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An outline personal history

inspired by undergraduate numerical projects course while studying
Maths at Cambridge, and working on summer projects at Rolls-Royce

went to MIT for MSc and PhD in Aeronautical Engineering, then
taught there for 7 years with research funding from Rolls-Royce

RR helped me to move to Oxford in 1992 and I continued working on
CFD until about 10 years ago – HYDRA CFD code is now the main
analysis and design code at RR

as a mid-career change, switched to computational finance and
research on Monte Carlo methods for a wide range of applications
with uncertainty

(I also have a long-standing interest in High Performance Computing,
including the use of GPUs)
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Objectives

In presenting the multilevel Monte Carlo method, I hope to emphasise:

the simplicity of the idea

its flexibility – it’s not prescriptive, more an approach

there are lots of people working on a variety of applications

In doing this, I will focus on ideas rather than lots of numerical results,
but I will begin with some motivation.

I’m a numerics / algorithms person – I collaborate a lot with others
with interests in a wide variety of applications
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Mathematical Finance: I
The movement of stock prices is modelled by stochastic differential
equations such as

dSt = r St dt + σ St dWt

where Wt is a Brownian path with N(0,dt) Normal increments
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Mathematical Finance: II

Collaboration with Profs. Ben Hambly and Christoph Reisinger

Here, they looked at the evolution of a probability density function p(x , t)
for firms at a distance x from default at time t

dp = −µ
∂p

∂x
dt +

1

2

∂2p

∂x2
dt +

√
ρ
∂p

∂x
dWt

with absorbing boundary p(0, t) = 0.

The diffusion behaviour is a large-limit effect of lots of different firms
affected by individual (idiosyncratic) random effects, whereas the
Brownian path Wt models the systemic effects which affect everyone.
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Long-chain molecules in a fluid

Collaboration with Prof. Endre Süli

Long-chain molecule in solution

modelled as ball-spring system, subject
to random forces from fluid on each “ball”

interest is in mean stress exerted by molecules on fluid
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Bio-chemical reactions

Collaboration with Prof. Ruth Baker

At high concentrations, chemistry is deterministic, resulting in ODEs

A+ B → C

dcA

dt
= −r cA cB ,

dcB

dt
= −r cA cB ,

dcC

dt
= +r cA cB .

where cA, cB , cC are the concentrations in a well-stirred vessel.

However, at very low concentrations, it becomes stochastic:

P(reaction occurs in time dt) = R nA nB dt

where nA, nB , nC are the numbers of molecules. This results in a
continuous-time Markov process.
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Monte Carlo method

In stochastic models, we often have

ω −→ S −→ P

random input intermediate variables scalar output

The Monte Carlo estimate for E[P ] is an average of N independent
samples ω(n):

Y = N−1
N∑

n=1

P(ω(n)).

This is unbiased, E[Y ]=E[P ], and the Central Limit Theorem proves that
as N → ∞ the error becomes Normally distributed with variance N−1

V[P ].
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Monte Carlo method

In many cases, this is modified to

ω −→ Ŝ −→ P̂

random input intermediate variables scalar output

where Ŝ , P̂ are approximations to S ,P , in which case the MC estimate

Ŷ = N−1
N∑

n=1

P̂(ω(n))

is biased, and the Mean Square Error is

E[ (Ŷ −E[P ])2] = N−1
V[P̂] +

(
E[P̂]− E[P ]

)2

Greater accuracy requires larger N and smaller weak error E[P̂ ]−E[P ].
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SDE Path Simulation

My interest was in SDEs (stochastic differential equations) for finance,
which in a simple one-dimensional case has the form

dSt = a(St , t) dt + b(St , t)dWt

Here dWt is the increment of a Brownian motion – Normally distributed
with variance dt.

This is usually approximated by the simple Euler-Maruyama method

Ŝtn+1 = Ŝtn + a(Ŝtn , tn) h + b(Ŝtn , tn)∆Wn

with uniform timestep h, and increments ∆Wn with variance h.

In simple applications, the output of interest is a function of the final value:

P̂ ≡ f (ŜT )
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SDE Path Simulation

Geometric Brownian Motion: dSt = r St dt + σ St dWt
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SDE Path Simulation

Two kinds of discretisation error:

Weak error:
E[P̂ ]− E[P ] = O(h)

Strong error: (
E

[
sup
[0,T ]

(
Ŝt−St

)2
])1/2

= O(h1/2)

For reasons which will become clear, I prefer to use the Milstein
discretisation for which the weak and strong errors are both O(h).
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SDE Path Simulation

The Mean Square Error is

N−1
V[P̂] +

(
E[P̂ ]− E[P ]

)2
≈ a N−1 + b h2

If we want this to be ε2, then we need

N = O(ε−2), h = O(ε)

so the total computational cost is O(ε−3).

To improve this cost we need to

reduce N – variance reduction or Quasi-Monte Carlo methods

reduce the cost of each path (on average) – MLMC
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Two-level Monte Carlo

If we want to estimate E[P̂1] but it is much cheaper to simulate P̂0 ≈ P̂1,
then since

E[P̂1] = E[P̂0] + E[P̂1−P̂0]

we can use the estimator

N−1
0

N0∑

n=1

P̂
(0,n)
0 + N−1

1

N1∑

n=1

(
P̂
(1,n)
1 − P̂

(1,n)
0

)

Benefit: if P̂1−P̂0 is small, its variance will be small, so won’t need many
samples to accurately estimate E[P̂1−P̂0], so cost will be reduced greatly.
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Multilevel Monte Carlo

Natural generalisation: given a sequence P̂0, P̂1, . . . , P̂L

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

we can use the estimator

N−1
0

N0∑

n=1

P̂
(0,n)
0 +

L∑

ℓ=1

{
N−1
ℓ

Nℓ∑

n=1

(
P̂
(ℓ,n)
ℓ − P̂

(ℓ,n)
ℓ−1

)}

with independent estimation for each level of correction
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Multilevel Monte Carlo

If we define

C0,V0 to be cost and variance of P̂0

Cℓ,Vℓ to be cost and variance of P̂ℓ−P̂ℓ−1

then the total cost is
L∑

ℓ=0

Nℓ Cℓ and the variance is
L∑

ℓ=0

N−1
ℓ Vℓ.

Using a Lagrange multiplier µ2 to minimise the cost for a fixed variance

∂

∂Nℓ

L∑

k=0

(
Nk Ck + µ2N−1

k
Vk

)
= 0

gives
Nℓ = µ

√
Vℓ/Cℓ =⇒ Nℓ Cℓ = µ

√
Vℓ Cℓ

Mike Giles (Oxford) Multilevel Monte Carlo 16 / 33



Multilevel Monte Carlo

Setting the total variance equal to ε2 gives

µ = ε−2

(
L∑

ℓ=0

√
Vℓ Cℓ

)

and hence, the total cost is

L∑

ℓ=0

Nℓ Cℓ = ε−2

(
L∑

ℓ=0

√
VℓCℓ

)2

in contrast to the standard cost which is approximately ε−2 V0 CL.

The MLMC cost savings are therefore approximately:

VL/V0, if
√
VℓCℓ increases with level

C0/CL, if
√
VℓCℓ decreases with level
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Multilevel Path Simulation
With SDEs, level ℓ corresponds to approximation using Mℓ timesteps,
giving approximate payoff P̂ℓ at cost Cℓ = O(h−1

ℓ ).

Simplest estimator for E[P̂ℓ−P̂ℓ−1] for ℓ>0 is

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂
(n)
ℓ −P̂

(n)
ℓ−1

)

using same driving Brownian path for both levels.

Analysis gives MSE =

L∑

ℓ=0

N−1
ℓ Vℓ +

(
E[P̂L]−E[P ]

)2

To make RMS error less than ε

choose Nℓ ∝
√

Vℓ/Cℓ so total variance is less than 1
2 ε

2

choose L so that
(
E[P̂L]−E[P ]

)2
< 1

2 ε
2
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Multilevel Path Simulation

For Lipschitz payoff functions P ≡ f (ST ), we have

Vℓ ≡ V

[
P̂ℓ−P̂ℓ−1

]
≤ E

[
(P̂ℓ−P̂ℓ−1)

2
]

≤ K 2
E

[
(ŜT ,ℓ−ŜT ,ℓ−1)

2
]

=

{
O(hℓ), Euler-Maruyama

O(h2ℓ ), Milstein

and hence

Vℓ Cℓ =

{
O(1), Euler-Maruyama

O(hℓ), Milstein
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MLMC Theorem

(Slight generalisation of version in 2008 Operations Research paper)

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2]
< ε2

with an expected computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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MLMC Theorem

Two observations of optimality:

MC simulation needs O(ε−2) samples to achieve RMS accuracy ε.
When β > γ, the cost is optimal — O(1) cost per sample on average.

(Would need multilevel QMC to further reduce costs)

When β < γ, another interesting case is when β = 2α, which

corresponds to E[Ŷℓ] and
√

E[Ŷ 2
ℓ ] being of the same order as ℓ → ∞.

In this case, the total cost is O(ε−γ/α), which is the cost of a single
sample on the finest level — again optimal.
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MLMC work on SDEs

Milstein discretisation for path-dependent options – G (2008)

numerical analysis – G, Higham, Mao (2009), Avikainen (2009),
G, Debrabant, Rößler (2012)

financial sensitivities (“Greeks”) – Burgos (2011)

jump-diffusion models – Xia (2011)

Lévy processes – Dereich (2010), Marxen (2010), Dereich &
Heidenreich (2011), Xia (2013), Kyprianou (2014)

American options – Belomestny & Schoenmakers (2011)

Milstein in higher dimensions without Lévy areas – G, Szpruch (2014)

adaptive timesteps – Hoel, von Schwerin, Szepessy, Tempone (2012),
G, Lester, Whittle (2014)
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SPDEs

quite natural application, with better cost savings than SDEs
due to higher dimensionality

range of applications
◮ Graubner & Ritter (Darmstadt) – parabolic
◮ G, Reisinger (Oxford) – parabolic
◮ Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) – elliptic
◮ Barth, Jenny, Lang, Meyer, Mishra, Müller, Schwab, Sukys, Zollinger

(ETH Zürich) – elliptic, parabolic, hyperbolic
◮ Harbrecht, Peters (Basel) – elliptic
◮ Efendiev (Texas A&M) – numerical homogenization
◮ Vidal-Codina, G, Peraire (MIT) – reduced basis approximation
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Engineering Uncertainty Quantification

Simplest possible example:

3D elliptic PDE, with uncertain boundary data

grid spacing proportional to 2−ℓ on level ℓ

cost is O(2+3ℓ), if using an efficient multigrid solver

2nd order accuracy means that

P̂ℓ(ω)− P(ω) ≈ c(ω) 2−2ℓ

=⇒ P̂ℓ−1(ω)− P̂ℓ(ω) ≈ 3 c(ω) 2−2ℓ

hence, α=2, β=4, γ=3

cost is O(ε−2) to obtain ε RMS accuracy

this compares to O(ε−3/2) cost for one sample on finest level,
so O(ε−7/2) for standard Monte Carlo
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Non-geometric multilevel

Almost all applications of multilevel in the literature so far use a geometric
sequence of levels, refining the timestep (or the spatial discretisation for
PDEs) by a constant factor when going from level ℓ to level ℓ+ 1.

Coming from a multigrid background, this is very natural, but it is NOT
a requirement of the multilevel Monte Carlo approach.

All MLMC needs is a sequence of levels with

increasing accuracy

increasing cost

increasingly small difference between outputs on successive levels
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Reduced Basis PDE approximation
Vidal-Codina, Nguyen, G, Peraire (2014) take a fine FE discretisation:

A(ω) u = f (ω)

and use a reduced basis approximation

u ≈
K∑

k=1

vkuk

to obtain a low-dimensional reduced system

Ar (ω) v = fr (ω)

larger K =⇒ greater accuracy at greater cost

in multilevel treatment, Kℓ varies with level

brute force optimisation determines the optimal number of levels,
and reduced basis size on each level
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Other MLMC applications

parametric integration, integral equations (Heinrich)

multilevel QMC (Dick, G, Kuo, Scheichl, Schwab, Sloan)

stochastic chemical reactions (Anderson & Higham, Tempone)

mixed precision computation on FPGAs (Korn, Ritter, Wehn)

MLMC for MCMC (Scheichl, Schwab, Stuart, Teckentrup)

Coulomb collisions in plasma (Caflisch)

nested simulation (Haji-Ali & Tempone, Hambly & Reisinger)

invariant distribution of contractive Markov process (Glynn & Rhee)

invariant distribution of contractive SDEs (G, Lester & Whittle)
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Three MLMC extensions

unbiased estimation – Rhee & Glynn (2015)
◮ randomly selects the level for each sample
◮ no bias, and finite expected cost and variance if β > γ

Richardson-Romberg extrapolation – Lemaire & Pagès (2013)
◮ reduces the weak error, and hence the number of levels required
◮ particularly helpful when β < γ

Multi-Index Monte Carlo – Haji-Ali, Nobile, Tempone (2015)
◮ important extension to MLMC approach, combining MLMC with

sparse grid methods
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Multi-Index Monte Carlo

Standard “1D” MLMC truncates the telescoping sum

E[P ] =
∞∑

ℓ=0

E[∆P̂ℓ]

where ∆P̂ℓ ≡ P̂ℓ − P̂ℓ−1, with P̂−1≡0.

In “2D”, MIMC truncates the telescoping sum

E[P ] =

∞∑

ℓ1=0

∞∑

ℓ2=0

E[∆P̂ℓ1,ℓ2 ]

where ∆P̂ℓ1,ℓ2 ≡ (P̂ℓ1,ℓ2 − P̂ℓ1−1,ℓ2)− (P̂ℓ1,ℓ2−1 − P̂ℓ1−1,ℓ2−1)

Different aspects of the discretisation vary in each “dimension” – for a 2D
PDE, could use grid spacing 2−ℓ1 in direction 1, 2−ℓ2 in direction 2
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Multi-Index Monte Carlo

✲

✻

ℓ1

ℓ2

❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅❅

❡ ❡

❡ ❡

four evaluations for
cross-difference ∆P(3,2)

r r r r r r

r r r r r

r r r r

r r r

r r

r

MIMC truncates the summation in a way which minimises the cost to
achieve a target MSE – quite similar to sparse grids.

Can achieve O(ε−2) complexity for a wider range of SPDE and other
applications than plain MLMC.
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Conclusions

multilevel idea is very simple; key question is how to apply it in
new situations, and perform the numerical analysis

discontinuous output functions can cause problems, but there is
a lot of experience now in coping with this

there are also “tricks” which can be used in situations with poor
strong convergence

being used for an increasingly wide range of applications;
biggest computational savings when coarsest (reasonable)
approximation is much cheaper than finest

currently, getting at least 100× savings for SPDEs and stochastic
chemical reaction simulations
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