Analysis of multilevel Milstein scheme without Lévy areas

Mike Giles

Lukas Szpruch

mike.giles,lukas.szpruch@maths.ox.ac.uk

Oxford University Mathematical Institute
Oxford-Man Institute of Quantitative Finance

FoCM, Budapest, July 8-10, 2011

Outline

- Milstein discretisation and multilevel method
- Clark & Cameron model problem
- antithetic treatment and analysis
- generalisation

Milstein discretisation

The Milstein discretisation of the SDE

$$dS_i(t) = a_i(S) dt + \sum_j b_{ij}(S) dW_j(t), \quad 0 < t < T$$

is

$$\widehat{S}_{i,n+1} = \widehat{S}_{i,n} + a_i h + \sum_{j} b_{ij} \Delta W_{j,n}$$

$$+ \frac{1}{2} \sum_{j,k,l} \frac{\partial b_{ij}}{\partial S_l} b_{lk} \left(\Delta W_{j,n} \Delta W_{k,n} - \Omega_{jk} h - A_{jk,n} \right)$$

where Ω_{jk} is the correlation matrix, and the Lévy areas are

$$A_{jk,n} = \int_{t_n}^{t_{n+1}} (W_j(t) - W_j(t_n)) dW_k - (W_k(t) - W_k(t_n)) dW_j$$

Standard Multilevel approach

To estimate $\mathbb{E}[P]$, where the payoff $P = f(S_T)$ can be approximated by \widehat{P}_{ℓ} using 2^{ℓ} uniform timesteps, we use

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{\ell=1}^L \mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}].$$

 $\mathbb{E}[\widehat{P}_{\ell}-\widehat{P}_{\ell-1}]$ is estimated using N_{ℓ} simulations with same W(t) for both \widehat{P}_{ℓ} and $\widehat{P}_{\ell-1}$,

$$\widehat{Y}_{\ell} = N_{\ell}^{-1} \sum_{i=1}^{N_{\ell}} \left(\widehat{P}_{\ell}^{(i)} - \widehat{P}_{\ell-1}^{(i)} \right)$$

Because of strong convergence, on finer levels $\mathbb{V}[\widehat{P}_{\ell}-\widehat{P}_{\ell-1}]$ is small and so few paths are required.

Modified Multilevel approach

Sometimes better to use a different approximation for \widehat{P}_{ℓ} in $\mathbb{E}[\widehat{P}_{\ell}-\widehat{P}_{\ell-1}]$ and $\mathbb{E}[\widehat{P}_{\ell+1}-\widehat{P}_{\ell}]$. The decomposition

$$\mathbb{E}[\widehat{P}_L^f] = \mathbb{E}[\widehat{P}_0^f] + \sum_{\ell=1}^L \mathbb{E}[\widehat{P}_\ell^f - \widehat{P}_{\ell-1}^c]$$

is still a valid telescoping sum provided $\mathbb{E}[\widehat{P}_{\ell}^f] = \mathbb{E}[\widehat{P}_{\ell}^c]$.

In this work, we use $\widehat{P}_{\ell}^{c}=f(\widehat{S}_{\ell}^{c})$ and

$$\widehat{P}_{\ell}^{f} = \frac{1}{2} \left(f(\widehat{S}_{\ell}^{f1}) + f(\widehat{S}_{\ell}^{f2}) \right)$$

where f1 is the fine path, and f2 is an "antithetic twin".

In their 1980 paper, Clark & Cameron considered the model problem:

$$dX = dW_1$$
$$dY = X dW_2$$

for independent Brownian paths W_1, W_2 and X(0) = Y(0) = 0.

This can be integrated to give $X(t) = W_1(t)$ and

$$Y(t) = \int_0^t W_1(s) dW_2(s)$$

$$= \frac{1}{2} W_1(t) W_2(t) + \frac{1}{2} \int_0^t W_1(s) dW_2(s) - W_2(s) dW_1(s)$$

If we consider a set of times $t_n = n h$, then we get

$$Y(t_{n+1}) = Y(t_n) + X(t_n) \Delta W_{2,n} + \frac{1}{2} \Delta W_{1,n} \Delta W_{2,n} + \frac{1}{2} A_n,$$

where $\Delta W_{j,n} \equiv W_j(t_{n+1}) - W_j(t_n)$ and

$$A_n = \int_{t_n}^{t_{n+1}} W_1(s) dW_2(s) - W_2(s) dW_1(s).$$

This matches exactly the Milstein discretisation – i.e. the Milstein discretisation is exact for this problem

Summing over n gives

$$Y(T) = \sum_{n} \left(X(t_n) \, \Delta W_{2,n} + \frac{1}{2} \Delta W_{1,n} \, \Delta W_{2,n} + \frac{1}{2} A_n \right)$$

Key point of their paper: conditional on ΔW increments,

Hence, any numerical discretisation which uses only Brownian increments cannot in general achieve better than $O(\sqrt{h})$ strong convergence.

If A_n is not known, best approximation sets it to zero, — equivalent to a piecewise linear interpolation of the driving Brownian path.

Coarse and fine paths use different interpolations

$$Y^f - Y^c = \sum_n A_n \Longrightarrow \mathbb{V}[Y^f - Y^c] = O(h)$$

Fine path "antithetic twin" swaps Brownian increments for odd and even timesteps – average of two piecewise linear Brownian paths matches coarse one

$$A_n^{f2} = -A_n^{f1} \implies (Y^{f2} - Y^c) = -(Y^{f1} - Y^c)$$

Hence
$$\frac{1}{2}(Y^{f1}+Y^{f2})=Y^c$$

If the payoff function f(X,Y) is twice-differentiable,

$$\frac{1}{2} \left(f(X, Y^{f1}) + f(X, Y^{f2}) \right) - f(X, Y^c) = \frac{1}{2} \frac{\partial^2 f}{\partial Y^2} (Y^{f1} - Y^c)^2$$
$$= O(h)$$

Hence, $\mathbb{V}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}] = O(h^2)$ – much better than before.

If f(X,Y) is Lipschitz and twice-differentiable except on K, and (X,Y^c) is within $O(\sqrt{h})$ of K with probability $O(\sqrt{h})$, then a local analysis gives $\mathbb{V}[\widehat{P}_\ell - \widehat{P}_{\ell-1}] = O(h^{3/2})$

Generalisation

For the general SDE

$$dS_i(t) = a_i(S) dt + \sum_j b_{ij}(S) dW_j(t), \quad 0 < t < T$$

we define the driving Brownian paths in the same way:

- fine path $W^{f1}(t)$ is piecewise linear interpolation with interval $\hbar/2$
- fine path $W^{f2}(t)$ is "antithetic twin", swapping odd and even increments
- coarse path $W^c(t)$ is piecewise linear interpolation with interval h, and also average of the two fine paths

Generalisation

If we define differences $\widehat{D}_n^f \equiv \widehat{S}_n^f - \widehat{S}_n^c$, then \widehat{D}_n^{f1} and \widehat{D}_n^{f2} are both $O(\sqrt{h})$, as before.

However, the average $\widehat{D}_n \equiv \frac{1}{2} \left(\widehat{D}_n^{f1} + \widehat{D}_n^{f2} \right)$ is no longer zero and instead satisfies a recurrence equation:

$$\widehat{D}_{i,n+1} = \widehat{D}_{i,n} + \sum_{j} \frac{\partial a_i}{\partial S_j} \widehat{D}_{j,n} h + \sum_{j,k} \frac{\partial b_{ij}}{\partial S_k} \widehat{D}_{k,n} \Delta W_{j,n} + R_n$$

The "remainder" R_n has properties

$$\mathbb{E}[R_n] = O[h^2], \quad \mathbb{V}[R_n] = O[h^3],$$

and hence we eventually obtain $\widehat{D}_n = O(h)$.

Generalisation

If the payoff function $f(S_T)$ is twice differentiable then

$$\frac{1}{2} \left(f(\widehat{S}^{f1}) + f(\widehat{S}^{f2}) \right) - f(\widehat{S}^{c})$$

$$\approx \frac{1}{2} \left(\widehat{D}^{f1} + \widehat{D}^{f2} \right) \cdot \nabla f(\widehat{S}^{c})$$

$$+ \frac{1}{4} \left((\widehat{D}^{f1})^{T} H_{f} \widehat{D}^{f1} + (\widehat{D}^{f2})^{T} H_{f} \widehat{D}^{f2} \right)$$

$$= O(h)$$

where $H_f \equiv \frac{\partial^2 f}{\partial S^2}$ is the Hessian matrix for f.

Hence, again get $\mathbb{V}[\widehat{P}_{\ell}-\widehat{P}_{\ell-1}]=O(h^2)$, and it becomes $O(h^{3/2})$ when f(S) is not twice-differentiable everywhere.

Conclusions

- MCQMC10 presentation gave numerical results showing effectiveness for Heston stochastic volatility model
- also gave an asymptotic analysis explanation
- new numerical analysis supports the observations and previous explanation
- further analysis treats case in which we approximate the Lévy areas by sub-sampling the Brownian path within each timestep – needed for discontinuous payoffs