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“Smoking Adjoints”

Paper with Paul Glasserman in Risk in 2006 showed how
adjoints can be used in computing pathwise sensitivities
– gives lots of first order sensitivities for negligible cost

This attracted a lot of interest, and questions:

what is involved in practice in creating an adjoint code,
and can it be simplified?
(see HERCMA paper, available from website)

do we really have to differentiate the payoff?

what about discontinuous payoffs?

what about American options?
(not addressed yet!)
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Outline

different approaches to computing Greeks
finite differences
likelihood ratio method
pathwise sensitivity

use of conditional expectation for a digital option

“vibrato” extension for scalar SDE

generalisation to multidimensional SDEs
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Generic Problem

Stochastic differential equation with general drift and
volatility terms:

dSt = a(St, t) dt + b(St, t) dWt

For a simple European option we want to compute the
expected discounted payoff value dependent on the
terminal state:

V = E[f(ST )]

Note: the drift and volatility functions are almost always
differentiable, but the payoff f(S) is often not.
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Generic Problem

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn)h + b(Ŝn, tn) ∆Wn

Simplest Monte Carlo estimator for expected payoff is an
average of M independent path simulations:

M−1
M∑

i=1

f(Ŝ
(i)
N )

Greeks: for hedging and risk management we also want to
estimate derivatives of expected payoff V
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Simple Problem

For Geometric Brownian motion

dSt = r St dt + σ St dWt

the SDE can be solved analytically to give

ST = S0 exp
(
(r− 1

2σ2)T + σ WT

)

In this case, we can directly sample WT to get

V ≡ E [f(ST )] ≈ M−1
M∑

i=1

f(S
(i)
T )

– will use this to illustrate approaches to calculating
sensitivities
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Finite Differences

Simplest approach is to use a finite difference
approximation,

∂V

∂θ
≈ V (θ+∆θ) − V (θ−∆θ)

2 ∆θ

∂2V

∂θ2
≈ V (θ+∆θ) − 2V (θ) + V (θ−∆θ)

(∆θ)2

– very simple, but expensive and inaccurate if ∆θ is too big,
or too small in the case of discontinuous payoffs

“Vibrato” Monte Carlo Greeks – p. 7/30



Likelihood Ratio Method

For simple cases where we know the terminal probability
distribution

V ≡ E [f(ST )] =

∫
f(S) pS(θ;S) dS

we can differentiate this to get

∂V

∂θ
=

∫
f

∂pS

∂θ
dS =

∫
f

∂(log pS)

∂θ
pS dS = E

[
f

∂(log pS)

∂θ

]

This is the Likelihood Ratio Method (Broadie &
Glasserman, 1996) – its great strength is that it can handle
discontinuous payoffs
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Likelihood Ratio Method

The LRM weakness is in its generalisation to full path
simulations for which we get the multi-dimensional integral

V̂ = E[f(Ŝ)] =

∫
f(Ŝ) p(Ŝ) dŜ,

where dŜ ≡ dŜ1 dŜ2 dŜ3 . . . dŜN

and the joint probability density function p(Ŝ) is the product
of the p.d.f.s for each timestep

p(Ŝ) =
∏

n

pn(Ŝn+1|Ŝn)

log p(Ŝ) =
∑

n

log pn(Ŝn+1|Ŝn)
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Likelihood Ratio Method

When computing Vega from an Euler discretisation of
Geometric Brownian motion this leads to

∂V̂

∂σ
= E

[(
∑

n

Z2
n−1

σ

)
f(ŜN )

]

where Zn is the unit Normal used in the nth timestep

Ŝn+1 = Ŝn(1+r h) + σ Ŝn

√
h Zn

Since V[Z2
n − 1] = 2 it follows that the variance of the

estimator is O(h−1)

This blow-up as h→0 is the weakness of the LRM.
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Pathwise sensitivities

Alternatively, for simple Geometric Brownian Motion

V ≡ E [f(ST )] =

∫
f(ST (θ;W )) pW (W ) dW

and differentiating this gives

∂V

∂θ
=

∫
∂f

∂S

∂ST

∂θ
pW dW = E

[
∂f

∂S

∂ST

∂θ

]

with ∂ST /∂θ being evaluated at fixed W .

This is the pathwise sensitivity approach – it can’t handle
discontinuous payoffs, but generalises well to full path
simulations
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Pathwise sensitivities

The generalisation involves differentiating the Euler path
discretisation,

Ŝn+1 = Ŝn + a(Ŝn, tn)h + b(Ŝn, tn) ∆Wn

holding fixed the Brownian increments, to get

∂Ŝn+1

∂θ
=

(
1 +

∂a

∂S
h +

∂b

∂S
∆Wn

)
∂Ŝn

∂θ
+

∂a

∂θ
h +

∂b

∂θ
∆Wn

leading to

∂V̂

∂θ
= E

[
∂f

∂S
(ŜN )

∂ŜN

∂θ

]
.
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Pathwise sensitivities

In the case of Vega for an Euler discretisation of GBM

Ŝn+1 = Ŝn + r Ŝn h + σ Ŝn ∆Wn

we get

∂Ŝn+1

∂σ
=
(
1 + r h + σ ∆Wn

) ∂Ŝn

∂σ
+ Ŝn ∆Wn

and the variance

V

[
∂f

∂S
(ŜN )

∂ŜN

∂σ

]

is O(1) if f(S) is Lipschitz.
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Vibrato Monte Carlo

What is best if payoff is discontinuous?

LRM
estimator variance O(h−1)

Malliavin calculus
estimator variance O(1)

recent paper by Glasserman & Chen shows it can be
viewed as a pathwise/LRM hybrid
might be good choice when few Greeks needed

new “vibrato” Monte Carlo idea
also a pathwise/LRM hybrid

estimator variance O(h−1/2)

efficient adjoint implementation
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Vibrato Monte Carlo

new idea is based on use of conditional expectation for
a simple digital option in Paul Glasserman’s book

output of each SDE path calculation becomes a narrow
(multivariate) Normal distribution

combine pathwise sensitivity for the differentiable SDE,
with LRM for the discontinuous payoff

avoiding the differentiation of the payoff also simplifies
the implementation in real-world setting
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Vibrato Monte Carlo

Final timestep of Euler path discretisation is

ŜN = ŜN−1 + a(ŜN−1, tN−1)h + b(ŜN−1, tN−1) ∆WN−1

Instead of using random number generator to get a value
for ∆WN−1, consider the whole distribution of possible
values, so ŜN has a Normal distribution with mean

µ
W

= ŜN−1 + a(ŜN−1, tN−1)h

and standard deviation

σ
W

= b(ŜN−1, tN−1)
√

h

where W ≡ (∆W0,∆W1, . . . ∆WN−2).
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Vibrato Monte Carlo

For a particular path given by a particular vector W , the
expected payoff is

EZ [f(µ
W

+σ
W

Z)]

where Z is a unit Normal random variable.

Averaging over all W then gives the same overall
expectation as before.

Note also that, for given W , ŜN has a Normal distribution

pS(Ŝ) =
1√

2π σ
W

exp

(
−

(Ŝ − µ
W

)2

2σ
W

2

)
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Vibrato Monte Carlo

In the case of a simple digital call with strike K, the analytic
solution is

EZ [f(µ
W

+σ
W

Z)] = exp(−rT ) Φ

(
µ

W
−K

σ
W

)
.

for each W , the payoff is now smooth, differentiable

derivative is O(h−1/2) near strike, near zero elsewhere
=⇒ variance is O(h−1/2)

analytic evaluation of conditional expectation not
possible in general for multivariate cases
=⇒ use Monte Carlo estimation!
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Vibrato Monte Carlo

Main novelty comes in calculating the sensitivity.

For a particular W , we have a Normal probability distribution
for ŜN and can apply the Likelihood Ratio method to get

∂

∂θ
EZ

[
f(ŜN )

]
= EZ

[
f(ŜN )

∂(log pS)

∂θ

]
,

where
∂(log pS)

∂θ
=

∂(log pS)

∂µ
W

∂µ
W

∂θ
+

∂(log pS)

∂σ
W

∂σ
W

∂θ

=
Z

σ
W

∂µ
W

∂θ
+

Z2−1

σ
W

∂σ
W

∂θ
.

Averaging over all W then gives the expected sensitivity.
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Vibrato Monte Carlo

To improve the variance, we note that

EZ

[
f(µ

W
+σ

W
Z) Z

]
= EZ

[
−f(µ

W
−σ

W
Z) Z

]

= 1
2 EZ

[(
f(µ

W
+σ

W
Z) − f(µ

W
−σ

W
Z)
)

Z
]

and similarly

EZ

[
f(µ

W
+σ

W
Z) (Z2−1)

]

= 1
2 EZ

[(
f(µ

W
+σ

W
Z) − 2f(µ

W
) + f(µ

W
−σ

W
Z)
)

(Z2−1)
]

This gives an estimator with O(1) variance when f(S) is
Lipschitz, and O(h−1/2) variance when it is discontinuous.
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Vibrato Monte Carlo

Test case: Geometric Brownian motion

dSt = r St dt + σ St dWt

with simple digital call option.

Parameters: r = 0.05, σ = 0.2, T = 1, S0 = 100, K = 100

Numerical results compare:

LRM

vibrato with one Z per W

pathwise with conditional expectation
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Vibrato Monte Carlo
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Vibrato Monte Carlo

These results used just one Z per path. If MZ are used, the
variance is

VW

[
EZ [g(W,Z)]

]
+ M−1

Z EW

[
VZ [g(W,Z)]

]

where g(W,Z) is the estimator.

The limit Mz → ∞ gives the variance for the estimator
based on the analytic conditional expectation.

The optimal MZ can be determined if one knows/estimates
VW

[
EZ [g(W,Z)]

]
and EW

[
VZ [g(W,Z)]

]
, and the relative cost

of the path simulation and the payoff evaluation.
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Multivariate extension

In general we have

Ŝ(W,Z) = µ
W

+ C
W

Z

where Σ
W

=C
W

C
W

T is the covariance matrix, and Z is a
vector of uncorrelated Normals. The joint p.d.f. is

log pS = −1
2 log |Σ

W
| − 1

2(Ŝ−µ
W

)T Σ
W
−1(Ŝ−µ

W
) − 1

2d log(2π)

and so
∂ log pS

∂µ
W

= C
W
−T Z,

∂ log pS

∂Σ
W

= 1
2 C

W
−T
(
ZZT −I

)
C

W
−1
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Multivariate extension

This leads to

∂

∂θ
EZ

[
f(Ŝ)

]
= EZ

[
f(Ŝ)

∂(log pS)

∂θ

]

where

∂(log pS)

∂θ
=

(
∂ log pS

∂µ
W

)T ∂µ
W

∂θ
+ tr

(
∂ log pS

∂Σ
W

∂Σ
W

∂θ

)

and
∂µ

W

∂θ
,
∂Σ

W

∂θ
come from pathwise sensitivity analysis.

A more efficient estimator can be obtained by similar
reasoning to the scalar case.

“Vibrato” Monte Carlo Greeks – p. 25/30



Vibrato Monte Carlo

Test case: Geometric Brownian motion

dS
(1)
t = r S

(1)
t dt + σ(1) S

(1)
t dW

(1)
t

dS
(1)
t = r S

(2)
t dt + σ(2) S

(2)
t dW

(2)
t

with a simple digital call option based solely on S
(1)
T .

Parameters: r = 0.05, σ(1) = 0.2, σ(2) = 0.3, T = 1, S
(1)
0 =

S
(2)
0 = 100, K = 100, ρ = 0.5

Numerical results again compare LRM, vibrato with one Z
per W , and pathwise with conditional expectation.
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Vibrato Monte Carlo
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Multivariate extension

Can also treat payoffs dependent on S(τ) at intermediate
times, by taking

tn < τ < tn+1

and using simple Brownian motion interpolation between
Ŝn and Ŝn+1 to get a Normal distribution for Ŝ(τ), with

mean: Ŝn +
τ−tn

tn+1−tn

(
Ŝn+1−Ŝn

)

variance:
(τ−tn)(tn+1−τ)

tn+1−tn
b2(Ŝn, tn)
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Conclusions

“Vibrato” idea for computing Greeks offers

O(1) variance for Lipschitz payoffs, and easy
implementation – no derivatives required

O(h−1/2) variance for discontinuous payoffs

adjoint implementation for multiple Greeks

Future work:

similar idea for digital options in multilevel Monte Carlo
path simulation – introduces Radon-Nikodym derivative
from change in measure
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