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MLMC estimators using change of measure

This work fits within a growing literature of MLMC applications using
change of measure techniques to improve MLMC correction variances:

Xia, G. (2010)
Jump-adapted jump-diffusion SDEs – change of measure used to
force same jump times on coarse and fine paths

G (2012, 2015)
Digital options in finance – change of measure used to force same
final state for coarse and fine paths

Stilger, Poon (2014), Gasparotto (2015), Kebaier, Lelong (2017),
Alaya, Hajji, Kebaier (2018)
Importance sampling for rare events, e.g. deep out-of-the-money
digital call options
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Ergodic SDEs

The process Xt is ergodic if it has a unique invariant distribution π s.t.
for each smooth ϕ ∈ L1(π) and for any fixed initial condition X0 =x0,

π(ϕ) :=

∫
ϕ(x) dπ(x) = lim

T→∞

1

T

∫ T

0
ϕ(Xt)dt, a.s.

We’ll consider an SDE driven by an m-dimensional Brownian motion:

dXt = f (Xt) dt + dWt , (1)

with a Lipschitz drift f : Rm→Rm satisfying the dissipativity condition:
for some α, β > 0,

〈x , f (x)〉 ≤ −α‖x‖2 + β. (2)
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Ergodic SDEs

Lemma (Geometric ergodicity)

If the SDE satisfies the previous assumption then it is ergodic with a
unique invariant distribution π, and for any ϕ which grows at worst
polynomially there exist positive constants µ∗ and λ∗ such that

|E [ϕ(Xt)− π(ϕ)]| ≤ µ∗ e−λ
∗t . (3)

We are interested in computing π(ϕ), the expectation of some function
ϕ(x) with respect to that invariant distribution π.
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Several numerical approaches

Compute the probability density function ρ(x) of π by solving the
corresponding stationary Fokker-Planck equation.

Extremely expensive for high-dimensional problems.

Compute an ergodic numerical approximation X̂t and evaluate

1

T

N∑
n=1

hϕ(X̂nh) ≡ 1

N

N∑
n=1

ϕ(X̂nh)

Requires the numerical approximation to preserve the ergodicity.

Estimate E
[
φ(X̂T )

]
for a sufficiently large T .

How to apply MLMC to the SDEs without contractivity?
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SDEs with contractivity

Assumption (Contractive Lipschitz properties)

There exists a constant λ>0 such that for all x , y ∈ Rm, f satisfies the
contractive Lipschitz condition:

〈x−y , f (x)−f (y)〉 ≤ −λ ‖x−y‖2. (4)

Lemma (Contractivity)

If the SDE satisfies the contractive assumption, then for any two solutions
Xt and Yt , driven by the same Brownian motion from different initial data,
∀ t>0, p>0,

E [‖Xt−Yt‖p] ≤ e−λpt E [‖X0−Y0‖p] . (5)

Contractivity also ensures that strong convergence is uniform in T .
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MLMC for infinite time interval

Following an idea of Glynn and Rhee (2014), different levels use an
increasing length of time interval T`, as well as decreasing timesteps,
ensuring overall weak convergence:

E [ϕ(XTL
)] = E [ϕ(XT0)] +

L∑
`=1

E
[
ϕ(XT`

)− ϕ(XT`−1
)
]
.

Comment: don’t need to decide T in advance – MLMC algorithm will
automatically terminate at a level L with a sufficiently large TL.
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MLMC for infinite time interval

Since f does not depending explicitly on t, the distribution of the
numerical solution simulated on time interval [−T`, 0] is the same as
the one simulated on [0,T`] starting from the same initial point.

Comment: the fine path and coarse path share the same driving Wt for
the time interval [−T`−1, 0]. The contractivity ensures the exponential
decay of the difference at timer −T`−1.
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SDEs without Contractivity

Assumption (One-sided Lipschitz properties)

There exists a constant λ>0 such that for all x , y ∈ Rm, f satisfies:

〈x−y , f (x)−f (y)〉 ≤ λ ‖x−y‖2. (6)

Examples:

Double-well potential energy:
fine path and coarse path may diverge to different wells.

Stochastic Lorenz equation:
chaotic as in deterministic case – the multilevel correction variance V`
increases exponentially in T

Comments: moments of the numerical solution are still uniform in T due
to the dissipative condition – no impact on standard Monte Carlo method.
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New MLMC with change of measure
Key idea: add a “spring” between the fine path and coarse path to
prevent divergence.

i.e. instead of:

Qf : dX f
t = f (X f

t )dt + dWQf

t ,

Qc : dX c
t = f (X c

t ) dt + dWQc

t ,

adding a spring term with 2S > λ, we simulate both paths in measure P:

dY f
t = S(Y c

t − Y f
t ) dt + f (Y f

t )dt + dWt ,

dY c
t = S(Y f

t − Y c
t ) dt + f (Y c

t ) dt + dWt .

Girsanov’s theorem gives

EQf
[X f

t ]− EQc
[X c

t ] = EP
[
Y f
t

dQf

dP
− Y c

t

dQc

dP

]
.
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New MLMC with change of measure

The fine path Y f
t and coarse path Y c

t share the same driving Brownian
motion Wt in measure P, over the same time interval [0,T ].

The difference between the new pair of SDE solutions satisfies

d(Y f
t −Y c

t ) = − 2S(Y f
t −Y c

t ) dt + (f (Y f
t )−f (Y c

t ))dt,

and hence
d ‖Y f

t − Y c
t ‖2 ≤ 2(λ−2S) ‖Y f

t − Y c
t ‖2 dt,

so if 2S > λ we recover the contractivity between the fine and coarse
paths.
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Numerical implementation
We use standard Euler-Maruyama (Milstein) method for path simulation.

For level 0, it is the same as the standard MLMC.

For level `>1, we simulate the SDE with the spring terms using timestep
h = 2−` h0 for the fine path and 2h for the coarse path.

At time t0 = 0 we set Ŷ f
t0 = Ŷ c

t0 = x0.

At odd timesteps t2n+1 = t2n+h we update both paths:

Ŷ c
t2n+1

= Ŷ c
t2n + S(Ŷ f

t2n−Ŷ
c
t2n) h + f (Ŷ c

t2n) h + ∆W2n,

Ŷ f
t2n+1

= Ŷ f
t2n + S(Ŷ c

t2n−Ŷ
f
t2n) h + f (Ŷ f

t2n) h + ∆W2n.

At even timesteps t2n+2 = t2n+1 + h for n ≥ 0, we update the spring
and drift terms for the fine path, and update both paths:

Ŷ c
t2n+2

= Ŷ c
t2n+1

+ S(Ŷ f
t2n−Ŷ

c
t2n) h + f (Ŷ c

t2n) h + ∆W2n+1,

Ŷ f
t2n+2

= Ŷ f
t2n+1

+ S(Ŷ c
t2n+1
−Ŷ f

t2n+1
) h + f (Ŷ f

t2n+1
) h + ∆W2n+1.
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Radon-Nikodym Derivatives
We calculate the exact Radon-Nikodym derivatives Rf = dQ̂f /dP for the
fine path and Rc = dQ̂c/dP for coarse path, step by step:

At t0 = 0, we set Rf
t0 = Rc

t0 = 1.

At odd timesteps t2n+1 = t2n + h we only update Rf :

Rf
t2n+1

= Rf
t2n R

(
Ŷ f
t2n+1
| Ŷ f

t2n

)
.

At even timesteps t2n+2 = t2n+1 + h we update both Rf and Rc :

Rf
t2n+2

= Rf
t2n+1

R(Ŷ f
t2n+2
|Ŷ f

t2n+1
),

Rc
t2n+2

= Rc
t2n R(Ŷ c

t2n+2
|Ŷ c

t2n).

Finally, the multilevel correction estimator on level ` is

ϕ(Ŷ f
T )Rf

T − ϕ(Ŷ c
T )Rc

T . (7)
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Stability and strong error results

Theorem

Under the Lipschitz and dissipativity assumptions, there exists h0>0 such
that for all h<h0, and any p≥1, T > 0, there exists a constant C1>0
which is independent of p and T such that

sup
0≤n≤N

E
[
‖Ŷ f

tn‖
p
]1/p

≤ C1 p
1/2, sup

0≤n≤N
E
[
‖Ŷ c

tn‖
p
]1/p

≤ C1 p
1/2. (8)

Furthermore, if 2S > λ, then for there exists a constant C2>0,
independent of p and T , such that

sup
0≤n≤N

E
[
‖Ŷ f

tn − Ŷ c
tn‖

p
]1/p

≤ C2 min
(
p1/2h1/2, ph

)
. (9)
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Variance Estimation

Theorem (Moment of level estimator)

If ϕ : Rm → R is locally Lipschitz, with at worst polynomial growth, and
the original SDE satisfies the Lipschitz and dissipativity conditions, then
using 2S>λ and a sufficiently small h, for any p ≥ 1, T > 0, there exists
a constant C3>0, independent of p and T such that

E
[ ∣∣∣ϕ(Ŷ f

T )R f − ϕ(Ŷ c
T )Rc

∣∣∣p ]1/p ≤ C3 p
2
√
T h.

Note that this implies that the variance of the MLMC estimator (7) is
bounded by C 2

3 p
4Th2 which increases linearly in T .
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Idea of Proof
By Jensen’s inequality and Holder inequality, we have

E
[∥∥∥Ŷ f

TR
f − Ŷ c

TR
c
∥∥∥p]

= E
[∥∥∥Ŷ f

T (R f − 1) + (Ŷ f
T − Ŷ c

T )− Ŷ c
T (Rc − 1)

∥∥∥]
≤ 3p−1E

[∥∥∥Ŷ f
T − Ŷ c

T

∥∥∥p]+ 3p−1E
[∥∥∥Ŷ f

T

∥∥∥2p]1/2 E [∣∣∣R f −1
∣∣∣2p]1/2

+3p−1E
[∥∥∥Ŷ c

T

∥∥∥2p]1/2 E [|Rc−1|2p
]1/2

.

The blue terms have the order:

R f − 1 ∼ exp

(∫ T

0
S(Ŷ f

s −Ŷ c
s ) dWs

)
− 1 ∼

∫ T

0
S(Ŷ f

s −Ŷ c
s )dWs ,

and

E

[∥∥∥∥∫ T

0
S(Ŷ f

s −Ŷ c
s )dWs

∥∥∥∥p
]
∼ O(T p/2hp).
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MC / std MLMC complexity

Weak error O(ε) requires T = O( 1
λ∗ | log ε|), and h = O(ε), so the

standard MC cost is
CMC = O

(
ε−3| log ε|

)
For standard MLMC we get

V` = O
(

(h0 2−`)2 2κT
)
,

and the requirement that V1 < V0 means that (provided κ>2λ∗)

h0 = O(2−κT/2) = O(ε−κ/2λ
∗
)

and hence the standard MLMC cost is

Cstd = O
(
ε−2−κ/2λ

∗ | log ε|
)
.
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New MLMC complexity

For the new MLMC with the change of measure:

V` = O
(

(h0 2−`)2 T
)

In order to get a good coupling and stability of Radon-Nikodym
derivatives, we need

h0 = O(T−1),

and therefore
Cnew = O(ε−2| log ε|2).

In comparison, for SDEs with contractivity, MLMC for the infinite time
interval achieves the optimal computational cost O(ε−2).
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Numerical Results
We first present the numerical results for Lipschitz version of stochastic
Lorenz equation. We run 10000 sample paths from T = 0 to 20 to get the
following results. Our interest is to compute π(ϕ).
For standard MLMC:

Figure: Variance for each level without change of measure
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Numerical Results

Without the new change of measure, the κ we fit for the exponential
growth of the variance is 1.3601.
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Numerical Results

With the change of measure, we see a linear growth in the variance of the
MLMC estimator
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Numerical Results

We can also estimate the convergence rate to the invariant measure
λ∗ = 0.1741.
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Stochastic Lorenz equation

We simulate the standard stochastic Lipschitz SDE (no far-field
adjustment to make it globally Lipschitz) with initial value x0 = [0, 0, 0] to
time T = 10, and use the adaptive function:

hδ(x) =
max(100, ‖x‖2)

211 max(100, ‖f (x)‖2)
δ

with δ = 2−` for each level `.

We compare two different schemes:

standard MLMC with adaptive timestep.

MLMC with adaptive timestep and change of measure with constant
spring coefficient S = 10.

A possible third scheme is the scheme with adaptive spring which requires
to calculate the largest positive eigenvalue of the Jacobian matrix ∂f

∂x .
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Stochastic Lorenz equation
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Conclusion

The previous MLMC works well for SDEs with contractivity at all
times, or on average (negative Lyapunov exponent)

The new MLMC with change of measure works well for SDEs with
positive Lyapunov exponent – can greatly reduce the MLMC variance.

The new MLMC improves the computational cost for the stochastic
Lorenz equation by a huge amount – the benefits are more limited for
a double-well potential energy.

The numerical analysis is only valid for SDEs with globally Lipschitz
drift using uniform timestepping, but in practice it works fine for
locally Lipschitz drift using adaptive timestepping
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