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Computing

Computing used to be fairly simple:

a computer had one CPU with one computing “core”

programs were sequential, with one “thread” of
execution doing one operation after another

could rely on computer engineers to make them twice
as fast every 18 months without any programming
changes
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Computing

However, those days are long gone:

a server now has 2-4 CPUs, each with 2-12 cores

with 2 threads often running on each core, this gives a
total of up to 96 threads working in parallel on a single
application

unfortunately, the programmer has to take responsibility
for most of this – can’t just rely on the compiler to take
care of it

the good news – because of this parallelism, the overall
compute speed is still doubling every 18 months
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Computing
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Computing

And if you thought that was complicated . . .

graphics chips (GPUs) originally designed for graphics
and computer games, are now programmable and
capable of high performance computing

NVIDIA GPUs have up to 512 cores, arranged as
16 units each with 32 cores working as a vector unit
(i.e. all 32 doing the same operation at the same time
but with different data)

typically lots of threads per core (to hide the effect of
delays in fetching data from memory) so often up to
10,000 threads running at the same time on one GPU

can be quite challenging to do the programming
– needs a good understanding of the hardware
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Software Challenges

HPC application developers want the benefits of the
latest hardware but are very worried about the software
development costs, and the level of expertise required

status quo is not an option – running 24 MPI processes
on a single CPU would give very poor performance,
plus we need to exploit the vector units

For GPUs, I’m happy with NVIDIA’s CUDA (C with
extensions) but like MPI it’s too low-level for many

For CPUs, MPI + OpenMP may be a good starting
point, and PGI/CRAY are proposing OpenMP
extensions which would support GPUs and vector units

However, hardware is likely to change rapidly in next
few years, and developers can not afford to keep
changing their software implementation
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Software Abstraction

To address these challenges, need to move to a suitable
level of abstraction:

separate the user’s specification of the application from
the details of the parallel implementation

aim to achieve application level longevity with the
top-level specification not changing for perhaps 10
years

aim to achieve near-optimal performance through
re-targetting the back-end implementation to different
hardware and low-level software platforms
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Context

Unstructured grid methods are one of Phil Colella’s seven
dwarfs (Parallel Computing: A View from Berkeley)

dense linear algebra

sparse linear algebra

spectral methods

N-body methods

structured grids

unstructured grids

Monte Carlo

Extensive GPU work for the other dwarfs, except perhaps
for direct sparse linear algebra.
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Other work

an increasing number of “one-off” applications,
particularly for unstructured grid CFD

project at George Mason University on auto-porting of
FEFLO CFD code to CUDA, using code parsing and
generation

Liszt project at Stanford
similar goals to ours
funded as part of PSAAP (Predictive Science
Academic Alliance Program)
defines a domain-specific language using Scala
software from ETH Zurich
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Context

Part of a larger project led by Paul Kelly at Imperial College
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History

OPlus (Oxford Parallel Library for Unstructured Solvers)

developed for Rolls-Royce 10 years ago

MPI-based library for HYDRA CFD code on clusters
with up to 200 nodes

OP2:

open source project

keeps OPlus abstraction, but slightly modifies API

an “active library” approach with code transformation to
generate CUDA, OpenCL and OpenMP/AVX code
for GPUs and CPUs
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OP2 Abstraction

sets (e.g. nodes, edges, faces)

datasets (e.g. flow variables)

mappings (e.g. from edges to nodes)

parallel loops
operate over all members of one set
datasets have at most one level of indirection
user specifies how data is used
(e.g. read-only, write-only, increment)
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OP2 Restrictions

set elements can be processed in any order, doesn’t
affect result to machine precision

explicit time-marching, or multigrid with an explicit
smoother is OK
Gauss-Seidel or ILU preconditioning in not

static sets and mappings (no dynamic grid adaptation)
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OP2 API

op init(int argc, char **argv)

op decl set(int size, op set *set, char *name)

op decl map(op set from, op set to, int dim,
int *imap, op map *map, char *name)

op decl const(int dim, char *type,
T *dat, char *name)

op decl dat(op set set, int dim, char *type,
T *dat, op dat *data, char *name)

op exit()
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OP2 API

Example of parallel loop syntax for a sparse matrix-vector
product:

op par loop 3(res,"res", edges,
A, -1,OP ID, 1,"float",OP READ,
u, 0,pedge2,1,"float",OP READ,
du, 0,pedge1,1,"float",OP INC);

This is equivalent to the C code:

for (e=0; e<nedges; e++)
du[pedge1[e]] += A[e] * u[pedge2[e]];

where each “edge” corresponds to a non-zero element in
the matrix A, and pedge1 and pedge2 give the
corresponding row and column indices.
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User build processes

Using the same source code, the user can build different
executables for different target platforms:

sequential single-thread CPU execution
purely for program development and debugging
very poor performance

CUDA / OpenCL for single GPU

OpenMP/AVX for multicore CPU systems

MPI plus any of the above for clusters
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Sequential build process

Traditional build process, linking to a conventional library
in which many of the routines do little but error-checking:

op seq.h jac.cpp- op seq.c

? ?'

&

$

%
make / g++
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CUDA build process

Preprocessor parses user code and generates new code:

jac.cpp

?�
�

�
�op2.m preprocessor

? ? ?

jac op.cpp jac kernels.cu res kernel.cu
update kernel.cu

op lib.cu

? ? ?

�

�
�

�
�make / nvcc / g++
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GPU Parallelisation

Could have up to 10
6 threads in 3 levels of parallelism:

MPI distributed-memory parallelism (1-100)
one MPI process for each GPU
all sets partitioned across MPI processes, so each
MPI process only holds its data (and halo)

block parallelism (50-1000)
on each GPU, data is broken into mini-partitions,
worked on separately and in parallel by different
functional units in the GPU

thread parallelism (32-128)
each mini-partition is worked on by a block of
threads in parallel
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GPU Parallelisation

The 14 units in an NVIDIA C2050/70 GPU each have

32 cores

48kB of shared memory and 16kB of L1 cache
(or vice versa)

Mini-partitions are sized so that all of the indirect data
can be held in shared memory and re-used as needed

reduces data transfer from/to main graphics memory

very similar to maximising cache hits on a CPU to
minimise data transfer from/to main system memory

implementation requires re-numbering from global
indices to local indices – tedious but not difficult
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GPU Parallelisation

One important difference from MPI parallelisation

when using one GPU, all data is held in graphics
memory in between each parallel loop

each loop can use a different set of mini-partitions

current implementation constructs an “execution plan”
the first time the loop is encountered

auto-tuning will be used in the future to optimise the
plan, either statically based on profiling data, or
dynamically based on run-time timing
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Data dependencies

Key technical issue is data dependency when incrementing
indirectly-referenced arrays.

e.g. potential problem when two edges update same node
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Data dependencies

Method 1: “owner” of nodal data does edge computation

drawback is redundant computation when the two
nodes have different “owners”
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Data dependencies

Method 2: “color” edges so no two edges of the same color
update the same node

parallel execution for each color, then synchronize

possible loss of data reuse and some parallelism
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Data dependencies

Method 3: use “atomic” add which combines read/add/write
into a single operation

avoids the problem but needs hardware support

drawback is slow hardware implementation

?

time

without atomics with atomics
thread 0 thread 1

read

add

write

read

add

write

thread 0 thread 1

atomic add

atomic add
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Data dependencies

Which is best for each level?

MPI level: method 1
each MPI process does calculation needed to
update its data
partitions are large, so relatively little redundant
computation

GPU level: method 2
plenty of blocks of each color so still good parallelism
data reuse within each block, not between blocks

block level: method 2
indirect data in local shared memory, so get reuse
individual threads are colored to avoid conflict when
incrementign shared memory
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Current status

Initial prototype, with code parser/generator written in
MATLAB, can generate:

CUDA code for a single GPU

OpenMP code for multiple CPUs

The parallel loop API requires redundant information:

simplifies MATLAB program generation – just need to
parse loop arguments, not entire code

numeric values for dataset dimensions enable compiler
optimisation of CUDA code

“programming is easy; it’s debugging which is difficult”
– not time-consuming to specify redundant information
provided consistency is checked automatically
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Airfoil test code

2D Euler equations, cell-centred finite volume method
with scalar dissipation (miminal compute per memory
reference – should consider switching to more
compute-intensive “characteristic” smoothing more
representative of real applications)

roughly 1.5M edges, 0.75M cells

5 parallel loops:
save soln (direct over cells)
adt calc (indirect over cells)
res calc (indirect over edges)
bres calc (indirect over boundary edges)
update (direct over cells with RMS reduction)
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Airfoil test code

Current performance relative to a single CPU thread:

35× speedup on a single GPU

7× speedup for 2 quad-core CPUs

OpenMP performance seems bandwidth-limited – loops
use in excess of 20GB/s bandwidth from main memory.

CUDA performance also seems bandwidth-limited:

count time GB/s GB/s kernel name
1000 0.2137 107.8126 save_soln
2000 1.3248 61.0920 63.1218 adt_calc
2000 5.6105 32.5672 53.4745 res_calc
2000 0.1029 4.8996 18.4947 bres_calc
2000 0.8849 110.6465 update
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Airfoil test code

Library is instrumented to give lots of diagnostic info:
new execution plan #1 for kernel res_calc
number of blocks = 11240
number of block colors = 4
maximum block size = 128
average thread colors = 4.00
shared memory required = 3.72 KB
average data reuse = 3.20
data transfer (used) = 87.13 MB
data transfer (total) = 143.06 MB

factor 2-4 data reuse in indirect access, but up to 40%
of cache lines not used on average

best performance achieved 8 thread blocks, each with
128 threads, running at same time in each SM
(streaming multiprocessor) OP2 – p. 31



Lessons learned so far

1) Code generation works, and it’s not too difficult!

in the past I’ve been scared of code generation since I
have no computer science background

key is the routine arguments have all of the information
required, so no need to parse the entire user code

now helping a maths student develop a code generator
for stochastic simulations in computational biology

a generic solver is inefficient – a “hand-coded”
specialised implementation for one specific model is
much faster
code generator takes in model specification and tries
to produce “hand-coded” custom implementation
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Lessons learned so far

2) The thing which is now causing me most difficulty /
concern is the limited number of registers per thread

limited to about 50 32-bit registers per thread

above this the data is spilled to L1 cache, but only 16kB
of this so when using 256 threads only an extra 16
32-bit variables

above this the data is spilled to L2 cache, which is
384kB but shared between all of the units in the GPU,
so only an extra 48 32-bit variables

the compiler can maybe be improved, but also there are
tricks an expert programmer can use

points to the benefits of an expert framework which
does this for novice programmers

OP2 – p. 33



Lessons learned so far

3) Auto-tuning is going to be important

there are various places in the CUDA code where I
have a choice of parameter values (e.g. number of
threads, number of blocks, size of mini-partitions, use of
L1 cache, 16kB/48kB split between L1 cache and
shared memory)

there are also places where I have a choice of
implementation strategy (e.g. thread coloring or atomic
updates?)

what I would like is a generic auto-tuning framework
which will optimise these choices for me, given a
reasonably small set of possible values

as a first step, a undergraduate CS student is working
with me on a 3rd year project on this
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Lessons learned so far

4) Unstructured grids lead to lots of integer pointer
arithmetic

“free” on CPUs due to integer pipelines

costs almost as much as floating point operations on
GPU, at least in single precision

reduces maximum benefits from GPUs?

5) Open source development leads to great collaboration

others test code and find bugs – even better, they figure
out how to fix them

will share code development in the future

everything is available on project webpage:
http://people.maths.ox.ac.uk/gilesm/op2/
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Conclusions

have created a high-level framework for parallel
execution of algorithms on unstructured grids

looks encouraging for providing ease-of-use, high
performance, and longevity through new back-ends

next step is addition of MPI layer for cluster computing

key challenge then is to build user community
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