
Two SPDE applications using
multilevel Monte Carlo

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford-Man Institute of Quantitative Finance

Mathematical Institute, University of Oxford

with Rob Scheichl, Aretha Teckentrup (Bath),

Andrew Cliffe (Nottingham) and Christoph Reisinger (Oxford)

NIM11 Workshop on Rough Paths and Numerical Integration Methods

Philipps University, Marburg, September 21-23, 2011
Multilevel SPDEs – p. 1



Outline

standard Monte Carlo simulation

multilevel Monte Carlo simulation

elliptic SPDE application

parabolic SPDE application

conclusions

Multilevel SPDEs – p. 2



Monte Carlo simulation

In many stochastic applications want to estimate E[P (ω)]
where ω ∈ Ω is an infinite-dimensional random variable.

In standard MC simulation we estimate it using

Ŷ = N−1
N∑

n=1

P̂ (ω(n))

where ω(n) are N independent samples
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Monte Carlo simulation

The mean square error is

E

[(
Ŷ − E[P ]

)2
]

= E

[(
Ŷ −E[Ŷ ] + E[Ŷ ]−E[P ]

)2
]

= E

[
(Ŷ −E[Ŷ ])2

]
+
(
E[Ŷ ]−E[P ]

)2

= V[Ŷ ] +
(
E[Ŷ ]−E[P ]

)2

= N−1
V[P̂ ] +

(
E[P̂ ]−E[P ]

)2

first term is Monte Carlo sampling error

second term is due to discretisation bias
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Monte Carlo simulation

To achieve RMS accuracy of ε requires:

N = O(ε−2)

bias = O(ε)

In an elliptic SPDE application with grid spacing h, if the
bias is O(hα) then need h=O(ε1/α), and total cost is
O(ε−(2+d/α)) in d dimensions

(This assumes efficient multigrid solution – very challenging
because of very rough coefficients (Graham & Scheichl))

To get acceptable accuracy in 3D applications may need
10,000 simulations on a 1283 grid =⇒ very expensive
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Multilevel Monte Carlo

The multilevel objective is to greatly reduce this cost:

α = 1 α = 2

d MC MLMC MC MLMC
1 ε−3 ε−2 ε−2.5 ε−2

2 ε−4 ε−2(log ε)2 ε−3 ε−2(log ε)2

3 ε−5 ε−3 ε−3.5 ε−2.5

How does this compare to theoretical lower bound?

ε−2 calculations on coarsest grid costs O(ε−2)

1 calculation on finest grid costs O(ε−d/α)

so minimum cost is O(ε−max(2,d/α))
Multilevel SPDEs – p. 6



Multilevel Monte Carlo

Consider Monte Carlo simulations with different levels of
refinement, ℓ = 0, 1, . . . , L, with level L being the finest.

If P̂ℓ is the approximation of P on level ℓ, then

E[P̂ℓ] = E[P̂0] +

L∑

l=1

E[P̂ℓ−P̂ℓ−1].

Idea is to independently estimate each of the terms on the
r.h.s., in a way which minimises the overall variance for a
fixed computational cost.

Finest level is still the same, but will use very few samples
at that level.
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Multilevel Monte Carlo

Simplest estimator for E[P̂ℓ−P̂ℓ−1] for ℓ>0 is

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂

(n)
ℓ −P̂

(n)
ℓ−1

)

using same stochastic sample ω(n) for both levels

Variance is N−1
ℓ Vℓ where Vℓ = V[P̂ℓ−P̂ℓ−1]

If the cost of one sample on level ℓ is Cℓ then optimally use
Nℓ ∝

√
Vℓ/Cℓ, and cost on level ℓ is proportional to

√
VℓCℓ.
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MLMC Theorem

If there exist independent estimators Ŷℓ based on Nℓ

Monte Carlo samples, each costing Cℓ, and positive
constants α, β, γ, c1, c2, c3 such that α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =

{
E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2N
−1
ℓ 2−β ℓ

iv) Cℓ ≤ c3 2
γ ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any
ε<1 there exist L and Nℓ for which the multilevel estimator

Ŷ =

L∑

l=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2
]
< ε2

with a computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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SPDEs

(Achi Brandt arguably did first multilevel calculations in
statistical physics in 1994 – multi-dimensional but not
an SPDE)

Tom Hou post-doc – first elliptic SPDE work in 2006/7

Klaus Ritter & Simone Graubner – first parabolic SPDE
calculations in 2007

G and Reisinger – “unusual” parabolic SPDE, 2008-11

Cliffe, G, Scheichl, Teckentrup – elliptic SPDE, 2009-11

Barth, Lang, Schwab, Zollinger – elliptic and parabolic
SPDEs, 2009-11
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SPDEs

As far as I know, all methods use the simple multilevel
estimator – unlike SDEs, none use advanced techniques to
improve the multilevel correction variance

Hard part with SPDEs is the numerical analysis – recent
work on elliptic SPDEs by Charrier, Scheichl & Teckentrup
is particularly noteworthy
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Elliptic SPDE

We consider the elliptic PDE

−∇. (k(x, ω)∇p(x, ω)) = 0, x ∈ D,

with random coefficient k(x, ω).

We model k as a lognormal random field , i.e. log k is a
Gaussian field with mean 0 and covariance function

R(x,y) = σ2 exp
(
− ‖x−y‖1/λ

)

2D numerical experiments use σ=1 and λ = 0.2 on unit
square [0, 1]2
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Elliptic SPDE

Samples of log k are provided by a Karhunen-Loève
expansion:

log k(x, ω) =

∞∑

n=0

√
θn ξn(ω) fn(x),

where θn, fn are eigenvalues / eigenfunctions of the
correlation function:

∫
R(x,y) fn(y) dy = θn fn(x)

and ξn(ω) are standard Normal random variables.

Numerical experiments truncate the expansion.
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Elliptic SPDE

Decay of 1D eigenvalues
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When λ = 1, can use a low-dimensional polynomial chaos
approach, but it’s impractical for smaller λ.
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Elliptic SPDE

Discretisation:

cell-centred finite volume discretisation on a uniform
grid – for rough coefficients we need to make grid
spacing very small on finest grid

each level of refinement has twice as many grid points
in each direction

current numerical experiments use a direct solver for
simplicity, but in the future will use an efficient multigrid
solver and so “computational cost” is defined to be
proportional to the total number of grid points
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Elliptic SPDE

Boundary conditions for unit square [0, 1]2:
– fixed pressure: p(0, x2)=1, p(1, x2)=0
– Neumann b.c.: ∂p/∂x2(x1, 0)=∂p/∂x2(x1, 1)=0

Output quantity – mass flux: −
∫

k
∂p

∂x1
dx2

Correlation length: λ = 0.2

Coarsest grid: h = 1/8 (comparable to λ)

Finest grid: h = 1/128

Karhunen-Loève truncation: mKL = 4000

Cost taken to be proportional to number of nodes
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Elliptic SPDE
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Elliptic SPDE

0 1 2 3 4
10

2

10
3

10
4

10
5

10
6

10
7

10
8

level l

N
l

 

 

10
−3

10
−2

10
0

10
1

10
2

accuracy ε

ε2  C
os

t

 

 
Std MC
MLMC

ε=0.0005
ε=0.001
ε=0.002
ε=0.005
ε=0.01

Greater savings because of greater cost on finer grids
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Parabolic SPDE

Unusual parabolic SPDE arises in CDO modelling
(Bush, Hambly, Haworth & Reisinger)

dp = −µ
∂p

∂x
dt+

1

2

∂2p

∂x2
dt+

√
ρ
∂p

∂x
dW

with absorbing boundary p(0, t) = 0

derived in limit as number of firms −→ ∞
x is distance to default

p(x, t) is probability density function

dW term corresponds to systemic risk

∂2p/∂x2 comes from idiosyncratic risk
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Parabolic SPDE

numerical discretisation combines Milstein
time-marching with central difference approximations

coarsest level of approximation uses 1 timestep per
quarter, and 10 spatial points

each finer level uses four times as many timesteps,
and twice as many spatial points – ratio is due to
numerical stability constraints

mean-square stability theory, with and without
absorbing boundary

computational cost Cℓ ∝ 8ℓ

numerical results suggest variance Vℓ ∝ 8−ℓ

can prove Vℓ ∝ 16−ℓ when no absorbing boundary

Multilevel SPDEs – p. 21



Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:
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Parabolic SPDE

Fractional loss on equity tranche of a 5-year CDO:
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Parabolic SPDE

Milstein and central difference discretisation leads to

vn+1
j = vnj − µ k +

√
ρ k Zn

2h

(
vnj+1 − vnj−1

)

+
(1−ρ) k + ρ k Z2

n

2h2
(
vnj+1 − 2vnj + vnj−1

)

where Zn ∼ N(0, 1).

Considering a Fourier mode

vnj = gn exp(ijθ), |θ| ≤ π

leads to . . .
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Parabolic SPDE

gn+1 =
(
a(θ) + b(θ)Zn + c(θ)Z2

n

)
gn,

where

a(θ) = 1− i µ k

h
sin θ − 2 (1−ρ) k

h2
sin2 θ

2 ,

b(θ) = − i
√
ρ k

h
sin θ,

c(θ) = − 2 ρ k

h2
sin2 θ

2 .
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Parabolic SPDE

Following the approach of mean-square stability analysis
(e.g. see Higham)

E[ |gn+1|2] = E
[
(a+ b Zn + c Z2

n)(a
∗ + b∗Zn + c∗Z2

n) |gn|2
]

=
(
|a+c|2 + |b|2 + 2|c|2

)
E
[
|gn|2

]

so stability requires |a+c|2 + |b|2 + 2|c|2 ≤ 1 for all θ,
which leads to a timestep stability limit:

µ2k ≤ 1− ρ,

k

h2
≤ (1 + 2ρ2)−1.
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Parabolic SPDE

This can be extended to finite domains using matrix stability
analysis, writing the discrete equations as

Vn+1 = (A+B Zn + C Z2
n) Vn, where

A = I−µ k

2h
D1+

(1−ρ) k

2h2
D2, B = −

√
ρ k

2h
D1, C =

ρ k

2h2
D2,

and D1 and D2 look like

D1 =




0 1

−1 0 1

−1 0 1

−1 0


 , D2 =




−2 1

1 −2 1

1 −2 1

1 −2


 .
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Parabolic SPDE

E[V T
n+1Vn+1] = E

[
V T
n (AT +BT Zn + CT Z2

n)(A+B Zn + C Z2
n) Vn

]

= E
[
V T
n

(
(A+C)T (A+C) + BTB + 2CTC

)
Vn

]

D1 is anti-symmetric and D2 is symmetric, and

D1D2 −D2D1 = E1 − E2, D2
1 = D3 + E1 + E2

where D3 looks like

D3 =




−3 0 1

0 −2 0 1

1 0 −2 0

1 0 −3


 ,
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Parabolic SPDE

and E1 and E2 are zero apart from one corner element,

E1 =




2

 , E2 =




2




This leads to

E
[
V T
n

(
(A+C)T (A+C) +BTB + 2CTC

)
Vn

]

= E
[
V T
n MVn

]
− (e1 + e2)E[(v

n
1 )

2]− (e1 − e2)E[(v
n
J−1)

2],

where e1 and e2 are scalars and

M = I − k

h2
D2 +

k2

4h4
D2

2 −
(

ρk

4h2
+

µ2k2

4h2

)
D3.
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Parabolic SPDE

It can be verified that the mth eigenvector of M is a Fourier
mode and the associated eigenvalue is

|a(θm)+c(θm)|2 + |b(θm)|2 + 2|c(θm)|2

where a(θ), b(θ), c(θ) are the same functions as before.

In the limit h, k/h → 0, e1±e2 > 0, and therefore the Fourier
stability condition

sup
θ

{
|a(θ)+c(θ)|2 + |b(θ)|2 + 2|c(θ)|2

}
≤ 1

is also a sufficient condition for mean-square matrix stability.
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Conclusions

multilevel Monte Carlo greatly reduces the cost of
SPDE simulations, making it feasible for the first time for
engineering applications

future work on elliptic SPDEs will move to 3D (which
requires efficient solvers for each PDE solution), and
less idealistic modelling (which requires work on
creating stochastic instances of the permeability field)

numerical analysis is tough, but Charrier, Scheichl &
Teckentrup have made excellent progress on finite
element analysis of the variance of the multilevel
correction

most interesting aspect of unusual parabolic SPDE
application is the numerical stability analysis
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Papers

K.A. Cliffe, M.B. Giles, R. Scheichl and A.L. Teckentrup,
Multilevel Monte Carlo methods and applications to
elliptic PDEs with random coefficients, Computing and
Visualisation in Science, 2011.

J. Charrier, R. Scheichl and A.L. Teckentrup,
Finite element error analysis of elliptic PDEs with
random coefficients and its application to multilevel
Monte Carlo methods, submitted, 2011.

M.B. Giles and C. Reisinger,
Stochastic finite differences and multilevel Monte Carlo
for a class of SPDEs in finance, submitted, 2011.

people.maths.ox.ac.uk/gilesm/mlmc.html
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MLMC Community Webpage

people.maths.ox.ac.uk/gilesm/mlmc community.html

I will try to keep this updated with papers and presentations
by key researchers in MLMC from around the world.

Germany is well represented, partly due to DFG SPP 1324
which has sponsored this workshop.
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