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An outline personal history

@ inspired by undergraduate numerical projects course while studying
Maths at Cambridge, and working on summer projects at Rolls-Royce

@ went to MIT for MSc and PhD in Aeronautical Engineering, then
taught there for 7 years with research funding from Rolls-Royce

@ RR helped me to move to Oxford in 1992 and | continued working on
CFD until about 10 years ago — HYDRA CFD code is now the main
analysis and design code at RR

@ as a mid-career change, switched to computational finance and
research on Monte Carlo methods for a wide range of applications
with uncertainty

@ (I also have a long-standing interest in High Performance Computing,
including the use of GPUs)
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Objectives

In presenting the multilevel Monte Carlo method, | hope to emphasise:

@ the simplicity of the idea
@ its flexibility — it's not prescriptive, more an approach

@ there are lots of people working on a variety of applications

In doing this, | will focus on ideas rather than lots of numerical results,
but | will begin with some motivation.

I'm a numerics / algorithms person — | collaborate a lot with others
with interests in a wide variety of applications
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Mathematical Finance: |

The movement of stock prices is modelled by stochastic differential
equations such as

d5t = r5tdt+05tth

where W; is a Brownian path with N(0,dt) Normal increments

multiple Geometric Brownian Motion paths
T T T T T

250

asset value
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Mathematical Finance: |l

Collaboration with Profs. Ben Hambly and Christoph Reisinger

Here, they looked at the evolution of a probability density function p(x, t)
for firms at a distance x from default at time t

0 10°%p
dp:—uapd +§8

with absorbing boundary p(0, t) = 0.

Pdt+p det

The diffusion behaviour is a large-limit effect of lots of different firms
affected by individual (idiosyncratic) random effects, whereas the
Brownian path W; models the systemic effects which affect everyone.
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Long-chain molecules in a fluid

Collaboration with Prof. Endre Siili

(0]
Arbitrary point
fixed in space

@ Long-chain molecule in solution @

@ modelled as ball-spring system, subject @
to random forces from fluid on each “ball”

@ interest is in mean stress exerted by molecules on fluid
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Bio-chemical reactions

Collaboration with Prof. Ruth Baker

At high concentrations, chemistry is deterministic, resulting in ODEs

A+B—C
dﬂ——r<:c dﬁ——r<:c di——Hcc
ar ACB TqF T ACB a4 T ACB-

where ca, cg, cc are the concentrations in a well-stirred vessel.

However, at very low concentrations, it becomes stochastic:
P(reaction occurs in time dt) = Rna ng dt

where na, ng, nc are the numbers of molecules. This results in a
continuous-time Markov process.
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Monte Carlo method

In stochastic models, we often have

w — S — P
random input intermediate variables scalar output

The Monte Carlo estimate for E[P] is an average of N independent
samples w("):

N
Y =N Pw).
n=1

This is unbiased, E[Y]=E[P], and the Central Limit Theorem proves that
as N — oo the error becomes Normally distributed with variance N=1V[P].
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Monte Carlo method

In many cases, this is modified to

~ ~

w — S — P
random input intermediate variables scalar output

where §, P are approximations to S, P, in which case the MC estimate

N
Y =N Py
n=1
is biased, and the Mean Square Error is
~ ) LS - 2
E[(Y-E[P]?] = N""V[P] + (E[P] - E[P])
Greater accuracy requires larger N and smaller weak error E[P]—E[P].
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SDE Path Simulation

My interest was in SDEs (stochastic differential equations) for finance,
which in a simple one-dimensional case has the form

dSt = a(St, t) dt + b(St, t) th

Here dW; is the increment of a Brownian motion — Normally distributed
with variance dt.

This is usually approximated by the simple Euler-Maruyama method
gtn+1 = §tn + a(:s\tn7 tn) h + b(gt,-n tn) AWn

with uniform timestep h, and increments AW, with variance h.

In simple applications, the output of interest is a function of the final value:

P =f(S7)
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SDE Path Simulation

Geometric Brownian Motion: dS; = r S;dt + o S; AW,

15

—>—— coarse path
—¥— fine path
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SDE Path Simulation

Two kinds of discretisation error:

Weak error:
E[P] — E[P] = O(h)

Strong error:

1/2
~ 2
(IE [sup (St—5t> D = O(h'/?)
[0,7]
For reasons which will become clear, | prefer to use the Milstein

discretisation for which the weak and strong errors are both O(h).
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SDE Path Simulation

The Mean Square Error is
D D 2 1 2
N-1V[P] + (IE[P] - IE[P]) ~ aN“l4bh
If we want this to be €2, then we need

N=0(2), h=0()

so the total computational cost is O(¢73).

To improve this cost we need to

@ reduce N — variance reduction or Quasi-Monte Carlo methods
@ reduce the cost of each path (on average) — MLMC
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Two-level Monte Carlo

If we want to estimate E[ﬁ’l] but it is much cheaper to simulate Py ~ Py,
then since

E[P1] = E[Po] + E[P; — Po]

we can use the estimator

No Ny
No—l Z Péo’”) 4 N1_1 Z <P£1,n)_ P(gl,n))
n=1 n=1

Benefit: if Isl—f’o is small, its variance will be small, so won't need many
samples to accurately estimate E[P; — Pg], so cost will be reduced greatly.
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Multilevel Monte Carlo

Natural generalisation: given a sequence /I50, ﬁl, ey ﬁL
~ o~ L o~ o~
E[P] = E[Po] + Y E[P,—P; 1]
(=1

we can use the estimator

i (0 - e B B
W SR S S (- ) |
n=1 =1 n=1

with independent estimation for each level of correction
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Multilevel Monte Carlo

If we define
o (p, V) to be cost and variance of /ISO
o (Cp, V) to be cost and variance of ﬁg—ﬁg_l
L L

then the total cost is Z Ny Cy and the variance is Z N[l V,.
£=0 ¢=0

Using a Lagrange multiplier 12 to minimise the cost for a fixed variance
5 L
— Nk Gk + 12NV ) =0
N, kz_;)( k Ck 4= p= Ny k)

gives
Ne=p V)G = NeCG=p/VeG
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Multilevel Monte Carlo

Setting the total variance equal to €2 gives
L
P (Z JVG cg>
(=0
and hence, the total cost is

L L 2
Z Ng Cg = 6_2 (Z vV VgCg)
=0 =0

in contrast to the standard cost which is approximately =2 V, C;.

The MLMC cost savings are therefore approximately:
o Vi / Vo, if VViCy increases with level
o Co/Cy, if \/V,;C; decreases with level
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Multilevel Path Simulation

With SDEs, level ¢ corresponds to approximation using M¢ timesteps,
giving approximate payoff Py at cost C; = O(h, .

Simplest estimator for E[Isg—lsg 1] for £>0is

12 (P(" n))

using same driving Brownian path for both levels.

L ~ 2
Analysis gives MSE = > N, 1V, + (E[PL]—E[P])
/=0

To make RMS error less than ¢
@ choose Ny ox /V;/C; so total variance is less than %52

@ choose L so that (E[PL] E[PD 1 g2
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Multilevel Path Simulation
For Lipschitz payoff functions P = f(S71), we have
Vi=V ["Se—"se-1] < E [("?’e—"?’ea)z}
< K’°E [(gT,Z_gT,Z—l)z}

O(hy), Euler-Maruyama
O(h?), Milstein

and hence
O(1), Euler-Maruyama
Vi G =
O(hy), Milstein
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MLMC Theorem

(Slight generalisation of version in 2008 Operations Research paper)

If there exist independent estimators ?g based on Ny Monte Carlo samples,

each costing Cy, and positive constants «;, 3,7, c1, ¢, ¢3 such that
a> 1 min(3,7) and

o‘mﬁ—Pﬂngﬂf
E[Pq], (=0
E[P;—Py_4], £>0
i) V[Y)] < o 12704

i) E[Yi] =

iv) E[C] < c327°
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MLMC Theorem

then there exists a positive constant ¢4 such that for any e <1 there exist

L and N, for which the multilevel estimator

L
Y = Yo,
=0

~

~ 2
has a mean-square-error with bound E [(Y — E[P]) ] < é?

with an expected computational cost C with bound

cae?, B>,

C << ae?(loge)®, B=r,

cae 0B/ 0< B <A,
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MLMC Theorem

Two observations of optimality:

@ MC simulation needs O(c~2) samples to achieve RMS accuracy «.
When > ~, the cost is optimal — O(1) cost per sample on average.

(Would need multilevel QMC to further reduce costs)

@ When 8 < +, another interesting case is when 8 = 2a, which
corresponds to E[Y;] and \/IE[?Z] being of the same order as ¢ — cc.

In this case, the total cost is O(¢~7/), which is the cost of a single
sample on the finest level — again optimal.
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MLMC work on SDEs

@ Milstein discretisation for path-dependent options — G (2008)

@ numerical analysis — G, Higham, Mao (2009), Avikainen (2009),
G, Debrabant, RoBler (2012)

financial sensitivities (“Greeks") — Burgos (2011)

jump-diffusion models — Xia (2011)

Lévy processes — Dereich (2010), Marxen (2010), Dereich &
Heidenreich (2011), Xia (2013), Kyprianou (2014)

American options — Belomestny & Schoenmakers (2011)

Milstein in higher dimensions without Lévy areas — G, Szpruch (2014)

adaptive timesteps — Hoel, von Schwerin, Szepessy, Tempone (2012),
G, Lester, Whittle (2014)
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SPDEs

@ quite natural application, with better cost savings than SDEs
due to higher dimensionality

@ range of applications

» Graubner & Ritter (Darmstadt) — parabolic

G, Reisinger (Oxford) — parabolic

Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) — elliptic

Barth, Jenny, Lang, Meyer, Mishra, Miiller, Schwab, Sukys, Zollinger
(ETH Ziirich) — elliptic, parabolic, hyperbolic

Harbrecht, Peters (Basel) — elliptic

Efendiev (Texas A&M) — numerical homogenization

Vidal-Codina, G, Peraire (MIT) — reduced basis approximation

v v vy

v

v
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Engineering Uncertainty Quantification

Simplest possible example:
3D elliptic PDE, with uncertain boundary data

(]

@ grid spacing proportional to 2~ on level ¢
o cost is O(213), if using an efficient multigrid solver
°

2nd order accuracy means that
Pw) — Pw) ~ c(w)2%

= ﬁg_l(w) - F’g(w) ~ 3c(w)27*

(]

hence, =2, =4, v=3
cost is O(7?) to obtain ¢ RMS accuracy

(]

this compares to O(¢~3/2) cost for one sample on finest level,
so O(e~7/2) for standard Monte Carlo

(]
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Non-geometric multilevel

Almost all applications of multilevel in the literature so far use a geometric
sequence of levels, refining the timestep (or the spatial discretisation for
PDEs) by a constant factor when going from level ¢ to level £+ 1.

Coming from a multigrid background, this is very natural, but it is NOT
a requirement of the multilevel Monte Carlo approach.

All MLMC needs is a sequence of levels with
@ increasing accuracy
@ increasing cost

@ increasingly small difference between outputs on successive levels
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Reduced Basis PDE approximation
Vidal-Codina, Nguyen, G, Peraire (2014) take a fine FE discretisation:

Aw)u = f(w)

and use a reduced basis approximation

K
u= E Vi U

k=1

to obtain a low-dimensional reduced system

Ar(w) v = f(w)

@ larger K = greater accuracy at greater cost
@ in multilevel treatment, K, varies with level

@ brute force optimisation determines the optimal number of levels,
and reduced basis size on each level
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Other MLMC applications

@ parametric integration, integral equations (Heinrich)

multilevel QMC (Dick, G, Kuo, Scheichl, Schwab, Sloan)

stochastic chemical reactions (Anderson & Higham, Tempone)

mixed precision computation on FPGAs (Korn, Ritter, Wehn)

MLMC for MCMC (Scheichl, Schwab, Stuart, Teckentrup)

Coulomb collisions in plasma (Caflisch)

@ nested simulation (Haji-Ali & Tempone, Hambly & Reisinger)

(]

invariant distribution of contractive Markov process (Glynn & Rhee)

@ invariant distribution of contractive SDEs (G, Lester & Whittle)
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Three MLMC extensions

@ unbiased estimation — Rhee & Glynn (2015)

» randomly selects the level for each sample
» no bias, and finite expected cost and variance if > ~

@ Richardson-Romberg extrapolation — Lemaire & Pages (2013)

» reduces the weak error, and hence the number of levels required
» particularly helpful when g < ~

@ Multi-Index Monte Carlo — Haji-Ali, Nobile, Tempone (2015)

» important extension to MLMC approach, combining MLMC with
sparse grid methods
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Multi-Index Monte Carlo

Standard “1D” MLMC truncates the telescoping sum
o0 ~
E[P] =) E[AP]
(=0

where Aﬁg = ﬁg — ﬁg_l, with :‘5_1 =0.

In “2D", MIMC truncates the telescoping sum
E[P] = Z Z E[APr ¢,]
=0 lr=

where A’Dfl,fz = (P£17g2 - Pfl—lyfz) - (Pf1,52—1 - ’Dfl—l,fz—l)

Different aspects of the discretisation vary in each “dimension” — for a 2D
PDE, could use grid spacing 2~ in direction 1, 2= in direction 2
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Multi-Index Monte Carlo

%

four evaluations for
cross-difference AP(3 )

141

MIMC truncates the summation in a way which minimises the cost to
achieve a target MSE — quite similar to sparse grids.

Can achieve O(c72) complexity for a wider range of SPDE and other
applications than plain MLMC.
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Conclusions
@ multilevel idea is very simple; key question is how to apply it in
new situations, and perform the numerical analysis

@ discontinuous output functions can cause problems, but there is
a lot of experience now in coping with this

@ there are also “tricks” which can be used in situations with poor
strong convergence

@ being used for an increasingly wide range of applications;
biggest computational savings when coarsest (reasonable)
approximation is much cheaper than finest

@ currently, getting at least 100x savings for SPDEs and stochastic
chemical reaction simulations
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