Second challenge: we want to approximate a functional of the equilibrium
distribution, the limit as time T → ∞.

Key idea here comes from research by Rhee & Glynn (2014) on
contracting Markov chains.

on level ℓ we perform simulations for period [−Tℓ, 0], evaluating the
output at time t=0, and let Tℓ → ∞ as ℓ increases.

when doing the paths on levels ℓ and ℓ−1, use the same Brownian
motion for overlapping period [−Tℓ−1, 0]

due to contraction property, effect of different starting points decays
exponentially as Tℓ → ∞

Numerical results: all works well, but numerical analysis looks very
difficult because drift is not Lipschitz
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New project 2: Feynman-Kac (Francisco Bernal)

Suppose that Xt satisfies the SDE

dXt = a(Xt , t)dt + b(Xt , t)dWt

in bounded domain D, where Wt is an uncorrelated Brownian motion,
and let

u(x , t) = E

[∫ τ

t

E (t, s) f (Xs , s)ds + E (t, τ) g(Xτ , τ) | Xt = x

]

where τ is the first time at which Xt leaves D and

E (t0, t1) = exp

(
−
∫ t1

t0

V (Xt , t)dt

)
.

Mike Giles (Oxford) Multilevel Monte Carlo 36 / 43



Feynman-Kac theorem

If f (x , t), g(x , t),V (x , t), a(x , t), b(x , t) are all Lipschitz continuous,
then the Feynman-Kac theorem states that u(x , t) satisfies the PDE

∂u

∂t
+
∑

j

aj
∂u

∂xj
+ 1

2

∑

j ,k,l

bj ,kbk,l
∂2u

∂xj∂xl
− V (x , t) u(x , t) + f (x , t) = 0

in domain D, subject to u(x , t) = g(x , t), on the boundary ∂D.

Hence, can estimate u(x , t) solution to a high-dimensional PDE at
particular points (x , t), by Monte Carlo simulation of SDE.

This also extends to linear and nonlinear functionals of the PDE solution.
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Numerical approximation

Let X̂t be the piecewise-constant Euler-Maruyama approximation and
define

Ê (t0, t1) = exp

(
−
∫ t1

t0

V (X̂t , t)dt

)
,

and let

û(x , t) = E

[∫ τ̂

t

Ê (t, s) f (X̂s , s)ds + Ê (t, τ̂ ) g(X̂τ̂ , τ̂) | X̂t = x

]
.

with the Euler-Maruyama discretisation beginning at time t, and with τ̂
being the exit time.
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Numerical approximation

The Euler-Maruyama method has strong accuracy O(h1/2), and the
natural definition of τ gives an O(h1/2) weak error too.

For standard Monte Carlo method, ε RMS accuracy needs O(ε−2) paths,
each with h = O(ε2), so total cost is O(ε−4)

Gobet reduced this to O(ε−3) by shifting the boundary by O(h1/2) to
improve the weak accuracy to O(h).

Alternatively, Higham et al use MLMC to achieve O(ε−3| log ε|3)
complexity without shifting the boundary.
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Numerical approximation

MLMC challenge:

When coarse or fine path exits the domain, the other one is within O(h1/2)
of boundary. However, there is a O(h1/2) probability that it will not exit
the domain until much later =⇒ Vℓ = O(h1/2).

How can we do better?

Similar to digital options, using splitting to give multiple instances of the
second path.

O(h1/2) time to expected exit of second path, so can afford to use
O(h−1/2) copies of second path.

This gives an approximation to the conditional expectation resulting in
P̂ℓ − P̂ℓ−1 ≈ O(h1/2), so Vℓ ≈ O(h).

Numerical results confirm this – numerical analysis is underway.
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Conclusions

multilevel idea is very simple; key is how to apply it in new situations

discontinuous output functions can cause problems, but there is a lot
of experience now in coping with this

there are also “tricks” which can be used in situations with poor
strong convergence

being used for an increasingly wide range of applications;
biggest computational savings when coarsest (helpful)
approximation is much cheaper than finest

currently, getting at least 100× savings for SPDEs and stochastic
chemical reaction simulations
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MLMC Community
Webpage: people.maths.ox.ac.uk/gilesm/mlmc community.html

Abo Academi (Avikainen) – numerical analysis
Basel (Harbrecht) – elliptic SPDEs, sparse grids
Bath (Kyprianou, Scheichl, Shardlow, Yates) – elliptic SPDEs, MCMC, Lévy-driven SDEs, stochastic chemical modelling
Chalmers (Lang) – SPDEs
Duisburg (Belomestny) – Bermudan and American options
Edinburgh (Davie, Szpruch) – SDEs, numerical analysis
EPFL (Abdulle) – stiff SDEs and SPDEs
ETH Zürich (Jenny, Jentzen, Schwab) – SPDEs, multilevel QMC
Frankfurt (Gerstner, Kloeden) – numerical analysis, fractional Brownian motion
Fraunhofer ITWM (Iliev) – SPDEs in engineering
Hong Kong (Chen) – Brownian meanders, nested simulation in finance
IIT Chicago (Hickernell) – SDEs, infinite-dimensional integration, complexity analysis
Kaiserslautern (Heinrich, Korn, Ritter) – finance, SDEs, parametric integration, complexity analysis
KAUST (Tempone, von Schwerin) – adaptive time-stepping, stochastic chemical modelling
Kiel (Gnewuch) – randomized multilevel QMC
LPMA (Frikha, Lemaire, Pagès) – numerical analysis, multilevel extrapolation, finance applications
Mannheim (Neuenkirch) – numerical analysis, fractional Brownian motion
MIT (Peraire) – uncertainty quantification, SPDEs
Munich (Hutzenthaler) – numerical analysis
Oxford (Baker, Giles, Hambly, Reisinger) – SDEs, SPDEs, numerical analysis, finance applications, stochastic chemical modelling
Passau (Müller-Gronbach) – infinite-dimensional integration, complexity analysis
Stanford (Glynn) – numerical analysis, randomized multilevel
Strathclyde (Higham, Mao) – numerical analysis, exit times, stochastic chemical modelling
Stuttgart (Barth) – SPDEs
Texas A&M (Efendiev) – SPDEs in engineering
UCLA (Caflisch) – Coulomb collisions in physics
UNSW (Dick, Kuo, Sloan) – multilevel QMC
UTS (Baldeaux) – multilevel QMC
Warwick (Stuart, Teckentrup) – MCMC for SPDEs
WIAS (Friz, Schoenmakers) – rough paths, fractional Brownian motion, Bermudan options
Wisconsin (Anderson) – numerical analysis, stochastic chemical modelling

WWU (Dereich) – Lévy-driven SDEs
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