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Multilevel Monte Carlo

MLMC is based on the telescoping sum

E[P̂L] = E[P̂0] +
L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

where P̂ℓ represents an approximation of some output P on level ℓ.

In SDE applications with uniform timestep hℓ = 2−ℓ
h0, if the

weak convergence is
E[P̂ℓ − P ] = O(2−α ℓ),

and Ŷℓ is an unbiased estimator for E[P̂ℓ−P̂ℓ−1], based on Nℓ samples,
with variance

V[Ŷℓ] = O(N−1
ℓ 2−β ℓ),

and expected cost
E[Cℓ] = O(Nℓ 2

γ ℓ), . . .
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Multilevel Monte Carlo

. . . then the finest level L and the number of samples Nℓ on each level
can be chosen to achieve an RMS error of ε at an expected cost

C =





O
(
ε−2

)
, β > γ,

O
(
ε−2(log ε)2

)
, β = γ,

O
(
ε−2−(γ−β)/α

)
, 0 < β < γ.
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Multilevel Monte Carlo

The standard estimator for SDE applications is

Ŷℓ = N
−1
ℓ

Nℓ∑

n=0

(
P̂ℓ(W

(n))− P̂ℓ−1(W
(n))

)

using the same Brownian motion W (n) for the nth sample on the fine
and coarse levels.

However, there is some freedom in how we construct the coupling provided
Ŷℓ is an unbiased estimator for E[P̂ℓ−P̂ℓ−1].

Also, uniform timestepping is not required – it is fairly straightforward
to implement MLMC using non-nested adaptive timestepping.

(G, Lester, Whittle: MCQMC14 proceedings)
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MLMC – current research

adaptive timestepping for SDEs with non-globally Lipschitz drift
(Wei Fang – talk next term?)

long-chain molecules in solution (Endre Süli)

stochastic biochemical reactions (Ruth Baker)

Langevin dynamics for Big Data machine learning (Sebastian Vollmer)

Stopped diffusions – Feynman-Kac (Francisco Bernal – IST Lisbon)

MLMC + QMC (Frances Kuo, Ian Sloan – UNSW)

CDF estimation (Klaus Ritter – TU Kaiserslautern)

VaR (Ralf Korn – TU Kaiserslautern)
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1D particles with mass

Position xt and velocity ut , subject to deterministic and stochastic forcing:

dut = a(xt , ut , t)dt + b(xt , t)dwt

dxt = ut dt

Domain x ≥ 0, with reflection so that when it hits x=0 at time τ then
the velocity is reflected, so

uτ+ = − uτ− .
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1D particles with mass

Euler-Maruyama treatment with uniform timestep h:

ûn+1 = sn (ûn + a(x̂n, ûn, t) h + b(x̂n, tn)∆wn)

x̂n+1 = sn (x̂n + ûn h)

with sn = ±1 chosen so that x̂n+1 ≥ 0.

Problem: only O(h1/2) strong convergence

Reason: doesn’t account for reflection occurring part-way through a
timestep.
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1D particles with mass

Idea: if A(X ,U, t), B(X , t) are sufficiently smooth, get O(h) convergence
using an extended domain:

dUt = A(Xt ,Ut , t)dt + B(Xt , t)dWt

dXt = Ut dt,

with

A(X ,U, t) =

{
a(X ,U, t), X ≥ 0

−a(−X ,−U, t), X < 0

B(X , t) =

{
b(X , t), X ≥ 0

b(−X , t), X < 0

and then take x = |X | as output.
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1D particles with mass

Why does that give O(h) strong convergence, but the original doesn’t?

If we define (
ut

xt

)
= S(Xt)

(
Ut

Xt

)
,

where S(X ) ≡ sign(X ), then ut , xt satisfy

dut = a(xt , ut , t)dt + b(xt , t)S(Xt)dWt

dxt = ut dt,

By setting dwt = S(Xt)dWt , we see that this is equivalent in distribution
to the original model problem.

Note: strong convergence is now at fixed Wt – not the same as fixed wt .
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1D particles with mass

New MLMC treatment:

û
p
n+1 = ûn + a(x̂n, ûn, tn) h + b(x̂n, tn) ŝn ∆Wn

x̂
p
n+1 = x̂n + ûn h

followed by a correction/reflection step:

ûn+1 = sign(x̂pn+1) û
p
n+1

x̂n+1 = sign(x̂pn+1) x̂
p
n+1

ŝn+1 = sign(x̂pn+1) ŝn

with same Brownian path for coarse and fine levels.

Can show that when a and b are both constant, the coarse and fine paths
are identical at coarse timesteps.
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1D particles with mass

Test case 1:

x0 = 0.2, u0 = −0.2, a(x , t) = 0, b(x , t) = 0.5.

in domain 0 ≤ x ≤ 1, with reflection at both boundaries.

Output of interest:
∫ 1
0 xt dt approximated by

2ℓ∑

n=1

hℓ x̂n.

Test case 2: changes drift, volatility to

a(x , t) = −0.2, b(x , t) = 0.5 + 0.5 x .

– standard O(h) numerical analysis no longer applies
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1D particles with mass

Test case 1: V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ E[P̂ℓ−P̂ℓ−1] ∼ hℓ
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1D particles with mass

Test case 2: V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ E[P̂ℓ−P̂ℓ−1] ∼ hℓ
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1D massless particles

Without mass, the SDE is

dxt = a(xt , t)dt + b(xt , t)dwt

and if the domain is x≥0, particles are prevented from crossing x=0.

Euler-Maruyama treatment with uniform timestep h:

x̂n+1 =
∣∣∣ x̂n + a(x̂n, t) h + b(x̂n, tn)∆wn

∣∣∣

Again only O(h1/2) strong convergence, even when b is uniform
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1D massless particles

Thinking about the extended domain leads to

dxt = a(xt , t)dt + b(xt , t)S(Xt)dWt

where S(X ) ≡ sign(X ), and hence the numerical approximation is

x̂
p
n+1 = x̂n + a(x̂n, tn) h + b(x̂n, tn) ŝn ∆Wn

followed by a correction/reflection step:

x̂n+1 = sign(x̂pn+1) x̂
p
n+1

ŝn+1 = sign(x̂pn+1) ŝn

with same Brownian path for coarse and fine levels.

Note: if b is not uniform then we need to use first order Milstein
approximation to get O(h) strong convergence.
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1D massless particles

Test case 1:
x0 = 0.2, a(x , t) = 0, b(x , t) = 0.5.

in domain 0 ≤ x ≤ 1, with reflection at both boundaries.

Output of interest:
∫ 1
0 xt dt approximated by

2ℓ∑

n=1

hℓ x̂n.

Test case 2: changes drift, volatility to

a(x , t) = −0.2, b(x , t) = 0.5 + 0.5 x .

– standard O(h) numerical analysis no longer applies
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1D massless particles

Test case 1: V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ E[P̂ℓ−P̂ℓ−1] ∼ hℓ
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1D massless particles

Test case 2: V[P̂ℓ−P̂ℓ−1] ∼ h
3/2
ℓ E[P̂ℓ−P̂ℓ−1] ∼ hℓ
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1D massless particles

Why is the variance O(h3/2)?

Ad-hoc explanation:

O(1) path density near x=0

O(h1/2) movement in each timestep

=⇒ O(h1/2) probability of crossing boundary in each timestep

=⇒ O(h−1/2) total crossings per path

each crossing gives error which is O(h) but has near-zero mean

if crossings are approximately independent, then

V[P̂ℓ−P̂ℓ−1] = O(h−1/2 × h2) = O(h3/2)

Note: in the case with mass, the velocity is O(1), the movement in each
timestep is O(h), so the number of crossings is O(1) =⇒ Vℓ = O(h2).
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Financial modelling example

If a central bank acts to keep an exchange rate x within a given range
[x1, x2], this can be modelled by a reflected Ornstein-Uhlenbeck process:

dxt = κ (xequil − xt)dt + σ dWt + dL1,t − dL2,t

where x1 < xequil < x2 is the equlibrium value, L1,t is a local time which
increases only when xt = x1, and L2,t is a local time which increases only
when xt = x2.

The local times correspond here to the sale/purchase of currency by the
central bank to keep the rate within limits. (Yang et al, 2012)

A new MSc project will look at this model, its MLMC implementation,
and other financial applications.

Mike Giles (Oxford) MLMC for reflected diffusions March 4, 2016 21 / 31



Multi-dimensional extensions

In simple cases:

isotropic volatility

normal reflection

the 1D ideas extend fairly naturally to multi-dimensional applications

Good for engineering applications (e.g. 3D atmospheric pollutant dispersal)

However, in general multi-dimensional applications are much more
complicated.
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MLMC for reflected diffusions

Joint research with Kavita Ramanan (Brown University)

Motivation comes from network queue analysis, approximated by a
reflected Brownian diffusion within a domain D, with SDE

dxt = a(xt)dt + b dWt + ν(xt)dLt

where Lt is a local time which increases when xt is on the boundary ∂D.

ν(xt) can be normal to the boundary (pointing inwards), but in other cases
it is not and reflection from the boundary includes a tangential motion.

A penalised version is

dxt = a(xt)dt + b dWt + ν(xt)dLt

dLt = −λ min(0, d(xt))dt, λ ≫ 1

where d(xt) is signed distance to the boundary – negative means outside.
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MLMC for reflected diffusions

3 different numerical treatments:

projection: predictor step:

X̂
(p) = X̂tn + a(X̂tn , tn) hn + b∆Wn,

followed by correction step

X̂tn+1 = X̂
(p) + ν(X̂ (p)) ∆L̂n,

with ∆L̂n > 0 if needed to put X̂tn+1 on boundary

reflection: similar but with double the value for ∆L̂n – can give
improved weak convergence

penalised: Euler-Maruyama approximation of penalised SDE
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MLMC for reflected diffusions

Concern:

because b is uniform, Euler-Maruyama method corresponds to first
order Milstein scheme, suggesting an O(h) strong error

however, all treatments of boundary reflection lead to a strong error
which is O(h1/2) – this is based primarily on empirical evidence, with
only limited supporting theory

Idea:

use adaptive timesteps, with level ℓ timestep given by

max
(
2−2ℓ

h0,min
(
2−ℓ

h0, (d/((ℓ+3) ‖b‖2)2
))

.

based on distance d to boundary.
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MLMC for reflected diffusions

This max-min definition leads to 3 zones:

a boundary zone where h = 2−2ℓh0

an interior zone where h = 2−ℓh0

an intermediate zone where (ℓ+3)
√
h‖b‖2 = d

As ℓ → ∞, there is a very high probability that no reflections take place
from the interior or intermediate zones.

boundary error is O(
√

2−2ℓh0 ) = O(2−ℓ)

interior error is O(2−ℓh0) = O(2−ℓ)

overall, strong error is O(2−ℓ) =⇒ MLMC variance = O(2−2ℓ).
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MLMC for reflected diffusions

Current theoretical analysis:

if strong error is O(
√
h ) for uniform timestep then the MLMC

variance is O(2−2ℓ) for Lipschitz functionals.

the expected cost is o(2(1+δ)ℓ) for any 0 < δ ≪ 1

regarding MLMC theory, this gives β = 2, γ ≈ 1, so the complexity
is O(ε−2) for ε r.m.s. error

Numerical analysis challenge:

prove that the strong error is O(
√
h ) for uniform timestep with

oblique reflections, preferably for generalised penalisation method
for polygonal boundaries
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MLMC for reflected diffusions

Simple test case:

3D Brownian motion in a unit ball

normal reflection at the boundary

x0 = 0

aim is to estimate E[‖x‖22] at time t=1.

implemented with both projection and penalisation schemes
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MLMC for reflected diffusions

Projection method:

level l
0 2 4

lo
g

2
 v

ar
ia

nc
e

-20

-15

-10

-5

0

P
l

P
l
- P

l-1

level l
0 2 4

lo
g

2
 |m

ea
n|

-10

-8

-6

-4

-2

0

P
l

P
l
- P

l-1

level l
0 5 10

N
l

10 0

10 2

10 4

10 6

10 8

0.0002
0.0005
0.001
0.002
0.005

accuracy ǫ

10 -3

ǫ
2
 C

os
t

10 -1

10 0

10 1

10 2

10 3

Std MC
MLMC

Mike Giles (Oxford) MLMC for reflected diffusions March 4, 2016 29 / 31



MLMC for reflected diffusions

Penalisation method:
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Conclusions

simple reflection “trick” improves the MLMC variance for 1D
reflected diffusions, for particles with or without mass

the extension to multiple dimensions should work in simple cases,
but not in more general cases

more difficult cases can use adaptive timestepping, and we’re
making progress on the numerical analysis

very keen to hear about new financial applications
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