Multilevel Monte Carlo methods

Mike Giles

Mathematical Institute, University of Oxford

Seminar at Reading University

March 3, 2015

Outline

- introduction to key ideas
- some example applications
- challenges and generalisations
- my current research
 - dynamics of long-chain molecules
 - high-dimensional PDEs

Objectives

In presenting the multilevel Monte Carlo method, I hope to emphasise:

- the simplicity of the idea
- its flexibility
- that it's not prescriptive, more an approach
- scope for improved performance through being creative
- lots of people working on a variety of applications

I will focus on ideas rather than lots of numerical results.

Monte Carlo method

Given a function f of a random input ω , to estimate the value of $\mathbb{E}[f]$ we can use the Monte Carlo estimate

$$N^{-1}\sum_{n=1}^N f(\omega^{(n)}).$$

based on N independent samples $\omega^{(n)}$.

By the Central Limit Theorem, as $N \to \infty$, the error in this estimate becomes Normally distributed, with variance $N^{-1}\mathbb{V}[f]$.

The error lies within 3 s.d. with probability 99.7%, giving us a confidence interval.

Control variate

Classic approach to variance reduction: approximate $\mathbb{E}[f]$ using

$$N^{-1}\sum_{n=1}^{N}\left\{f(\omega^{(n)})-\lambda\left(g(\omega^{(n)})-\mathbb{E}[g]\right)\right\}$$

where

- ullet control variate g has known expectation $\mathbb{E}[g]$
- ullet g is well correlated with f, and optimal value for λ can be estimated by a few samples

For the optimal value of λ , the variance is reduced by factor $(1-\rho^2)$, where ρ is the correlation between f and g.

Two-level Monte Carlo

If we want to estimate $\mathbb{E}[f_1]$ but it is much cheaper to simulate $f_0 \approx f_1$, then since

$$\mathbb{E}[f_1] = \mathbb{E}[f_0] + \mathbb{E}[f_1 - f_0]$$

we can use the estimator

$$N_0^{-1} \sum_{n=1}^{N_0} f_0^{(0,n)} + N_1^{-1} \sum_{n=1}^{N_1} \left(f_1^{(1,n)} - f_0^{(1,n)} \right)$$

Two differences from standard control variate method:

- $\mathbb{E}[f_0]$ is not known, so has to be estimated
- \bullet $\lambda = 1$

Benefit: if $f_1 - f_0$ is small, won't need many samples to accurately estimate $\mathbb{E}[f_1 - f_0]$, so cost will be reduced greatly.

- (ロ) (部) (注) (注) 注 り(()

Natural generalisation: given a sequence f_0, f_1, \ldots, f_L

$$\mathbb{E}[f_L] = \mathbb{E}[f_0] + \sum_{\ell=1}^L \mathbb{E}[f_\ell - f_{\ell-1}]$$

we can use the estimator

$$N_0^{-1} \sum_{n=1}^{N_0} f_0^{(0,n)} + \sum_{\ell=1}^{L} \left\{ N_\ell^{-1} \sum_{n=1}^{N_\ell} \left(f_\ell^{(\ell,n)} - f_{\ell-1}^{(\ell,n)} \right) \right\}$$

with independent estimation for each level

Mike Giles (Oxford)

If we define

- C_0 , V_0 to be cost and variance of f_0
- C_ℓ, V_ℓ to be cost and variance of $f_\ell f_{\ell-1}$

then the total cost is $\sum_{\ell=0}^L N_\ell \; C_\ell$ and the variance is $\sum_{\ell=0}^L N_\ell^{-1} V_\ell.$

Using a Lagrange multiplier μ^2 to minimise the cost for a fixed variance

$$\frac{\partial}{\partial N_{\ell}} \sum_{k=0}^{L} \left(N_k C_k + \mu^2 N_k^{-1} V_k \right) = 0$$

gives

$$N_{\ell} = \mu \sqrt{V_{\ell}/C_{\ell}} \quad \Longrightarrow \quad N_{\ell} C_{\ell} = \mu \sqrt{V_{\ell} C_{\ell}}$$

Setting the total variance equal to ε^2 gives

$$\mu = \varepsilon^{-2} \left(\sum_{\ell=0}^L \sqrt{V_\ell \, C_\ell} \right)$$

and hence, the total cost is

$$\sum_{\ell=0}^{L} N_{\ell} C_{\ell} = \varepsilon^{-2} \left(\sum_{\ell=0}^{L} \sqrt{V_{\ell} C_{\ell}} \right)^{2}$$

in contrast to the standard cost which is approximately ε^{-2} V_0 C_L .

The MLMC cost savings are therefore:

- V_L/V_0 , if $\sqrt{V_\ell C_\ell}$ increases with level
- C_0/C_L , if $\sqrt{V_\ell C_\ell}$ decreases with level

∢□ > ∢□ > ∢ 臣 > ∢ 臣 > □ ■ り Q ○

This analysis treated the N_{ℓ} as real variables. Rounding them up to the nearest integer gives the following result:

Theorem: With V_{ℓ} and C_{ℓ} as defined previously, an estimate \widehat{Y} with RMS accuracy ε ,

$$\mathsf{MSE} \ \equiv \ \mathbb{E}\left[(\widehat{Y} - \mathbb{E}[\mathit{f}_L])^2\right] \ \leq \ \varepsilon^2$$

can be obtained at computational cost

$$\varepsilon^{-2} \left(\sum_{\ell=0}^{L} \sqrt{V_{\ell} C_{\ell}} \right)^{2} + \sum_{\ell=0}^{L} C_{\ell}$$

Note: this assumes perfect knowledge of V_ℓ and C_ℓ . In practice V_ℓ at least usually needs to be estimated.

- (ロ) (部) (注) (注) 注 り(()

Multilevel Path Simulation

Motivated by computational finance applications, in 2006 I introduced MLMC for SDEs (stochastic differential equations).

$$\mathrm{d}S_t = a(S_t, t) \, \mathrm{d}t + b(S_t, t) \, \mathrm{d}W_t$$

Level ℓ corresponds to approximation using 2^ℓ timesteps, giving approximate payoff \widehat{P}_ℓ .

Choice of finest level L depends on weak error (bias).

Multilevel decomposition gives

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{\ell=1}^L \mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}]$$

Simplest estimator for $\mathbb{E}[\widehat{P}_{\ell}\!-\!\widehat{P}_{\ell-1}]$ for $\ell\!>\!0$ is

$$\widehat{Y}_{\ell} = N_{\ell}^{-1} \sum_{n=1}^{N_{\ell}} \left(\widehat{P}_{\ell}^{(n)} - \widehat{P}_{\ell-1}^{(n)} \right)$$

using same driving Brownian path for both levels

Standard analysis gives
$$MSE = \left(\mathbb{E}[\widehat{P}_L] - \mathbb{E}[P]\right)^2 + \sum_{\ell=0}^L N_\ell^{-1} V_\ell$$

To make RMS error less than ε

- choose L so that $\left(\mathbb{E}[\widehat{P}_L] \mathbb{E}[P]\right)^2 < \frac{1}{2}\,\varepsilon^2$
- \bullet choose $N_\ell \propto \sqrt{V_\ell/C_\ell}$ so total variance is less than $\frac{1}{2}\, \varepsilon^2$

- **(ロ)(即)(き)(き) き り**への

MLMC Theorem

(Slight generalisation of original version)

If there exist independent estimators \widehat{Y}_ℓ based on N_ℓ Monte Carlo samples, each costing C_ℓ , and positive constants $\alpha,\beta,\gamma,c_1,c_2,c_3$ such that $\alpha \geq \frac{1}{2}\min(\beta,\gamma)$ and

i)
$$\left| \mathbb{E}[\widehat{P}_{\ell} - P] \right| \le c_1 \, 2^{-\alpha \, \ell}$$

ii) $\mathbb{E}[\widehat{Y}_{\ell}] = \left\{ \begin{array}{ll} \mathbb{E}[\widehat{P}_0], & \ell = 0 \\ \mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}], & \ell > 0 \end{array} \right.$

iii)
$$\mathbb{V}[\widehat{Y}_{\ell}] \leq c_2 N_{\ell}^{-1} 2^{-\beta \ell}$$

iv)
$$\mathbb{E}[C_\ell] \leq c_3 2^{\gamma \ell}$$

MLMC Theorem

then there exists a positive constant c_4 such that for any $\varepsilon < 1$ there exist L and N_ℓ for which the multilevel estimator

$$\widehat{Y} = \sum_{\ell=0}^{L} \widehat{Y}_{\ell},$$

has a mean-square-error with bound $\mathbb{E}\left[\left(\widehat{Y}-\mathbb{E}[P]\right)^2\right]<\varepsilon^2$

with an expected computational cost C with bound

$$C \leq \begin{cases} c_4 \, \varepsilon^{-2}, & \beta > \gamma, \\ c_4 \, \varepsilon^{-2} (\log \varepsilon)^2, & \beta = \gamma, \\ c_4 \, \varepsilon^{-2 - (\gamma - \beta)/\alpha}, & 0 < \beta < \gamma. \end{cases}$$

Mike Giles (Oxford)

Multilevel Monte Carlo

MLMC Theorem

Two observations of optimality:

- MC simulation needs $O(\varepsilon^{-2})$ samples to achieve RMS accuracy ε . When $\beta > \gamma$, the cost is optimal O(1) cost per sample on average. (Would need multilevel QMC to further reduce costs)
- When $\beta<\gamma$, another interesting case is when $\beta=2\alpha$, which corresponds to $\mathbb{E}[\widehat{Y}_\ell]$ and $\sqrt{\mathbb{E}[\widehat{Y}_\ell^2]}$ being of the same order as $\ell\to\infty$. In this case, the total cost is $O(\varepsilon^{-\gamma/\alpha})$, which is the cost of a single sample on the finest level again optimal.

MLMC generalisation

The theorem is for scalar outputs P, but it can be generalised to multi-dimensional (or infinite-dimensional) outputs with

i)
$$\left\| \mathbb{E}[\widehat{P}_{\ell} - P] \right\| \le c_1 \, 2^{-\alpha \, \ell}$$

ii)
$$\mathbb{E}[\widehat{Y}_{\ell}] = \left\{ egin{array}{ll} \mathbb{E}[\widehat{P}_{0}], & \ell = 0 \\ \mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}], & \ell > 0 \end{array}
ight.$$

iii)
$$\mathbb{V}[\widehat{Y}_{\ell}] \equiv \mathbb{E}\left[\left\|\widehat{Y}_{\ell} - \mathbb{E}[\widehat{Y}_{\ell}]\right\|^{2}\right] \leq c_{2} N_{\ell}^{-1} 2^{-\beta \ell}$$

Original multilevel research by Heinrich in 1999 did this for parametric integration, estimating $g(\lambda) \equiv \mathbb{E}[f(x,\lambda)]$ for a finite-dimensional r.v. x.

(□) (□) (□) (□) (□)

Mike Giles (Oxford) Multilevel Monte Carlo 16 / 43

MLMC Challenges

- not always obvious how to couple coarse and fine levels i.e. what does $\widehat{P}_{\ell}(\omega^{(n)}) \widehat{P}_{\ell-1}(\omega^{(n)})$ mean?
- some creativity required to handle discontinuous functionals, where a small difference between the underlying coarse and fine simulations can produce an O(1) difference in the output
- ullet numerical analysis to determine the decay rate of V_ℓ can be tough

Brownian Diffusion SDEs

Brownian increments for coarse path obtained by summing increments for fine path – very simple and natural

I like the Milstein discretisation which gives first order strong convergence

$$\left(\mathbb{E}\left[\sup_{[0,T]}\|S_t-\widehat{S}_t\|^2\right]\right)^{1/2}=O(h)$$

so for payoffs which are Lipschitz functions of the final state we get

$$\widehat{P}_{\ell} - \widehat{P}_{\ell-1} = O(h_{\ell})$$

and hence $V_{\ell} = O(h_{\ell}^2)$.

However, not so easy for lookback, digital and barrier options. Also, in multiple dimensions sometimes requires Lévy areas, but can be avoided by an antithetic treatment, (G & Szpruch, 2013).

18 / 43

Mike Giles (Oxford) Multilevel Monte Carlo

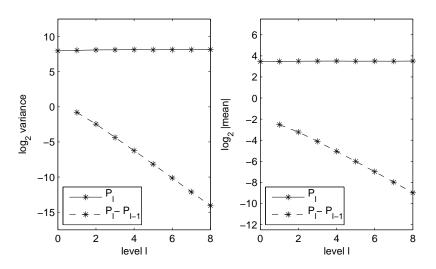
 basket of 5 underlying assets, modelled by Geometric Brownian Motion

$$\mathrm{d}S_i = r\,S_i\,\mathrm{d}t + \sigma_i\,S_i\,\mathrm{d}W_i$$

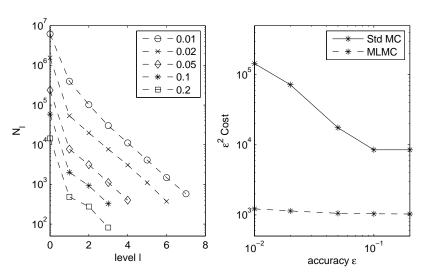
with correlation between 5 driving Brownian motions

- Milstein numerical approximation
- ullet standard call option is piecewise linear function of average at final time T
- digital call option is discontinuous function of average

Standard call option:



Standard call option:



Digital options

In a digital option, the payoff is a discontinuous function of the final state.

Using the Milstein approximation, first order strong convergence means that $O(h_{\ell})$ of the simulations have coarse and fine paths on opposite sides of a discontinuity.

Hence,

$$\widehat{P}_{\ell} - \widehat{P}_{\ell-1} = \left\{egin{array}{ll} O(1), & ext{with probability } O(h_{\ell}) \ O(h_{\ell}), & ext{with probability } O(1) \end{array}
ight.$$

SO

$$\mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}] = O(h_{\ell}), \quad \mathbb{E}[(\widehat{P}_{\ell} - \widehat{P}_{\ell-1})^2] = O(h_{\ell}),$$

and hence $V_\ell = O(h_\ell)$, not $O(h_\ell^2)$

Digital options

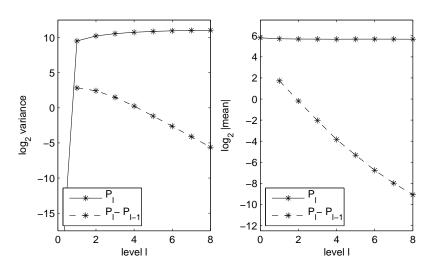
Three fixes:

- Conditional expectation: using the Euler discretisation instead of Milstein for the final timestep, conditional on all but the final Brownian increment, the final state has a Gaussian distribution, with a known analytic conditional expectation in simple cases
- Splitting: split each path simulation into M paths by trying M different values for the Brownian increment for the last fine path timestep
- Change of measure: when the expectation is not known, can use a change of measure so the coarse path takes the same final state as the fine path — difference in the "payoff" now comes from the Radon-Nikodym derivative

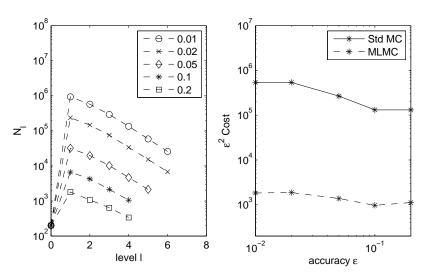
These all effectively smooth the payoff – end up with $V_\ell = O(h_\ell^{3/2})$.

4 D > 4 A > 4 B > 4 B > B = 40 A

Digital call option:



Digital call option:



SPDEs

- quite natural application, with better cost savings than SDEs due to higher dimensionality
- range of applications
 - Graubner & Ritter (Darmstadt \rightarrow Kaiserslautern) parabolic
 - ► G, Reisinger (Oxford) parabolic
 - Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) elliptic
 - Barth, Jenny, Lang, Meyer, Mishra, Müller, Schwab, Sukys, Zollinger (ETH Zürich) – elliptic, parabolic, hyperbolic
 - Harbrecht, Peters (Basel) elliptic
 - ► Efendiev (Texas A&M) numerical homogenization
 - ▶ Vidal-Codina, G, Peraire (MIT) reduced basis approximation
 - ▶ G, Hou, Zhang (Caltech) numerical homogenization

Engineering Uncertainty Quantification

- consider 3D elliptic PDE, with uncertain boundary data
- ullet use grid spacing proportional to $2^{-\ell}$ on level ℓ
- cost is $O(2^{+3\ell})$, if using an efficient multigrid solver
- 2nd order accuracy means that

$$\widehat{P}_{\ell}(\omega) - \widehat{P}(\omega) \approx c(\omega) 2^{-2\ell}$$

$$\implies \widehat{P}_{\ell-1}(\omega) - \widehat{P}_{\ell}(\omega) \approx 3 c(\omega) 2^{-2\ell}$$

- hence, $\alpha = 2$, $\beta = 4$, $\gamma = 3$
- cost is $O(\varepsilon^{-2})$ to obtain ε RMS accuracy

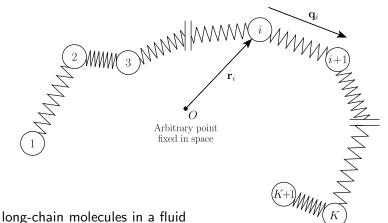
Other MLMC Applications

- parametric integration, integral equations (Heinrich)
- multilevel QMC (Dick, G, Kuo, Scheichl, Schwab, Sloan)
- Lévy-driven SDEs (Dereich, Heidenreich)
- stochastic chemical reactions (Anderson & Higham, Tempone)
- mixed precision computation on FPGAs (Korn, Ritter, Wehn)
- MLMC for MCMC (Scheichl, Schwab, Stuart, Teckentrup)
- Coulomb collisions in plasma (Caflisch)
- nested simulation (Haji-Ali & Tempone, Hambly & Reisinger)

Recent MLMC Extensions

- unbiased estimation through randomisation of levels (Glynn, Rhee)
 - good for $\beta > \gamma$
- Richardson/Romberg extrapolation (Lemaire, Pagès)
 - good for $\beta < \gamma$
- Multi-Index Monte Carlo (Haji-Ali, Nobile, Tempone)
 - combines MLMC with sparse grid methods
 - potentially very important for SPDE applications

New project 1: FENE molecules in a fluid (Süli, Ye)



- modelled as ball-and-spring systems, subject to
 - ▶ force due to Finitely Extensible Nonlinear Elastic bond energy
 - force due to local rate-of-strain tensor $\partial v/\partial x$
 - random forcing due to fluid fluctuations

Modelling

The coupled system of SDEs can be written collectively as

$$dq = (Kq - D\nabla V)dt + \sqrt{2}LdW$$

where

- $V(q) \equiv \sum_i U_i(\|q_i\|^2/2)$ is the total bond energy, with $U_i(\|q_i\|^2/2) \to \infty$ as $\|q_i\|^2 \to 1$
- K is block diagonal, due to the fluid strain-rate tensor $\partial v/\partial x$
- L and D are of the form

$$L = \begin{pmatrix} -I & I \\ & -I & I \\ & & -I & I \end{pmatrix}, \quad D = \begin{pmatrix} 2I & -I \\ -I & 2I & -I \\ & -I & 2I \end{pmatrix} = LL^{T}.$$

Mike Giles (Oxford)

The SDE is approximated as

$$q_{n+1} = q_n + (K q_n - D \nabla V(q_n)) h_n + \sqrt{2} L \Delta W_n$$

using an adaptive timestep h_n .

No bond length should exceed 1 - try to ensure this through the restrictions:

$$h_n U_i'(\|q_{i,n}\|^2/2) \|q_{i,n}\| \le 1 - \|q_{i,n}\|$$

 $5\sqrt{2h_n} \le 1 - \|q_{i,n}\|$

where $q_{i,n}$ is the i^{th} bond vector at timestep n (and then use clamping if this fails).

This sets an upper bound on the timestep – smaller values need to be chosen for accuracy.

- 4 ロ > 4 部 > 4 き > 4 き > き かへの

32 / 43

Mike Giles (Oxford) Multilevel Monte Carlo

Multilevel Monte Carlo simulation

First challenge: how does MLMC work with adaptive time-stepping?

Actually, surprisingly easy — on level ℓ use

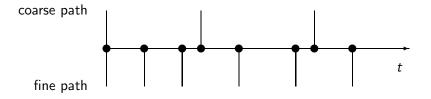
$$h_n = 2^{-\ell} \frac{\min_i (1 - ||q_{i,n}||)^2}{\max(2\beta, 50)}$$

Coarse and fine paths each compute their own adaptive timesteps independently – this ensures the telescoping sum works correctly

But what is involved in coarse and fine paths using same driving Brownian motion?

Multilevel Monte Carlo simulation

As time proceeds, Brownian increments are generated as needed at discretisation times which are a union of coarse and fine path times:



The fact that the timesteps are not nested is not a problem – strong convergence still ensures a strong coupling between the coarse and fine paths, because both approximate the true path.

Multilevel Monte Carlo simulation

Second challenge: we want to approximate a functional of the equilibrium distribution, the limit as time $T \to \infty$.

Key idea here comes from research by Rhee & Glynn (2014) on contracting Markov chains.

- on level ℓ we perform simulations for period $[-T_\ell,0]$, evaluating the output at time $t\!=\!0$, and let $T_\ell\to\infty$ as ℓ increases.
- when doing the paths on levels ℓ and $\ell-1$, use the same Brownian motion for overlapping period $[-T_{\ell-1},0]$
- due to contraction property, effect of different starting points decays exponentially as $T_\ell \to \infty$

Numerical results: all works well, but numerical analysis looks very difficult because drift is not Lipschitz

35 / 43

New project 2: Feynman-Kac (Francisco Bernal)

Suppose that X_t satisfies the SDE

$$\mathrm{d}X_t = a(X_t,t)\,\mathrm{d}t + b(X_t,t)\,\mathrm{d}W_t$$

in bounded domain D, where W_t is an uncorrelated Brownian motion, and let

$$u(x,t) = \mathbb{E}\left[\int_t^{\tau} E(t,s) f(X_s,s) ds + E(t,\tau) g(X_\tau,\tau) \mid X_t = x\right]$$

where τ is the first time at which X_t leaves D and

$$E(t_0,t_1)=\exp\left(-\int_{t_0}^{t_1}V(X_t,t)\,\mathrm{d}t\right).$$

Feynman-Kac theorem

If f(x,t), g(x,t), V(x,t), a(x,t), b(x,t) are all Lipschitz continuous, then the Feynman-Kac theorem states that u(x,t) satisfies the PDE

$$\frac{\partial u}{\partial t} + \sum_{j} a_{j} \frac{\partial u}{\partial x_{j}} + \frac{1}{2} \sum_{j,k,l} b_{j,k} b_{k,l} \frac{\partial^{2} u}{\partial x_{j} \partial x_{l}} - V(x,t) u(x,t) + f(x,t) = 0$$

in domain D, subject to u(x,t) = g(x,t), on the boundary ∂D .

Hence, can estimate u(x, t) solution to a high-dimensional PDE at particular points (x, t), by Monte Carlo simulation of SDE.

This also extends to linear and nonlinear functionals of the PDE solution.

Mike Giles (Oxford)

Let \widehat{X}_t be the piecewise-constant Euler-Maruyama approximation and define

$$\widehat{E}(t_0,t_1) = \exp\left(-\int_{t_0}^{t_1} V(\widehat{X}_t,t) dt\right),$$

and let

$$\widehat{u}(x,t) = \mathbb{E}\left[\int_t^{\widehat{\tau}} \widehat{E}(t,s) f(\widehat{X}_s,s) ds + \widehat{E}(t,\widehat{\tau}) g(\widehat{X}_{\widehat{\tau}},\widehat{\tau}) \mid \widehat{X}_t = x\right].$$

with the Euler-Maruyama discretisation beginning at time t, and with $\hat{\tau}$ being the exit time.

The Euler-Maruyama method has strong accuracy $O(h^{1/2})$, and the natural definition of τ gives an $O(h^{1/2})$ weak error too.

For standard Monte Carlo method, ε RMS accuracy needs $O(\varepsilon^{-2})$ paths, each with $h=O(\varepsilon^2)$, so total cost is $O(\varepsilon^{-4})$

Gobet reduced this to $O(\varepsilon^{-3})$ by shifting the boundary by $O(h^{1/2})$ to improve the weak accuracy to O(h).

Alternatively, Higham *et al* use MLMC to achieve $O(\varepsilon^{-3}|\log \varepsilon|^3)$ complexity without shifting the boundary.

MLMC challenge:

When coarse or fine path exits the domain, the other one is within $O(h^{1/2})$ of boundary. However, there is a $O(h^{1/2})$ probability that it will not exit the domain until much later $\Longrightarrow V_\ell = O(h^{1/2})$.

How can we do better?

Similar to digital options, using splitting to give multiple instances of the second path.

 $O(h^{1/2})$ time to expected exit of second path, so can afford to use $O(h^{-1/2})$ copies of second path.

This gives an approximation to the conditional expectation resulting in $\widehat{P}_{\ell}-\widehat{P}_{\ell-1}\approx O(h^{1/2})$, so $V_{\ell}\approx O(h)$.

Numerical results confirm this – numerical analysis is underway.

Conclusions

- multilevel idea is very simple; key is how to apply it in new situations
- discontinuous output functions can cause problems, but there is a lot of experience now in coping with this
- there are also "tricks" which can be used in situations with poor strong convergence
- being used for an increasingly wide range of applications;
 biggest computational savings when coarsest (helpful)
 approximation is much cheaper than finest
- ullet currently, getting at least $100\times$ savings for SPDEs and stochastic chemical reaction simulations

References

Webpage for my research/papers:

people.maths.ox.ac.uk/gilesm/mlmc.html

Webpage for new 70-page *Acta Numerica* review and MATLAB test codes: people.maths.ox.ac.uk/gilesm/acta/

 ${\sf -}$ contains references to almost all MLMC research, including some very early related work by Achi Brandt

MLMC Community

Webpage: people.maths.ox.ac.uk/gilesm/mlmc_community.html

Abo Academi (Avikainen) - numerical analysis Basel (Harbrecht) - elliptic SPDEs, sparse grids Bath (Kyprianou, Scheichl, Shardlow, Yates) - elliptic SPDEs, MCMC, Lévy-driven SDEs, stochastic chemical modelling Chalmers (Lang) - SPDEs Duisburg (Belomestny) - Bermudan and American options

Edinburgh (Davie, Szpruch) - SDEs, numerical analysis

EPFL (Abdulle) - stiff SDEs and SPDEs

ETH Zürich (Jenny, Jentzen, Schwab) - SPDEs, multilevel QMC

Frankfurt (Gerstner, Kloeden) - numerical analysis, fractional Brownian motion

Fraunhofer ITWM (Iliev) - SPDEs in engineering

Hong Kong (Chen) - Brownian meanders, nested simulation in finance

IIT Chicago (Hickernell) - SDEs, infinite-dimensional integration, complexity analysis

Kaiserslautern (Heinrich, Korn, Ritter) - finance, SDEs, parametric integration, complexity analysis

KAUST (Tempone, von Schwerin) - adaptive time-stepping, stochastic chemical modelling

Kiel (Gnewuch) - randomized multilevel QMC

LPMA (Frikha, Lemaire, Pagès) - numerical analysis, multilevel extrapolation, finance applications

Mannheim (Neuenkirch) - numerical analysis, fractional Brownian motion

MIT (Peraire) - uncertainty quantification, SPDEs

Munich (Hutzenthaler) - numerical analysis

Oxford (Baker, Giles, Hambly, Reisinger) - SDEs, SPDEs, numerical analysis, finance applications, stochastic chemical modelling Passau (Müller-Gronbach) - infinite-dimensional integration, complexity analysis

Stanford (Glynn) - numerical analysis, randomized multilevel

Strathclyde (Higham, Mao) - numerical analysis, exit times, stochastic chemical modelling

Stuttgart (Barth) - SPDEs

Texas A&M (Efendiev) - SPDEs in engineering

UCLA (Caflisch) - Coulomb collisions in physics

UNSW (Dick, Kuo, Sloan) - multilevel QMC

UTS (Baldeaux) - multilevel QMC

Warwick (Stuart, Teckentrup) - MCMC for SPDEs

WIAS (Friz, Schoenmakers) - rough paths, fractional Brownian motion, Bermudan options Wisconsin (Anderson) - numerical analysis, stochastic chemical modelling 4 日) 4 周) 4 章) 4 章)

Mike Giles (Oxford) Multilevel Monte Carlo 43 / 43