Multilevel Monte Carlo methods

Mike Giles

Mathematical Institute, University of Oxford

SIAM Student Chapter Conference April 27, 2016

An outline personal history

- inspired by undergraduate numerical projects course while studying Maths at Cambridge, and working on summer projects at Rolls-Royce
- went to MIT for MSc and PhD in Aeronautical Engineering, then taught there for 7 years with research funding from Rolls-Royce
- RR helped me to move to Oxford in 1992 and I continued working on CFD until about 10 years ago – HYDRA CFD code is now the main analysis and design code at RR
- as a mid-career change, switched to computational finance and research on Monte Carlo methods for a wide range of applications with uncertainty
- (I also have a long-standing interest in High Performance Computing, including the use of GPUs)

Objectives

In presenting the multilevel Monte Carlo method, I hope to emphasise:

- the simplicity of the idea
- its flexibility it's not prescriptive, more an approach
- there are lots of people working on a variety of applications

In doing this, I will focus on ideas rather than lots of numerical results, but I will begin with some motivation.

I'm a numerics / algorithms person – I collaborate a lot with others with interests in a wide variety of applications

Mathematical Finance: I

The movement of stock prices is modelled by stochastic differential equations such as

$$\mathrm{d}S_t = r\,S_t\,\mathrm{d}t + \sigma\,S_t\,\mathrm{d}W_t$$

where W_t is a Brownian path with N(0, dt) Normal increments

Mathematical Finance: II

Collaboration with Profs. Ben Hambly and Christoph Reisinger

Here, they looked at the evolution of a probability density function p(x, t) for firms at a distance x from default at time t

$$\mathrm{d} p = -\mu \frac{\partial p}{\partial x} \, \mathrm{d} t + \frac{1}{2} \frac{\partial^2 p}{\partial x^2} \, \mathrm{d} t + \sqrt{\rho} \frac{\partial p}{\partial x} \, \mathrm{d} W_t$$

with absorbing boundary p(0, t) = 0.

The diffusion behaviour is a large-limit effect of lots of different firms affected by individual (idiosyncratic) random effects, whereas the Brownian path W_t models the systemic effects which affect everyone.

Long-chain molecules in a fluid

Collaboration with Prof. Endre Süli

• interest is in mean stress exerted by molecules on fluid

Bio-chemical reactions

Collaboration with Prof. Ruth Baker

At high concentrations, chemistry is deterministic, resulting in ODEs

$$A + B \rightarrow C$$

$$\frac{\mathrm{d}c_A}{\mathrm{d}t} = -r\,c_A\,c_B, \quad \frac{\mathrm{d}c_B}{\mathrm{d}t} = -r\,c_A\,c_B, \quad \frac{\mathrm{d}c_C}{\mathrm{d}t} = +r\,c_A\,c_B.$$

where c_A, c_B, c_C are the concentrations in a well-stirred vessel.

However, at very low concentrations, it becomes stochastic:

$$\mathbb{P}(\text{reaction occurs in time } dt) = R \, n_A \, n_B \, dt$$

where n_A , n_B , n_C are the numbers of molecules. This results in a continuous-time Markov process.

- (ロ) (部) (注) (注) 注 り(C

Monte Carlo method

In stochastic models, we often have

The Monte Carlo estimate for $\mathbb{E}[P]$ is an average of N independent samples $\omega^{(n)}$:

$$Y = N^{-1} \sum_{n=1}^{N} P(\omega^{(n)}).$$

This is unbiased, $\mathbb{E}[Y] = \mathbb{E}[P]$, and the Central Limit Theorem proves that as $N \to \infty$ the error becomes Normally distributed with variance $N^{-1}\mathbb{V}[P]$.

Monte Carlo method

In many cases, this is modified to

where \widehat{S},\widehat{P} are approximations to S,P, in which case the MC estimate

$$\widehat{Y} = N^{-1} \sum_{n=1}^{N} \widehat{P}(\omega^{(n)})$$

is biased, and the Mean Square Error is

$$\mathbb{E}[(\widehat{Y} - \mathbb{E}[P])^2] = N^{-1} \mathbb{V}[\widehat{P}] + (\mathbb{E}[\widehat{P}] - \mathbb{E}[P])^2$$

Greater accuracy requires larger N and smaller weak error $\mathbb{E}[\widehat{P}] - \mathbb{E}[P]$.

◆ロ > ◆昼 > ◆ き > ◆き > き め < ○</p>

Mike Giles (Oxford)

My interest was in SDEs (stochastic differential equations) for finance, which in a simple one-dimensional case has the form

$$dS_t = a(S_t, t) dt + b(S_t, t) dW_t$$

Here dW_t is the increment of a Brownian motion – Normally distributed with variance dt.

This is usually approximated by the simple Euler-Maruyama method

$$\widehat{S}_{t_{n+1}} = \widehat{S}_{t_n} + a(\widehat{S}_{t_n}, t_n) h + b(\widehat{S}_{t_n}, t_n) \Delta W_n$$

with uniform timestep h, and increments ΔW_n with variance h.

In simple applications, the output of interest is a function of the final value:

$$\widehat{P} \equiv f(\widehat{S}_T)$$

Geometric Brownian Motion: $dS_t = r S_t dt + \sigma S_t dW_t$

Two kinds of discretisation error:

Weak error:

$$\mathbb{E}[\widehat{P}] - \mathbb{E}[P] = O(h)$$

Strong error:

$$\left(\mathbb{E}\left[\sup_{[0,T]}\left(\widehat{S}_t - S_t\right)^2\right]\right)^{1/2} = O(h^{1/2})$$

For reasons which will become clear, I prefer to use the Milstein discretisation for which the weak and strong errors are both O(h).

Mike Giles (Oxford)

The Mean Square Error is

$$N^{-1} \, \mathbb{V}[\widehat{P}] + \left(\mathbb{E}[\widehat{P}] - \mathbb{E}[P] \right)^2 \approx a \, N^{-1} + b \, h^2$$

If we want this to be ε^2 , then we need

$$N = O(\varepsilon^{-2}), \qquad h = O(\varepsilon)$$

so the total computational cost is $O(\varepsilon^{-3})$.

To improve this cost we need to

- reduce N variance reduction or Quasi-Monte Carlo methods
- reduce the cost of each path (on average) MLMC

Two-level Monte Carlo

If we want to estimate $\mathbb{E}[\widehat{P}_1]$ but it is much cheaper to simulate $\widehat{P}_0 \approx \widehat{P}_1$, then since

$$\mathbb{E}[\widehat{P}_1] = \mathbb{E}[\widehat{P}_0] + \mathbb{E}[\widehat{P}_1 - \widehat{P}_0]$$

we can use the estimator

$$N_0^{-1} \sum_{n=1}^{N_0} \widehat{P}_0^{(0,n)} + N_1^{-1} \sum_{n=1}^{N_1} \left(\widehat{P}_1^{(1,n)} - \widehat{P}_0^{(1,n)} \right)$$

Benefit: if $\widehat{P}_1 - \widehat{P}_0$ is small, its variance will be small, so won't need many samples to accurately estimate $\mathbb{E}[\widehat{P}_1 - \widehat{P}_0]$, so cost will be reduced greatly.

Multilevel Monte Carlo

Natural generalisation: given a sequence $\widehat{P}_0, \widehat{P}_1, \dots, \widehat{P}_L$

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{\ell=1}^L \mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}]$$

we can use the estimator

$$N_0^{-1} \sum_{n=1}^{N_0} \widehat{P}_0^{(0,n)} + \sum_{\ell=1}^{L} \left\{ N_\ell^{-1} \sum_{n=1}^{N_\ell} \left(\widehat{P}_\ell^{(\ell,n)} - \widehat{P}_{\ell-1}^{(\ell,n)} \right) \right\}$$

with independent estimation for each level of correction

Mike Giles (Oxford)

Multilevel Monte Carlo

If we define

- C_0, V_0 to be cost and variance of \widehat{P}_0
- ullet C_ℓ, V_ℓ to be cost and variance of $\widehat{P}_\ell \widehat{P}_{\ell-1}$

then the total cost is $\sum_{\ell=0}^L N_\ell \; C_\ell$ and the variance is $\sum_{\ell=0}^L N_\ell^{-1} V_\ell.$

Using a Lagrange multiplier μ^2 to minimise the cost for a fixed variance

$$\frac{\partial}{\partial N_{\ell}} \sum_{k=0}^{L} \left(N_k C_k + \mu^2 N_k^{-1} V_k \right) = 0$$

gives

$$N_{\ell} = \mu \sqrt{V_{\ell}/C_{\ell}} \quad \Longrightarrow \quad N_{\ell} C_{\ell} = \mu \sqrt{V_{\ell} C_{\ell}}$$

Multilevel Monte Carlo

Setting the total variance equal to ε^2 gives

$$\mu = \varepsilon^{-2} \left(\sum_{\ell=0}^L \sqrt{V_\ell \, C_\ell} \right)$$

and hence, the total cost is

$$\sum_{\ell=0}^{L} N_{\ell} C_{\ell} = \varepsilon^{-2} \left(\sum_{\ell=0}^{L} \sqrt{V_{\ell} C_{\ell}} \right)^{2}$$

in contrast to the standard cost which is approximately $\varepsilon^{-2} \ V_0 \ C_L$.

The MLMC cost savings are therefore approximately:

- V_L/V_0 , if $\sqrt{V_\ell C_\ell}$ increases with level
- C_0/C_L , if $\sqrt{V_\ell C_\ell}$ decreases with level

Multilevel Path Simulation

With SDEs, level ℓ corresponds to approximation using M^{ℓ} timesteps, giving approximate payoff \widehat{P}_{ℓ} at cost $C_{\ell} = O(h_{\ell}^{-1})$.

Simplest estimator for $\mathbb{E}[\widehat{P}_{\ell}\!-\!\widehat{P}_{\ell-1}]$ for $\ell\!>\!0$ is

$$\widehat{Y}_{\ell} = N_{\ell}^{-1} \sum_{n=1}^{N_{\ell}} \left(\widehat{P}_{\ell}^{(n)} - \widehat{P}_{\ell-1}^{(n)} \right)$$

using same driving Brownian path for both levels.

Analysis gives
$$\mathsf{MSE} = \sum_{\ell=0}^L \textit{N}_\ell^{-1} \textit{V}_\ell + \left(\mathbb{E}[\widehat{\textit{P}}_L] - \mathbb{E}[\textit{P}]\right)^2$$

To make RMS error less than ε

- ullet choose $N_\ell \propto \sqrt{V_\ell/C_\ell}$ so total variance is less than $rac{1}{2}\,arepsilon^2$
- ullet choose L so that $\Big(\mathbb{E}[\widehat{P}_L] \mathbb{E}[P]\Big)^2 < \frac{1}{2}\,arepsilon^2$

Multilevel Path Simulation

For Lipschitz payoff functions $P \equiv f(S_T)$, we have

$$egin{array}{lll} V_\ell &\equiv \mathbb{V}\left[\widehat{P}_\ell - \widehat{P}_{\ell-1}
ight] &\leq & \mathbb{E}\left[\left(\widehat{P}_\ell - \widehat{P}_{\ell-1}
ight)^2
ight] \\ &\leq & \mathcal{K}^2 \; \mathbb{E}\left[\left(\widehat{S}_{T,\ell} - \widehat{S}_{T,\ell-1}
ight)^2
ight] \\ &= & \left\{egin{array}{lll} O(h_\ell), & \mathsf{Euler-Maruyama} \\ O(h_\ell^2), & \mathsf{Milstein} \end{array}
ight. \end{array}$$

and hence

$$V_\ell \ extstyle C_\ell = \left\{egin{array}{ll} O(1), & ext{Euler-Maruyama} \ O(extit{h}_\ell), & ext{Milstein} \end{array}
ight.$$

MLMC Theorem

(Slight generalisation of version in 2008 Operations Research paper)

If there exist independent estimators \widehat{Y}_ℓ based on N_ℓ Monte Carlo samples, each costing C_ℓ , and positive constants $\alpha, \beta, \gamma, c_1, c_2, c_3$ such that $\alpha \geq \frac{1}{2} \min(\beta, \gamma)$ and

$$\begin{aligned} \text{i)} \ \left| \mathbb{E}[\widehat{P}_{\ell} - P] \right| &\leq c_1 \, 2^{-\alpha \, \ell} \\ \\ \text{ii)} \ \mathbb{E}[\widehat{Y}_{\ell}] &= \left\{ \begin{array}{ll} \mathbb{E}[\widehat{P}_0], & \ell = 0 \\ \\ \mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}], & \ell > 0 \end{array} \right. \end{aligned}$$

iii)
$$\mathbb{V}[\widehat{Y}_{\ell}] \leq c_2 N_{\ell}^{-1} 2^{-\beta \ell}$$

iv)
$$\mathbb{E}[C_\ell] \leq c_3 \, 2^{\gamma \, \ell}$$

MLMC Theorem

then there exists a positive constant c_4 such that for any $\varepsilon < 1$ there exist L and N_ℓ for which the multilevel estimator

$$\widehat{Y} = \sum_{\ell=0}^{L} \widehat{Y}_{\ell},$$

has a mean-square-error with bound $\mathbb{E}\left[\left(\widehat{Y}-\mathbb{E}[P]\right)^2\right]<\varepsilon^2$

with an expected computational cost C with bound

$$C \leq \begin{cases} c_4 \, \varepsilon^{-2}, & \beta > \gamma, \\ c_4 \, \varepsilon^{-2} (\log \varepsilon)^2, & \beta = \gamma, \\ c_4 \, \varepsilon^{-2 - (\gamma - \beta)/\alpha}, & 0 < \beta < \gamma. \end{cases}$$

Mike Giles (Oxford)

MLMC Theorem

Two observations of optimality:

- MC simulation needs $O(\varepsilon^{-2})$ samples to achieve RMS accuracy ε . When $\beta > \gamma$, the cost is optimal O(1) cost per sample on average. (Would need multilevel QMC to further reduce costs)
- When $\beta<\gamma$, another interesting case is when $\beta=2\alpha$, which corresponds to $\mathbb{E}[\widehat{Y}_\ell]$ and $\sqrt{\mathbb{E}[\widehat{Y}_\ell^2]}$ being of the same order as $\ell\to\infty$. In this case, the total cost is $O(\varepsilon^{-\gamma/\alpha})$, which is the cost of a single sample on the finest level again optimal.

MLMC work on SDEs

- Milstein discretisation for path-dependent options G (2008)
- numerical analysis G, Higham, Mao (2009), Avikainen (2009),
 G, Debrabant, Rößler (2012)
- financial sensitivities ("Greeks") Burgos (2011)
- jump-diffusion models Xia (2011)
- Lévy processes Dereich (2010), Marxen (2010), Dereich & Heidenreich (2011), Xia (2013), Kyprianou (2014)
- American options Belomestny & Schoenmakers (2011)
- Milstein in higher dimensions without Lévy areas G, Szpruch (2014)
- adaptive timesteps Hoel, von Schwerin, Szepessy, Tempone (2012),
 G, Lester, Whittle (2014)

SPDEs

- quite natural application, with better cost savings than SDEs due to higher dimensionality
- range of applications
 - Graubner & Ritter (Darmstadt) parabolic
 - ▶ G, Reisinger (Oxford) parabolic
 - Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) elliptic
 - Barth, Jenny, Lang, Meyer, Mishra, Müller, Schwab, Sukys, Zollinger (ETH Zürich) – elliptic, parabolic, hyperbolic
 - ► Harbrecht, Peters (Basel) elliptic
 - ► Efendiev (Texas A&M) numerical homogenization
 - ▶ Vidal-Codina, G, Peraire (MIT) reduced basis approximation

Engineering Uncertainty Quantification

Simplest possible example:

- 3D elliptic PDE, with uncertain boundary data
- ullet grid spacing proportional to $2^{-\ell}$ on level ℓ
- cost is $O(2^{+3\ell})$, if using an efficient multigrid solver
- 2nd order accuracy means that

$$\widehat{P}_{\ell}(\omega) - P(\omega) \approx c(\omega) 2^{-2\ell}$$

$$\implies \widehat{P}_{\ell-1}(\omega) - \widehat{P}_{\ell}(\omega) \approx 3 c(\omega) 2^{-2\ell}$$

- hence, $\alpha = 2$, $\beta = 4$, $\gamma = 3$
- cost is $O(\varepsilon^{-2})$ to obtain ε RMS accuracy
- this compares to $O(\varepsilon^{-3/2})$ cost for one sample on finest level, so $O(\varepsilon^{-7/2})$ for standard Monte Carlo

Non-geometric multilevel

Almost all applications of multilevel in the literature so far use a geometric sequence of levels, refining the timestep (or the spatial discretisation for PDEs) by a constant factor when going from level ℓ to level $\ell+1$.

Coming from a multigrid background, this is very natural, but it is **NOT** a requirement of the multilevel Monte Carlo approach.

All MLMC needs is a sequence of levels with

- increasing accuracy
- increasing cost
- increasingly small difference between outputs on successive levels

Reduced Basis PDE approximation

Vidal-Codina, Nguyen, G, Peraire (2014) take a fine FE discretisation:

$$A(\omega) u = f(\omega)$$

and use a reduced basis approximation

$$u \approx \sum_{k=1}^K v_k u_k$$

to obtain a low-dimensional reduced system

$$A_r(\omega) v = f_r(\omega)$$

- larger $K \Longrightarrow$ greater accuracy at greater cost
- in multilevel treatment, K_{ℓ} varies with level
- brute force optimisation determines the optimal number of levels,
 and reduced basis size on each level

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other MLMC applications

- parametric integration, integral equations (Heinrich)
- multilevel QMC (Dick, G, Kuo, Scheichl, Schwab, Sloan)
- stochastic chemical reactions (Anderson & Higham, Tempone)
- mixed precision computation on FPGAs (Korn, Ritter, Wehn)
- MLMC for MCMC (Scheichl, Schwab, Stuart, Teckentrup)
- Coulomb collisions in plasma (Caflisch)
- nested simulation (Haji-Ali & Tempone, Hambly & Reisinger)
- invariant distribution of contractive Markov process (Glynn & Rhee)
- invariant distribution of contractive SDEs (G, Lester & Whittle)

◆ロト ◆部 ▶ ◆ 恵 ▶ ◆ 恵 ● 釣 Q (^*)

Three MLMC extensions

- unbiased estimation Rhee & Glynn (2015)
 - randomly selects the level for each sample
 - no bias, and finite expected cost and variance if $\beta > \gamma$
- Richardson-Romberg extrapolation Lemaire & Pagès (2013)
 - reduces the weak error, and hence the number of levels required
 - particularly helpful when $\beta < \gamma$
- Multi-Index Monte Carlo Haji-Ali, Nobile, Tempone (2015)
 - important extension to MLMC approach, combining MLMC with sparse grid methods

Multi-Index Monte Carlo

Standard "1D" MLMC truncates the telescoping sum

$$\mathbb{E}[P] = \sum_{\ell=0}^{\infty} \mathbb{E}[\Delta \widehat{P}_{\ell}]$$

where $\Delta \widehat{P}_{\ell} \equiv \widehat{P}_{\ell} - \widehat{P}_{\ell-1}$, with $\widehat{P}_{-1} \equiv 0$.

In "2D", MIMC truncates the telescoping sum

$$\mathbb{E}[P] = \sum_{\ell_1=0}^{\infty} \sum_{\ell_2=0}^{\infty} \mathbb{E}[\Delta \widehat{P}_{\ell_1,\ell_2}]$$

where
$$\Delta \widehat{P}_{\ell_1,\ell_2} \equiv (\widehat{P}_{\ell_1,\ell_2} - \widehat{P}_{\ell_1-1,\ell_2}) - (\widehat{P}_{\ell_1,\ell_2-1} - \widehat{P}_{\ell_1-1,\ell_2-1})$$

Different aspects of the discretisation vary in each "dimension" – for a 2D PDE, could use grid spacing $2^{-\ell_1}$ in direction 1, $2^{-\ell_2}$ in direction 2

Multi-Index Monte Carlo

MIMC truncates the summation in a way which minimises the cost to achieve a target MSE – quite similar to sparse grids.

Can achieve $O(\varepsilon^{-2})$ complexity for a wider range of SPDE and other applications than plain MLMC.

Mike Giles (Oxford) Multilevel Monte Carlo 31 / 33

Conclusions

- multilevel idea is very simple; key question is how to apply it in new situations, and perform the numerical analysis
- discontinuous output functions can cause problems, but there is a lot of experience now in coping with this
- there are also "tricks" which can be used in situations with poor strong convergence
- being used for an increasingly wide range of applications;
 biggest computational savings when coarsest (reasonable)
 approximation is much cheaper than finest
- \bullet currently, getting at least $100 \times$ savings for SPDEs and stochastic chemical reaction simulations

References

Webpages for my research papers and talks:

people.maths.ox.ac.uk/gilesm/mlmc.html
people.maths.ox.ac.uk/gilesm/slides.html

Webpage for new 70-page Acta Numerica review and MATLAB test codes:

people.maths.ox.ac.uk/gilesm/acta/

- contains references to almost all MLMC research

Webpage with details of those working in this area:

people.maths.ox.ac.uk/gilesm/mlmc_community.html