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Computational Finance

Options pricing – investment banks

Monte Carlo methods (60%)

PDEs / finite difference methods (30%)

other semi-analytic methods (10%)

High-frequency algorithmic trading – hedge funds
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Computational Finance

Might seem a bad time to be in this business, but as an
academic it’s fine:

clear need for better models

regulators (and internal risk management) are
demanding more simulation

computational finance accounts for 10% of Top500
supercomputers

still plenty of MSc students willing / able to fund
themselves

only problem is lack of research funding
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Computational Finance

Computational finance is where CFD was 20-25 years ago

not many academics working on numerical methods

codes are small – my biggest is probably 1000 lines

still lots of low-hanging fruit, but maybe more on Monte
Carlo than on PDE side

Olivier Pironneau, Peter Forsyth and others moved
earlier from CFD to finance, but kept to PDEs

Monte Carlo researchers have mainly come from
theoretical physics and statistics

in banks, each product group often has its own codes;
consolidation into a single corporate Monte Carlo
system for both London and New York is underway
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SDEs in Finance

In computational finance, stochastic differential equations
are used to model the behaviour of

stocks

interest rates

exchange rates

weather

electricity/gas demand

crude oil prices

. . .

The stochastic term accounts for the uncertainty of
unpredictable day-to-day events.
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SDEs in Finance

Examples:

Geometric Brownian motion (Black-Scholes model for
stock prices)

dS = r S dt + σ S dW

Cox-Ingersoll-Ross model (interest rates)

dr = α(b − r) dt + σ
√

r dW

Heston stochastic volatility model (stock prices)

dS = r S dt +
√

V S dW1

dV = λ (σ2−V ) dt + ξ
√

V dW2

with correlation ρ between dW1 and dW2
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Generic Problem

Stochastic differential equation with general drift and
volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

W (t) is a Wiener variable with the properties that for any
q<r<s<t, W (t)−W (s) is Normally distributed with mean 0
and variance t−s, independent of W (r)−W (q).

In many finance applications, we want to compute the
expected value of an option dependent on the terminal state

P ≡ f(S(T ))
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Standard MC Approach

Euler-Maruyama discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn

In the scalar case, each ∆Wn is a Normal random variable
with mean 0 and variance h.

Simplest estimator for expected payoff E[P ] is an average
from N independent path simulations:

Ŷ = N−1
N∑

i=1

P̂ (i)

May seem very simple-minded but it’s hard to improve on
the Euler discretisation, and many codes are this simple.
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The “Greeks”

As well as estimating the value V =E[P ], also important to
estimate various first and second derivatives for hedging
and risk management:

∆ =
∂V

∂S0
, Γ =

∂2V

∂S2
0

, Vega =
∂V

∂σ

In some cases, can need 100 or more first order
derivatives, so use of adjoints is natural
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“Smoking Adjoints”

First finance paper in 2006 was with Paul Glasserman from
Columbia Business School:

“Smoking Adjoints: fast Monte Carlo Greeks” in
Risk, a monthly publication for the finance industry

explains how to use discrete adjoints for an important
application which requires lots of Greeks

Yves Achdou and Olivier Pironneau had previously
used adjoints for finance PDEs, but the technique
hadn’t been transferred over to the Monte Carlo side

absolutely nothing novel from an academic point of
view, but has had an impact in the industry – I think a
number of banks now use it

computational finance – p. 10/21



“Smoking Adjoints”

The adjoint implementation is based on pathwise sensitivity
analysis which relies on the identity

∂

∂θ
E[P ] = E

[
∂P

∂θ

]

but this breaks down if P is discontinuous.

There are some other ways of treating this case, but
they don’t have efficient adjoint implementations.

I’ve recently developed a new way of handling the
discontinuity (a hybrid combination of two old methods)
which does retain an efficient adjoint implementation.
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. . . and next?

Coming from CFD, the use of adjoints was quite natural

What else is there? Multigrid!

But there’s no iterative solver here – instead just keep the
central ideas of

a nested sequence of grids

fine grid accuracy at coarse grid cost
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Multilevel Monte Carlo

Consider multiple levels of simulations with different
timesteps hl = 2−l T, l = 0, 1, . . . , L, and payoff P̂l

The expected value on the finest level, which is what we
want, can be expressed as a telescoping sum:

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]

The aim is to estimate the quantity on the left by
independently estimating each of the expectations on the
right, and do so in a way which minimises the overall
variance for a fixed computational cost.
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Multilevel Monte Carlo

Key idea: approximate E[P̂l−P̂l−1] using Nl simulations with
P̂l and P̂l−1 obtained using same Brownian path.

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l

−P̂
(i)
l−1

)

Why is this helpful?

P̂l ≈ P̂l−1 since both approximate P

Vl ≡ V[P̂l−P̂l−1] is small, especially on finer levels

fewer samples needed for to estimate E[P̂l−P̂l−1]

end up using many (cheap) samples on coarse levels,
and few (expensive) samples on fine levels
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Multilevel Monte Carlo

This has led to a number of papers, covering both
applications and numerical analysis. Main point is a big
reduction in computational cost for many problems.

To achieve a root-mean-square accuracy of ε:

cost of standard approach is O(ε−3)

cost of multilevel approach is O(ε−2)

cost is further reduced using quasi-random numbers
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Back to CFD?

Have recently started a new project with Rob Scheichl
(Bath) and Andrew Cliffe (Nottingham) applying these ideas
to oil reservoir and nuclear waste repository simulation,

Here we have an elliptic SPDE coming from Darcy’s law:

∇·
(
κ(x)∇p

)
= 0

where log κ(x) is Normally distributed with a spatial
covariance such as

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖/λ)
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Back to CFD?

In oil reservoir simulation, we’re mainly interested in
average behaviour, such as the homogenisation of
fine-scale structure.

In nuclear waste repository simulation we are interested in
the (hopefully very low) probability of contamination
exceeding some threshold.

In both cases we can formulate the problem as needing to
determine an expected value
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Back to CFD?

When λ is large, so there is strong spatial correlation, it is a
relatively low-dimensional problem, and “polynomial chaos”
or Karhunen-Loeve expansions work well.

However, when λ is small, these become prohibitively
expensive and so Monte Carlo methods are used, despite
requiring huge numbers of simulations.

Since the computational cost goes up rapidly with
resolution, we think multilevel methods have a lot to offer,
with most simulations being carried out on very coarse
levels.
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Back to CFD?

Preliminary numerical analysis suggests we can obtain the
following asymptotic costs for ε r.m.s. accuracy

dim MC MLMC
1 ε−3 ε−2

2 ε−4 ε−2(log ε)2

3 ε−5 ε−3

and preliminary 1D / 2D numerical results by Rob
Scheichl’s student Aretha Teckentrup are very encouraging.
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Back to CFD?

Another project concerns the use of GPUs for HPC

latest NVIDIA GPUs have up to 448 cores

1 GPU is 10–20× faster than 2 CPUs, with similar cost
and power consumption

programmed in C with some extensions

ideal for trivially-parallel Monte Carlo simulations

also very effective for finite difference applications

new project with Rolls-Royce, BAE Systems and
Paul Kelly at Imperial College addresses the needs
of unstructured grid applications through a general
purpose open-source library and program
transformation tools
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Conclusions

Having great fun with Monte Carlo simulation – very
refreshing to do something completely different, and yet
still be able to exploit old techniques from CFD

The differences between the engineering industry and
the big investment banks are fascinating

Some of the Monte Carlo developments are now
feeding back into CFD for quantifying the
consequences of uncertainty

Also having great fun with GPU computing – I think
GPUs are having a big impact on scientific computing

For more, see: www.maths.ox.ac.uk/∼gilesm/
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