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Generic Viewpoint

Want to estimate the value of an integral on an extremely
high-dimensional hypercube:

I[f ] =

∫

(0,1)d

f(x) dx

My particular motivation comes from finance, with each
component of x being mapped to an independent Gaussian
variable in the path simulation – d can be huge.

Same idea is also applicable in other contexts,
e.g. elliptic PDEs with stochastic diffusivity.
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Generic Viewpoint

Suppose f(x) has a decomposition:

f(x) =
L∑

l=0

fl(xl),

where

xl is first Sl elements of x, with Sl increasing (rapidly?)
with l, and SL ≡ d

‖fl‖2 decreases (rapidly?) with l

cost of evaluating fl increases (rapidly?) with l

In my application, cost ∼ Sl ∼ 2l and ‖fl‖2 ∼ 2−l.
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Generic Viewpoint

It follows immediately that

I[f ] =
L∑

l=0

I[fl],

where I[fl] is a low-dimensional integral for small l.

The idea now is to estimate each of these integrals
independently, using a (quasi-) Monte Carlo approach
with Nl samples on level l:

I[fl] ≈ N−1
l

Nl∑

n=1

fl(x
(n)
l )
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Generic Viewpoint

Variance of combined estimator is

L∑

l=0

N−1
l Vl

and its computational cost is

L∑

l=0

Nl Cl

so variance is minimised for fixed cost by choosing

Nl ∝
√

Vl/Cl
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Generic Viewpoint

To make the r.m.s. error equal to ε requires

Nl = ε−2
√

Vl/Cl

L∑

m=0

√
Vm Cm

and hence the total cost is

ε−2

(
L∑

l=0

√
Vl Cl

)2

.

If Vl decreases faster than Cl increases, then the total cost
is approximately ε−2 V0 C0 compared to ε−2 V [f ]CL for
standard Monte Carlo.
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Finance Application

Stochastic differential equation with general drift and
volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

We want to compute the expected value of an option
dependent on the final state: P = f(S(T ))

The level l approximation P̂l uses 2l timesteps, and we have
the trivial identity

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]
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Finance Application

first paper used Euler discretisation: O(ε−2(log ε)2)
complexity to achieve ε r.m.s. error for Lipschitz payoffs
– worse for other payoffs.

second paper used improved Milstein discretisation for
O(ε−2) complexity for a range of payoffs, including
simple discontinuous payoffs

collaboration with Ian Sloan, Frances Kuo & Ben
Waterhouse combined multilevel with QMC for even
greater savings (roughly O(ε−1.5) for Lipschitz payoffs)

collaboration with Des Higham and Xuerong Mao led to
a priori numerical analysis of complexity for other payoffs
in first paper
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Discontinuous Payoffs

Why are discontinuous payoffs a problem?

If coarse and fine paths are close
∥∥∥Ŝl−1 − Ŝl

∥∥∥ = O(hl),

then for Lipschitz payoffs this implies that

P̂l−1 − P̂l = O(hl)

whereas for discontinuous payoffs can have

P̂l−1 − P̂l = O(1)
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Generic Viewpoint

Suppose we want to estimate

I[f ] =

∫

(0,1)2
f(x1, x2) dx1 dx2

with f(x1, x2) = H
(
x1+δ g(x1, x2)−α

)
, 0 < α < 1, δ � 1
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Generic Viewpoint

We can split f(x1, x2) into the sum of two parts

f(x1, x2) = f1(x1) + f2(x1, x2)

where
f1(x1) = H (x1−α)

and

f2(x1, x2) = H (x1+δ g(x1, x2)−α) − H (x1−α)

The problem is that f2(x1, x2) is zero in most of the domain,
and equals ±1 in a narrow strip of width O(δ) around x1 =α.
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Generic Viewpoint
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f1(x1) + f2(x1, x2)

Variance is O(δ), compared to the O(δ2) one gets when
f2(x1, x2) = O(δ).
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Generic Viewpoint

What can one do about this?

Use a change of variables

(x1, x2) −→ (x̃1, x̃2)

to map the unit square onto itself such that

H (x1 + δ g(x1, x2) − α) = H (x̃1 − α)

(I think this is similar to Lighthill’s method of “strained
coordinates”)
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Generic Viewpoint

We then get
∫

(0,1)2
f2(x1, x2) dx1 dx2

=

∫

(0,1)2
H (x̃1−α) − H (x1−α) dx1 dx2

=

∫

(0,1)2
H (x̃1−α) J(x̃1, x̃2) dx̃1 dx̃2 −

∫

(0,1)2
H (x1−α) dx1 dx2

=

∫

(0,1)2

(
J(x1, x2) − 1

)
H (x1−α) dx1 dx2

where J(x̃1, x̃2) =
∂(x1, x2)

∂(x̃1, x̃2)
is the Jacobian of the mapping

from (x̃1, x̃2) to (x1, x2)
Multilevel MC – p. 14/22



Generic Viewpoint

Since
J(x1, x2) − 1 = O(δ)

we now get an integrand with an O(δ2) variance, and it’s
also much more suitable for QMC integration.

This maybe seems a nice idea in principle, but impossible
in practice.

Surprisingly (?) it is in fact possible for multilevel Monte
Carlo path simulations.

Multilevel MC – p. 15/22



Change of measure

The coordinate transformation corresponds to a change of
measure in probability theory.

Given non-zero probability distributions pA(x), pB(x) then

EA[f(x)] =

∫
f(x) pA(x) dx

=

∫
f(x)

pA(x)

pB(x)
pB(x) dx = EB[r(x)f(x)]

where r(x) =
pA(x)

pB(x)
is the Radon-Nikodym derivative due to

the change in measure (similar to the Jacobian in the
coordinate transformation).

Multilevel MC – p. 16/22



Multilevel MC

In the multilevel MC approach we

sample the underlying Brownian path up to one
timestep before the end

consider all possible Brownian increments for the final
timestep

obtain a narrow Normal distribution for the final path
values

If (µA, σA) and (µB, σB) are the mean and std. deviation for
the coarse and fine paths, then σA, σB = O(

√
h) and

µA − µB = O(h)

σA − σB = O(h)
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Multilevel MC

The payoff difference is then

EA[f(S)] − EB[f(S)] = EB[(r(S) − 1) f(S)]

where

r(S) =
pA(S)

pB(S)

is the ratio of two Normal probability densities, and
asymptotic analysis reveals that

r(S) − 1 = O(
√

h)
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Multilevel MC

A further refinement is that because

EB[r(S)] = EA[1] = 1 =⇒ EB[r(S) − 1] = 0,

we have

EB

[
(r(S) − 1) f(S)

]
= EB

[
(r(S) − 1) (f(S) − f(µB))

]

This reduces the variance for paths which are not close to
the discontinuity, so that overall the variance is O(h3/2).

This final expectation is now estimated by Monte Carlo
simulation using a few Z samples for each path.
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Multilevel MC

The O(h3/2) variance is sufficient to achieve an O(ε−2)
complexity for r.m.s. error ε using the multilevel scheme.

However, this relies on the stated assumption

µA − µB = O(h).

The Milstein discretisation gives this under certain
conditions, but in general it is necessary to approximate
Lévy areas and I think the complexity degrades slightly to
o(ε−2−δ) for all δ > 0.
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Final words

The theory is developed – now need to implement it!

This is a multivariate generalisation of a technique I have
used before, based on an idea due to Paul Glasserman,
for simple cases in which EA[f(S)], EB[f(S)] can be
evaluated analytically.

Since that earlier technique worked well, I expect this
“vibrato” generalisation to work as well.

Perhaps similar ideas can be used more generally for
QMC integration of discontinuous functions?
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