Mike Giles 1

Eike Müller Rob Scheichl Tony Shardlow <sup>2</sup>

Kavita Ramanan <sup>3</sup>

<sup>1</sup>Mathematical Institute, University of Oxford

<sup>2</sup>Dept. of Mathematical Sciences, University of Bath

<sup>3</sup>Division of Applied Mathematics, Brown University

MCFG internal seminar

March 4, 2016



### Outline

- multilevel Monte Carlo
  - current research interests
- 1D particles with mass
  - standard treatment
  - expanded domain
  - new treatment
  - results
- 1D massless particles
  - new treatment
  - results
  - financial modelling example
- multi-dimensional generalisations

2 / 31

#### Multilevel Monte Carlo

MLMC is based on the telescoping sum

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{\ell=1}^L \mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}]$$

where  $\widehat{P}_{\ell}$  represents an approximation of some output P on level  $\ell$ .

In SDE applications with uniform timestep  $h_\ell=2^{-\ell}\,h_0$ , if the weak convergence is

$$\mathbb{E}[\widehat{P}_{\ell}-P]=O(2^{-\alpha\,\ell}),$$

and  $\widehat{Y}_\ell$  is an unbiased estimator for  $\mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}]$ , based on  $N_\ell$  samples, with variance

$$\mathbb{V}[\widehat{Y}_{\ell}] = O(N_{\ell}^{-1} 2^{-\beta \ell}),$$

and expected cost

$$\mathbb{E}[C_{\ell}] = O(N_{\ell} 2^{\gamma \ell}), \quad \dots$$



#### Multilevel Monte Carlo

... then the finest level L and the number of samples  $N_{\ell}$  on each level can be chosen to achieve an RMS error of  $\varepsilon$  at an expected cost

$$C = \left\{ \begin{array}{ll} O\left(\varepsilon^{-2}\right), & \beta > \gamma, \\ \\ O\left(\varepsilon^{-2}(\log \varepsilon)^2\right), & \beta = \gamma, \\ \\ O\left(\varepsilon^{-2-(\gamma-\beta)/\alpha}\right), & 0 < \beta < \gamma. \end{array} \right.$$

#### Multilevel Monte Carlo

The standard estimator for SDE applications is

$$\widehat{Y}_{\ell} = N_{\ell}^{-1} \sum_{n=0}^{N_{\ell}} \left( \widehat{P}_{\ell}(W^{(n)}) - \widehat{P}_{\ell-1}(W^{(n)}) \right)$$

using the same Brownian motion  $W^{(n)}$  for the  $n^{th}$  sample on the fine and coarse levels.

However, there is some freedom in how we construct the coupling provided  $\widehat{Y}_\ell$  is an unbiased estimator for  $\mathbb{E}[\widehat{P}_\ell - \widehat{P}_{\ell-1}]$ .

Also, uniform timestepping is not required – it is fairly straightforward to implement MLMC using non-nested adaptive timestepping.

(G, Lester, Whittle: MCQMC14 proceedings)



### MLMC - current research

- adaptive timestepping for SDEs with non-globally Lipschitz drift (Wei Fang – talk next term?)
- long-chain molecules in solution (Endre Süli)
- stochastic biochemical reactions (Ruth Baker)
- Langevin dynamics for Big Data machine learning (Sebastian Vollmer)
- Stopped diffusions Feynman-Kac (Francisco Bernal IST Lisbon)
- MLMC + QMC (Frances Kuo, Ian Sloan UNSW)
- CDF estimation (Klaus Ritter TU Kaiserslautern)
- VaR (Ralf Korn TU Kaiserslautern)

Position  $x_t$  and velocity  $u_t$ , subject to deterministic and stochastic forcing:

$$du_t = a(x_t, u_t, t) dt + b(x_t, t) dw_t$$
  
$$dx_t = u_t dt$$

Domain  $x \ge 0$ , with reflection so that when it hits x = 0 at time  $\tau$  then the velocity is reflected, so

$$u_{\tau^+} = -u_{\tau^-}.$$

Euler-Maruyama treatment with uniform timestep *h*:

$$\widehat{u}_{n+1} = s_n (\widehat{u}_n + a(\widehat{x}_n, \widehat{u}_n, t) h + b(\widehat{x}_n, t_n) \Delta w_n) 
\widehat{x}_{n+1} = s_n (\widehat{x}_n + \widehat{u}_n h)$$

with  $s_n = \pm 1$  chosen so that  $\widehat{x}_{n+1} \geq 0$ .

Problem: only  $O(h^{1/2})$  strong convergence

Reason: doesn't account for reflection occurring part-way through a timestep.

Idea: if A(X, U, t), B(X, t) are sufficiently smooth, get O(h) convergence using an extended domain:

$$dU_t = A(X_t, U_t, t) dt + B(X_t, t) dW_t$$
  
$$dX_t = U_t dt,$$

with

$$A(X, U, t) = \begin{cases} a(X, U, t), & X \ge 0 \\ -a(-X, -U, t), & X < 0 \end{cases}$$

$$B(X, t) = \begin{cases} b(X, t), & X \ge 0 \\ b(-X, t), & X < 0 \end{cases}$$

and then take x = |X| as output.



Why does that give O(h) strong convergence, but the original doesn't?

If we define

$$\left(\begin{array}{c} u_t \\ x_t \end{array}\right) = S(X_t) \ \left(\begin{array}{c} U_t \\ X_t \end{array}\right),$$

where  $S(X) \equiv \operatorname{sign}(X)$ , then  $u_t, x_t$  satisfy

$$du_t = a(x_t, u_t, t) dt + b(x_t, t) S(X_t) dW_t$$
  
$$dx_t = u_t dt,$$

By setting  $dw_t = S(X_t) dW_t$ , we see that this is equivalent in distribution to the original model problem.

Note: strong convergence is now at fixed  $W_t$  – not the same as fixed  $w_t$ .

New MLMC treatment:

$$\widehat{u}_{n+1}^{p} = \widehat{u}_{n} + a(\widehat{x}_{n}, \widehat{u}_{n}, t_{n}) h + b(\widehat{x}_{n}, t_{n}) \widehat{s}_{n} \Delta W_{n} 
\widehat{x}_{n+1}^{p} = \widehat{x}_{n} + \widehat{u}_{n} h$$

followed by a correction/reflection step:

$$\begin{array}{rcl} \widehat{u}_{n+1} & = & \mathrm{sign}(\widehat{x}_{n+1}^{\rho}) \ \widehat{u}_{n+1}^{\rho} \\ \widehat{x}_{n+1} & = & \mathrm{sign}(\widehat{x}_{n+1}^{\rho}) \ \widehat{x}_{n+1}^{\rho} \\ \widehat{s}_{n+1} & = & \mathrm{sign}(\widehat{x}_{n+1}^{\rho}) \ \widehat{s}_{n} \end{array}$$

with same Brownian path for coarse and fine levels.

Can show that when a and b are both constant, the coarse and fine paths are identical at coarse timesteps.

Test case 1:

$$x_0 = 0.2$$
,  $u_0 = -0.2$ ,  $a(x, t) = 0$ ,  $b(x, t) = 0.5$ .

in domain  $0 \le x \le 1$ , with reflection at both boundaries.

Output of interest:  $\int_0^1 x_t dt$  approximated by  $\sum_{n=1}^{2^n} h_\ell \widehat{x}_n$ .

Test case 2: changes drift, volatility to

$$a(x, t) = -0.2, b(x, t) = 0.5 + 0.5 x.$$

- standard O(h) numerical analysis no longer applies



$$\mathbb{V}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}] \sim h_{\ell}^2$$

$$\mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}] \sim h_{\ell}$$



$$\mathbb{V}[\widehat{P}_{\ell}\!-\!\widehat{P}_{\ell-1}]\sim h_{\ell}^2$$

$$\mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}] \sim h_{\ell}$$



Without mass, the SDE is

$$dx_t = a(x_t, t) dt + b(x_t, t) dw_t$$

and if the domain is  $x \ge 0$ , particles are prevented from crossing x = 0.

Euler-Maruyama treatment with uniform timestep h:

$$\widehat{x}_{n+1} = \left| \widehat{x}_n + a(\widehat{x}_n, t) h + b(\widehat{x}_n, t_n) \Delta w_n \right|$$

Again only  $O(h^{1/2})$  strong convergence, even when b is uniform

Thinking about the extended domain leads to

$$dx_t = a(x_t, t) dt + b(x_t, t) S(X_t) dW_t$$

where  $S(X) \equiv \operatorname{sign}(X)$ , and hence the numerical approximation is

$$\widehat{x}_{n+1}^p = \widehat{x}_n + a(\widehat{x}_n, t_n) h + b(\widehat{x}_n, t_n) \widehat{s}_n \Delta W_n$$

followed by a correction/reflection step:

$$\widehat{x}_{n+1} = \operatorname{sign}(\widehat{x}_{n+1}^p) \widehat{x}_{n+1}^p$$

$$\widehat{s}_{n+1} = \operatorname{sign}(\widehat{x}_{n+1}^p) \widehat{s}_n$$

with same Brownian path for coarse and fine levels.

Note: if b is not uniform then we need to use first order Milstein approximation to get O(h) strong convergence.



Test case 1:

$$x_0 = 0.2$$
,  $a(x, t) = 0$ ,  $b(x, t) = 0.5$ .

in domain  $0 \le x \le 1$ , with reflection at both boundaries.

Output of interest:  $\int_0^1 x_t dt$  approximated by  $\sum_{n=1}^{2^k} h_\ell \widehat{x}_n$ .

Test case 2: changes drift, volatility to

$$a(x, t) = -0.2, b(x, t) = 0.5 + 0.5 x.$$

- standard O(h) numerical analysis no longer applies



Test case 1:

$$\mathbb{V}[\widehat{P}_{\ell}\!-\!\widehat{P}_{\ell-1}]\sim h_{\ell}^2$$

$$\mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}] \sim h_{\ell}$$



$$\mathbb{V}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}] \sim h_{\ell}^{3/2}$$

$$\mathbb{E}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}] \sim h_{\ell}$$



Why is the variance  $O(h^{3/2})$ ?

#### Ad-hoc explanation:

- O(1) path density near x=0
- $O(h^{1/2})$  movement in each timestep
- ullet  $\Longrightarrow O(h^{1/2})$  probability of crossing boundary in each timestep
- ullet  $\Longrightarrow O(h^{-1/2})$  total crossings per path
- ullet each crossing gives error which is O(h) but has near-zero mean
- if crossings are approximately independent, then

$$\mathbb{V}[\widehat{P}_{\ell} - \widehat{P}_{\ell-1}] = O(h^{-1/2} \times h^2) = O(h^{3/2})$$

Note: in the case with mass, the velocity is O(1), the movement in each timestep is O(h), so the number of crossings is  $O(1) \implies V_{\ell} = O(h^2)$ .

# Financial modelling example

If a central bank acts to keep an exchange rate x within a given range  $[x_1, x_2]$ , this can be modelled by a reflected Ornstein-Uhlenbeck process:

$$dx_t = \kappa (x_{equil} - x_t) dt + \sigma dW_t + dL_{1,t} - dL_{2,t}$$

where  $x_1 < x_{equil} < x_2$  is the equlibrium value,  $L_{1,t}$  is a local time which increases only when  $x_t = x_1$ , and  $L_{2,t}$  is a local time which increases only when  $x_t = x_2$ .

The local times correspond here to the sale/purchase of currency by the central bank to keep the rate within limits. (Yang et al, 2012)

A new MSc project will look at this model, its MLMC implementation, and other financial applications.

### Multi-dimensional extensions

#### In simple cases:

- isotropic volatility
- normal reflection

the 1D ideas extend fairly naturally to multi-dimensional applications

Good for engineering applications (e.g. 3D atmospheric pollutant dispersal)

However, in general multi-dimensional applications are much more complicated.

Joint research with Kavita Ramanan (Brown University)

Motivation comes from network queue analysis, approximated by a reflected Brownian diffusion within a domain D, with SDE

$$dx_t = a(x_t) dt + b dW_t + \nu(x_t) dL_t$$

where  $L_t$  is a local time which increases when  $x_t$  is on the boundary  $\partial D$ .

 $\nu(x_t)$  can be normal to the boundary (pointing inwards), but in other cases it is not and reflection from the boundary includes a tangential motion.

A penalised version is

$$dx_t = a(x_t) dt + b dW_t + \nu(x_t) dL_t$$
  
$$dL_t = -\lambda \min(0, d(x_t)) dt, \quad \lambda \gg 1$$

where  $d(x_t)$  is signed distance to the boundary – negative means outside.

- 3 different numerical treatments:
  - projection: predictor step:

$$\widehat{X}^{(p)} = \widehat{X}_{t_n} + a(\widehat{X}_{t_n}, t_n) h_n + b \Delta W_n,$$

followed by correction step

$$\widehat{X}_{t_{n+1}} = \widehat{X}^{(p)} + \nu(\widehat{X}^{(p)}) \ \Delta \widehat{L}_n,$$

with  $\Delta \widehat{L}_n > 0$  if needed to put  $\widehat{X}_{t_{n+1}}$  on boundary

- reflection: similar but with double the value for  $\Delta \widehat{L}_n$  can give improved weak convergence
- penalised: Euler-Maruyama approximation of penalised SDE



#### Concern:

- because b is uniform, Euler-Maruyama method corresponds to first order Milstein scheme, suggesting an O(h) strong error
- however, all treatments of boundary reflection lead to a strong error which is  $O(h^{1/2})$  this is based primarily on empirical evidence, with only limited supporting theory

#### Idea:

ullet use adaptive timesteps, with level  $\ell$  timestep given by

$$\max\left(2^{-2\ell}h_0, \min\left(2^{-\ell}h_0, (d/((\ell+3)\|b\|_2)^2\right)\right).$$

based on distance d to boundary.

This max-min definition leads to 3 zones:

- a boundary zone where  $h=2^{-2\ell}h_0$
- an interior zone where  $h=2^{-\ell}h_0$
- ullet an intermediate zone where  $(\ell+3)\sqrt{h}\|b\|_2=d$

As  $\ell \to \infty$ , there is a very high probability that no reflections take place from the interior or intermediate zones.

- boundary error is  $O(\sqrt{2^{-2\ell}h_0}\ )=O(2^{-\ell})$
- interior error is  $O(2^{-\ell}h_0) = O(2^{-\ell})$
- ullet overall, strong error is  $O(2^{-\ell}) \implies \mathsf{MLMC}$  variance  $= O(2^{-2\ell})$ .

#### Current theoretical analysis:

- if strong error is  $O(\sqrt{h})$  for uniform timestep then the MLMC variance is  $O(2^{-2\ell})$  for Lipschitz functionals.
- the expected cost is  $o(2^{(1+\delta)\ell})$  for any  $0<\delta\ll 1$
- regarding MLMC theory, this gives  $\beta=2, \gamma\approx 1$ , so the complexity is  $O(\varepsilon^{-2})$  for  $\varepsilon$  r.m.s. error

#### Numerical analysis challenge:

ullet prove that the strong error is  $O(\sqrt{h})$  for uniform timestep with oblique reflections, preferably for generalised penalisation method for polygonal boundaries

### Simple test case:

- 3D Brownian motion in a unit ball
- normal reflection at the boundary
- $x_0 = 0$
- aim is to estimate  $\mathbb{E}[\|x\|_2^2]$  at time t=1.
- implemented with both projection and penalisation schemes

Projection method:



Penalisation method:



#### Conclusions

- simple reflection "trick" improves the MLMC variance for 1D reflected diffusions, for particles with or without mass
- the extension to multiple dimensions should work in simple cases, but not in more general cases
- more difficult cases can use adaptive timestepping, and we're making progress on the numerical analysis
- very keen to hear about new financial applications