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Generic Problem

Stochastic differential equation with general drift and
volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

For simple European options, we want to estimate the
expected value of an option dependent on the terminal state

P = f(S(T ))

with a uniform Lipschitz bound,

|f(U) − f(V )| ≤ c ‖U − V ‖ , ∀ U, V.
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Standard MC Approach

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn

Simplest estimator for expected payoff is an average of N
independent path simulations:

Ŷ = N−1
N∑

i=1

f(Ŝ
(i)
T/h

)

weak convergence – O(h) error in expected payoff

strong convergence – O(h1/2) error in individual paths
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Standard MC Approach

Mean Square Error is O
(
N−1 + h2

)

first term comes from variance of estimator

second term comes from bias due to weak convergence

To make this O(ε2) requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this cost to O
(
ε−2(log ε)2

)
, by combining

simulations with different numbers of timesteps – same
accuracy as finest calculations, but at a much lower
computational cost.
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Other work

Many variance reduction techniques to greatly reduce
the cost, but without changing the order

Richardson extrapolation improves the weak
convergence and hence the order

Multilevel method is a generalisation of two-level control
variate method of Kebaier (2005), and similar to ideas
of Speight (2009)

Also related to multilevel parametric integration by
Heinrich (2001)
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Multilevel MC Approach

Consider multiple sets of simulations with different
timesteps hl = 2−l T, l = 0, 1, . . . , L, and payoff P̂l

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key point: approximate E[P̂l−P̂l−1] using Nl simulations
with P̂l and P̂l−1 obtained using same Brownian path.

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
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Multilevel MC Approach

Discrete Brownian path at different levels
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Multilevel MC Approach

each level adds more detail to Brownian path and
reduces the error in the numerical integration

E[P̂l−P̂l−1] reflects impact of that extra detail
on the payoff

different timescales handled by different levels
– similar to different wavelengths being handled
by different grids in multigrid solvers for iterative
solution of PDEs
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Multilevel MC Approach

Using independent paths for each level, the variance of the
combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡ V[P̂l−P̂l−1],

and the computational cost is proportional to
L∑

l=0

Nl h
−1
l .

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.

The constant of proportionality can be chosen so that the
combined variance is O(ε2).
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Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff function

V[P̂l−P ] = O(hl) =⇒ V[P̂l−P̂l−1] = O(hl)

and the optimal Nl is asymptotically proportional to hl.

To make the combined variance O(ε2) requires

Nl = O(ε−2Lhl).

To make the bias O(ε) requires

L = log2 ε−1 + O(1) =⇒ hL = O(ε).

Hence, we obtain an O(ε2) MSE for a computational cost
which is O(ε−2L2) = O(ε−2(log ε)2).
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Results

Geometric Brownian motion:

dS = r S dt + σ S dW, 0 < t < T,

T =1, S(0)=100, r=0.05, σ=0.2

European call option with discounted payoff

exp(−rT ) max(S(T )−K, 0)

with strike K =100.
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MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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MLMC Approach

So far, have kept things very simple:

European option

Euler discretisation

single underlying in example

We now generalise it:

arbitrary path-dependent options

arbitrary discretisation

assume certain properties for weak convergence and
variance of multilevel correction

obtain order of cost to achieve r.m.s. accuracy ε

Multilevel Monte Carlo – p. 14/46



MLMC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e.,

and P̂l the discrete approximation using a timestep hl = 2−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo
samples, with computational complexity (cost) Cl, and positive

constants α≥ 1
2 , β, c1, c2, c3 such that

i)
∣∣∣E[P̂l − P ]

∣∣∣ ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l hβ

l

iv) Cl ≤ c3 Nl h
−1
l
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Multilevel MC Approach

then there exists a positive constant c4 such that for any ε<e−1 there
are values L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤






c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.
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Milstein Scheme

The theorem suggests use of Milstein approximation
– better strong convergence, same weak convergence

Generic scalar SDE:

dS(t) = a(S, t) dt + b(S, t) dW (t), 0<t<T.

Milstein scheme:

Ŝn+1 = Ŝn + a h + b ∆Wn + 1
2 b′ b

(
(∆Wn)2 − h

)
.
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Milstein Scheme

In scalar case:

O(h) strong convergence

O(ε−2) complexity for Lipschitz payoffs – trivial

O(ε−2) complexity for more complex cases using
carefully constructed estimators based on Brownian
interpolation or extrapolation

digital, with discontinuous payoff
Asian, based on average
lookback and barrier, based on min/max

This extends naturally to basket options based on a
weighted average of assets linked only through the
correlation in the driving Brownian motion
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Milstein Scheme

Brownian interpolation: within each timestep, model the
behaviour as simple Brownian motion conditional on the
two end-points

Ŝ(t) = Ŝn + λ(t)(Ŝn+1 − Ŝn)

+ bn

(
W (t) − Wn − λ(t)(Wn+1−Wn)

)
,

where

λ(t) =
t − tn

tn+1 − tn

There then exist analytic results for the distribution of the
min/max/average over each timestep, and probability of
crossing a barrier.
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Milstein Scheme

Brownian extrapolation for final timestep:

ŜN = ŜN−1 + aN−1h + bN−1∆WN

Considering all possible ∆WN gives Gaussian distribution,
for which a digital option has a known conditional
expectation – example in Glasserman’s book of payoff
smoothing to allow pathwise calculation of Greeks.

This payoff smoothing can be extended to general
multivariate cases (not just baskets) through a “vibrato”
Monte Carlo technique which is suitable for both efficient
multilevel analysis and the computation of Greeks
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Results

Basket of 5 underlying assets, each GBM with

r = 0.05, T = 1, Si(0) = 100, σ = (0.2, 0.25, 0.3, 0.35, 0.4),

and correlation ρ = 0.25 between each of the driving
Brownian motions.

All options are based on arithmetic average S of 5 assets,
with strike K = 100 (and barrier B = 85).

Multilevel Monte Carlo – p. 21/46



MLMC Results

European call, exp(−rT ) max(S(T ) − K, 0)
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MLMC Results

European call, exp(−rT ) max(S(T ) − K, 0)
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MLMC Results

Asian option, exp(−rT ) max(T−1
∫ T
0 S(t) dt − K, 0)
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MLMC Results

Asian option, exp(−rT ) max(T−1
∫ T
0 S(t) dt − K, 0)
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MLMC Results

Lookback option, exp(−rT ) (S(T ) − min0<t<T S(t))
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MLMC Results

Lookback option, exp(−rT ) (S(T ) − min0<t<T S(t))
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MLMC Results

Digital option, 100 exp(−rT )1S(T )>K
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MLMC Results

Digital option, 100 exp(−rT )1S(T )>K
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MLMC Results

Barrier option, exp(−rT ) max(S(T )−K, 0) 1min0<t<T S(t)>B
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MLMC Results

Barrier option, exp(−rT ) max(S(T )−K, 0) 1min0<t<T S(t)>B
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Milstein scheme

The Milstein scheme for general multi-dimensional SDEs is
significantly more difficult because it involves Lévy areas
defined as

Ajk,n =

∫ tn+1

tn

(Wj(t)−Wj(tn)) dWk − (Wk(t)−Wk(tn)) dWj .

O(h) strong convergence if Lévy areas are simulated
correctly – expensive

O(h1/2) strong convergence in general if Lévy areas are
omitted, except if a certain commutativity condition is
satisfied (useful for a number of real cases)

Lipschitz payoffs can be handled well using antithetic
variables
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Results

Heston stochastic volatility model:

dS = r S dt +
√

v S dW1, 0 < t < T,

dv = κ(θ−v) + ξ
√

v dW2, 0 < t < T,

with T =1, S(0)=100, r=0.05, θ=0.04, ξ=0.25
and differing values of κ.

European call option with discounted payoff

exp(−rT ) max(S(T )−K, 0)

with strike K =100.
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MLMC Results

Heston: European call, κθ/ξ2 = 2/3
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MLMC Results

Heston: European call, κθ/ξ2 = 2/3
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MLMC Results

Heston: European call, κθ/ξ2 = 1/3
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MLMC Results

Heston: European call, κθ/ξ2 = 1/3
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Heston model

How can harder cases be handled better?

could combine multilevel with adaptive time-stepping
(Raul Tempone and Anders Szepessy)

could use Glasserman and Kim’s efficient
implementation of Broadie and Kaya’s exact simulation
method

multilevel unnecessary for European options, but
would give benefits for path-dependent options
could also use multilevel to handle a local vol surface
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SPDE application

Currently working with Christoph Reisinger on an
SPDE application which arises in CDO modelling
(Bush, Hambly, Haworth & Reisinger)

dp = −µ
∂p

∂x
dt +

1

2

∂2p

∂x2
dt +

√
ρ

∂p

∂x
dW

with absorbing boundary p(0, t) = 0

derived in limit as number of firms −→ ∞
x is distance to default

p(x, t) is probability density function

dW term corresponds to systemic risk

∂2p/∂x2 comes from idiosyncratic risk
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SPDE application

numerical discretisation combines Milstein
time-marching with central difference approximations

coarsest level of approximation uses 1 timestep per
quarter, and 10 spatial points

each finer level uses four times as many timesteps,
and twice as many spatial points – ratio is due to
numerical stability constraints
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MLMC Results

Fractional loss on equity tranche of a 5-year CDO:
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MLMC Results

Fractional loss on equity tranche of a 5-year CDO:
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Other work

Quasi-Monte Carlo:
uses deterministic sample “points” to achieve an
error which is nearly O(N−1) in the best cases
little applicable theory due to lack of smoothness,
but great results using rank-1 lattice rules developed
by Ian Sloan’s group at UNSW

implementation on GPUs

up to 240 cores per GPU, each equivalent to 10-50%
of an Intel core for single precision calculations
ideally suited for trivially-parallel Monte Carlo
applications
could use multilevel to correct for difference between
single and double precision?
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Future work

“vibrato” technique for digital options:
current treatment uses conditional expectation one
timestep before maturity, which smooths the payoff
the “vibrato” idea generalises this to cases without a
known conditional expectation

Greeks:
the multilevel approach should work well, combining
pathwise sensitivities with “vibrato” treatment to cope
with lack of smoothness
can also incorporate the adjoint approach developed
with Paul Glasserman – more efficient when many
Greeks are wanted for one payoff function
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Future work

variance-gamma, CGMY and other processes:
given exact simulation techniques, multilevel benefit
is in treating path-dependent options
could also handle addition of a local vol surface

American options – the next big challenge:
instead of Longstaff-Schwartz approach, view it as
an exercise boundary optimisation problem, and use
multilevel optimisation?
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Conclusions

Multilevel Monte Carlo method has already achieved

improved order of complexity

significant benefits for model problems

but there is still a lot more research to be done, both
theoretical and applied.

M.B. Giles, “Multilevel Monte Carlo path simulation”,
Operations Research, 56(3):607-617, 2008.

M.B. Giles. “Improved multilevel Monte Carlo convergence
using the Milstein scheme”, pp. 343-358 in Monte Carlo
and Quasi-Monte Carlo Methods 2006, Springer, 2007.

Papers are available from:
www.maths.ox.ac.uk/∼gilesm/finance.html
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