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Outline

nested expectation for loss probability, VaR and CVaR

multilevel Monte Carlo (MLMC) for nested expectations

prior research on loss probability estimation
◮ Gordy & Juneja (2010)
◮ Broadie, Du & Moallemi (2011)

MLMC + uniform inner sampling

MLMC + adaptive inner sampling

results for a model test problem

extensions for real portfolios
◮ portfolio sub-sampling
◮ SDE approximation
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Loss probability, VaR and CVaR
Given some risk-neutral expected loss L conditional on some underlying
risk factors Y , the probability of a loss exceeding Lη is

η = P[L>Lη]

VaR is then defined implicitly by specifying η and computing Lη, and
CVaR (Expected Shortfall) is defined as

E
[
L | L>Lη

]
.

The important point is that the loss is a conditional expectation

L− Lη ≡ E[X |Y ]

so the loss probability is a nested expectation

P[L>Lη] = E
[
H (E[X |Y ])

]

where H(·) is the Heaviside step function.
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Two-level Monte Carlo

If we want to estimate E[P1] but it is much cheaper to simulate P0 ≈ P1,
then since

E[P1] = E[P0] + E[P1−P0]

we can use the estimator

N−1
0

N0∑

n=1

P
(0,n)
0 + N−1

1

N1∑

n=1

(
P
(1,n)
1 − P

(1,n)
0

)

Benefit: if P1−P0 is small, its variance will be small, so won’t need many
samples to accurately estimate E[P1−P0], so cost will be reduced greatly.
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Multilevel Monte Carlo

MLMC is based on the telescoping sum

E[PL] = E[P0] +
L∑

ℓ=1

E[Pℓ−Pℓ−1] ≡
L∑

ℓ=0

E[∆Pℓ]

where Pℓ represents an approximation of some output P on level ℓ, and
∆Pℓ ≡ Pℓ−Pℓ−1 with P−1≡0.

If the weak convergence is

E[Pℓ−P ] = O(2−α ℓ),

and Zℓ is an unbiased estimator for E[Pℓ−Pℓ−1], with variance

V[Zℓ] = O(2−β ℓ),

and expected cost
E[Cℓ] = O(2γ ℓ), . . .
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Multilevel Monte Carlo

. . . then the finest level L and the number of samples Nℓ on each level
can be chosen to achieve an RMS error of ε at an expected cost

C =





O
(
ε−2

)
, β > γ,

O
(
ε−2(log ε)2

)
, β = γ,

O
(
ε−2−(γ−β)/α

)
, 0 < β < γ.

We always try to get β > γ, so the main cost comes from the coarsest
levels – use of QMC can then give substantial additional benefits.

Original research in 2006 used 2ℓ timesteps to approximate an SDE on
level ℓ. Since then it has been used in a variety of applications, including
SPDEs and stochastic reaction networks.
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Multilevel Monte Carlo

Applying it to nested simulation, suppose we want to estimate

E
[
f (E[X |Y ])

]

for some general function f , and on level ℓ we use Mℓ = 2ℓ inner samples
to estimate E[X |Y ] so

Pℓ ≡ f
(
X ℓ

)
, X ℓ = M−1

ℓ

Mℓ∑

m=1

X (m)

with independent samples X (m) conditioned on Y .

The cost for each outer sample is clearly proportional to Mℓ so γ = 1.
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Multilevel Monte Carlo

A particularly good estimator Zℓ for E[Pℓ−Pℓ−1] is

Zℓ = f
(
X ℓ

)
− 1

2

(
f
(
X

(a)
ℓ−1

)
+ f

(
X

(b)
ℓ−1

))

where X
(a)
ℓ−1, X

(b)
ℓ−1 each use independent sets of Mℓ−1 inner samples,

while X ℓ uses the combined set of Mℓ samples.

If f is linear, Zℓ = 0, while if f has a bounded second derivative then

X
(a/b)
ℓ−1 − E[X |Y ] = O(2−ℓ/2) =⇒ Zℓ = O(2−ℓ)

so Vℓ ≡ V[Zℓ] = O(2−2ℓ) and hence β=2. (Giles, 2015)

Bujok, Hambly, Reisinger (2015) previously analysed a credit derivative
with f (x)≡max(0, x), and proved Vℓ=O(2−3ℓ/2), so β=3/2.

In both cases we get β > γ, and hence the optimal O(ε−2) complexity.

However, with VaR we are using the discontinuous Heaviside function.
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Prior research on VaR

Gordy & Juneja (2010) considered

P

[
E[X |Y ] > 0

]
≡ E

[
H (E[X |Y ])

]

using a uniform sampling approach with N outer samples for Y , and
M inner samples to estimate E[X |Y ].

The variance for the inner estimator is O(M−1), and they prove this
produces a bias in the outer estimate of the same order.

Hence, for ε RMS accuracy require

M = O(ε−1)

N = O(ε−2)

and so the total complexity is O(M N) = O(ε−3).
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Prior research on VaR

Broadie, Du & Moallemi (2011) improved on Gordy & Juneja by noting
that fewer samples are needed for H(E[X |Y ]) when |E[X |Y ] | is large.

Their adaptive sampling algorithm used something like

M = min(ε−1, ε−1/2δ−1), δ ≡ d/σ

where
σ2 ≡ V[X |Y ], d = |E[X |Y ]|

The cross-over is at d = O(ε1/2) so the average number of inner samples is

M = O(ε−1/2),

reducing the overall complexity to O(M N) = O(ε−5/2).

This is better, but still not the O(ε−2) that we aim for.
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MLMC + uniform sampling

This is essentially the same MLMC estimator as before except that for the
numerical analysis we simplify it to

Zℓ = H
(
X ℓ

)
− H

(
X ℓ−1

)

with completely different inner samples for X ℓ and X ℓ−1.

Heuristic analysis:

with Mℓ = M0 2
ℓ we get X ℓ − E[X |Y ] = O(2−ℓ/2)

=⇒ Zℓ = O(1) for only O(2−ℓ/2) fraction of outer samples
=⇒ Vℓ ≡ V[Zℓ] = O(2−ℓ/2)

this gives α=1, β=1/2, γ=1 so complexity is O(ε−5/2)

This can be made rigorous provided E[X 2] < ∞ and δ ≡ d/σ has
a bounded density near 0. The proof uses Chebyshev’s inequality
P[ |X ℓ − E[X |Y ]| > d ] < (σ2/M)/d2 = M−1δ−2
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MLMC + adaptive sampling
Instead of using Mℓ = M0 2

ℓ inner samples, we instead want to use

Mℓ = M0 4
ℓ max

(
2−ℓ,min(1, (C−1M

1/2
0 2ℓδ)−r )

)
, 1 < r < 2,

with a minimum of M0 2
ℓ and maximum of M0 4

ℓ.

fixed ℓ, decreasing r

fixed r , increasing ℓ

δ

M
ℓ
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MLMC + adaptive sampling

Heuristic analysis:

r > 1 ensures the intermediate region is small enough that the
average number of inner samples remains O(2ℓ)

r < 2 ensures high probability of correct value for H(X ) in
intermediate region

M0 4
ℓ in core region ensures O(2−ℓ) error in computed means,

so Zℓ = O(1) for O(2−ℓ) fraction of outer samples

hence, Vℓ = V[Zℓ] = O(2−ℓ) so now β = 1 and the overall
complexity is O(ε−2| log ε|2)

The heuristic analysis is fundamentally correct, but the rigorous analysis
for the real algorithm took another year, and the upper bound on r had
to be tightened.
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Numerical analysis

Big problem: in practice we don’t know δ = d/σ, so the real adaptive
algorithm has to use MC estimates, like Broadie, Du & Moallemi (2011).

Solution: for a given outer sample Y keep doubling the number of inner
samples until Mℓ is big enough based on current estimate δ̂ = d̂/σ̂,
or it reaches the maximum.

Concerns:

if we use too many samples, the cost may be bigger than we want

if we use too few samples, the variance may be bigger than we want

The main thrust of the analysis is to prove that the probability of ending
up with the “wrong” number of inner samples decays very rapidly as you
move away from the “right” number.
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Key building block: I

Lemma

Let ZN be an average of N i.i.d. samples of a random variable Z with zero

mean and finite qth moment, for q>2. Then there exists a constant Cq

depending only on q such that

E[ |ZN |
q] ≤ Cq N

−q/2
E[ |Z |q],

and for any z>0

P
[
|ZN |>z

]
≤ min

(
1,Cqz

−qN−q/2
E[ |Z |q]

)
.

Proof.

Use Burkholder-Davis-Gundy inequality for the first result, followed by
Markov inequality for the second.
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Key building block: II

Corollary

Under the same conditions, if σ2 = V[Z ] and

σ̂2
N =

1

N

N∑

n=1

(
Z (n) − ZN

)2
= σ2 +

1

N

N∑

n=1

(
(Z (n))2 − σ2

)
− (ZN)

2,

then for any c1>0 there exists a c2>0 such that

P
[
|σ̂2

N−σ2|>c1 σ
2
]
≤ min

(
1, c2N

−q/4
E[ |Z |q]/σq

)

Proof.

Again Burkholder-Davis-Gundy and Markov inequalities.

The Lemma bounds the probability of large errors in d̂ , and
the Corollary bounds the probability of large errors in σ̂.
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Final theorem

Theorem

Provided

1 the random variable δ = d/σ has bounded density near 0

2 there exists q > 2 such that

κq = sup
y

{
σ−q

E [ |X − E[X |Y ]|q ] |Y = y
}
< ∞

3 the exponent r in the adaptive algorithm satisfies the condition

1 < r < 2−
(√

4q + 1− 1
)/

q

then the adaptive algorithm has expected computational cost O(2ℓ) per
outer sample, and Vℓ ≡ V[Zℓ] = O(2−ℓ).
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Model problem

Taking τ ≪ 1 to be a short risk horizon, we consider a loss conditional on
Y ∼ N(0, 1) defined by

L = E

[
−(τ1/2Ỹ1 + (1−τ)1/2Ỹ2)

2
]
− E

[
−(τ1/2Y + (1−τ)1/2Ỹ2)

2 | Y
]

where Ỹ1 and Ỹ2 are also independent N(0, 1) r.v.’s.

This is intended to model a delta-hedged portfolio with negative Gamma.

A good low-variance definition for X is

X = (τ1/2Y + (1−τ)1/2Ỹ2)
2

− 1
2

(
(τ1/2Ỹ1 + (1−τ)1/2Ỹ2)

2 + (−τ1/2Ỹ1 + (1−τ)1/2Ỹ2)
2
)
− Lη

The figures include both non-adaptive results, and adaptive using r=1.5.
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Model problem: η=0.025
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Numerical Results
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Numerical Results
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Numerical Results
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Numerical Results
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VaR and CVaR

VaR loss Lη is defined implicitly by P[L>Lη] = η.

This can be estimated by a stochastic root-finding algorithm, with the
acceptable error ε being steadily reduced during the iteration.

Given an estimate L̃η, Rockafellar & Uryasev (2000) show that CVaR is

E[ L | L>Lη] = Lη + η−1
E[max(0, L−Lη)]

= min
x

{
x + η−1

E[max(0, L−x)]
}

= L̃η + η−1
E[max(0, L−L̃η)] + O(L̃η−Lη)

2

For ε RMS error, first estimate L̃η to accuracy O(ε1/2) at cost o(ε−2).

Then estimate η−1
E[max(0, L−L̃η)] to accuracy ε using MLMC + uniform

sampling. We prove that Vℓ = O(2−3ℓ/2) so complexity is O(ε−2).
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Real portfolios

In a real delta-hedged portfolio with K products, X can be expressed as a
sum of delta-hedged products

X =

K∑

k=1

Xk

We now have 3 choices:

1 simulate all underlying assets to compute all Xk , and hence X

2 independently simulate underlying assets needed for each Xk , then
sum to get X — more costly but lower variance (Gordy & Juneja)

3 replace X by Xk/pk with k selected randomly with probability pk so

E[Xk/pk ] =
K∑

k′=1

P[k=k ′] E[Xk′/pk′ ] =
K∑

k′=1

E[Xk′ ] = E[X ]

This makes the overall cost independent of the number of products K .
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Real portfolios

We have implemented this for a synthetic portfolio with a delta-neutral
mix of Black-Scholes put and call options with various strikes and
maturities, all short to give negative Gamma.

The nominal values of each were similar so uniform sub-sampling was
used. In future work, we’ll make pk dependent on the nominal values or
individual Gammas.

We’ve also incorporated an MLMC treatment of time discretisation of
underlying SDEs.

Future work will also address the fact that options are priced in different
ways with different costs (closed form, semi-analytic, MC, finite
differences)

Ideally, we would like to collaborate with banks on this work, so that our
research is relevant to industry challenges / needs.
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Conclusions

VaR/CVaR is a great new application area for MLMC

so far, banks haven’t been very interested in MLMC, perhaps
because the savings have been relatively modest in practice
– with VaR/CVaR I think the savings may be quite large

two keys to performance:
◮ MLMC approach with more inner samples on “finer” levels
◮ adaptive number of inner samples (for VaR)

sub-sampling the portfolio will offer significant additional savings
for large portfolios

Webpages:
http://people.maths.ox.ac.uk/gilesm/mlmc.html

http://people.maths.ox.ac.uk/gilesm/slides.html

http://people.maths.ox.ac.uk/gilesm/mlmc community.html
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