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SDEs in Finance

In computational finance, stochastic differential equations
are used to model the behaviour of

stocks

interest rates

exchange rates

weather

electricity/gas demand

crude oil prices

. . .

The stochastic term accounts for the uncertainty of
unpredictable day-to-day events.
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SDEs in Finance

Examples:

Geometric Brownian motion (Black-Scholes model for
stock prices)

dS = r S dt + σ S dW

Cox-Ingersoll-Ross model (interest rates)

dr = α(b − r) dt + σ
√

r dW

Heston stochastic volatility model (stock prices)

dS = r S dt +
√

V S dW1

dV = λ (σ2−V ) dt + ξ
√

V dW2

with correlation ρ between dW1 and dW2
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Generic Problem

SDE with general drift and volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

In many finance applications, we want to compute the
expected value of an option dependent on the terminal state

P ≡ f(S(T ))

Initially, will assume the “payoff” function f(U) has a uniform
Lipschitz bound,

|f(U) − f(V )| ≤ c ‖U − V ‖ , ∀ U, V.
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Standard MC Approach

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn

and Milstein discretisation for a scalar SDE:

Ŝn+1 = Ŝn + an h + bn ∆Wn + 1
2 b′n bn

(
(∆Wn)2 − h

)
.

Simplest estimator for expected payoff is an average of N

independent path simulations:

Ŷ = N−1
N∑

i=1

P̂ (i)
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Standard MC Approach

The mean square error is defined as

E

[(
Ŷ − E[P ]

)2
]

= E

[(
Ŷ −E[P̂ ] + E[P̂ ]−E[P ]

)2
]

= E

[
(Ŷ −E[P̂ ])2

]
+ (E[P̂ ]−E[P ])2

= N−1V[P̂ ] +
(
E[P̂ ]−E[P ]

)2

first term is due to variance of estimator

second term is due to bias due to finite timestep
– weak convergence
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Standard MC Approach

Weak convergence:

error in the expected value, E[P̂ ]−E[P ]

most important error in most applications

O(h) for both the Euler and Milstein discretisations

Strong convergence:

error in path approximation√

E

[∥∥∥ŜT/h − S(T )
∥∥∥

2
]

or

√

E

[
max

0<t<T

∥∥∥Ŝ(t) − S(t)
∥∥∥

2
]

usually not relevant, but important for multilevel method

O(h1/2) for the Euler discretisation
O(h) for the Milstein discretisation
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Standard MC Approach

Combined mean-square-error is O(N−1 + h2).

To make this equal to ε2 requires

N = O(ε−2), h = O(ε) =⇒ cost = O(N h−1) = O(ε−3)

Aim is to improve this cost to O(ε−2), by combining
simulations with different numbers of timesteps – same
accuracy as finest calculations, but at a much lower
computational cost.

Note: objective is equivalent to using O(1) timesteps per
path, on average.
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Multilevel MC Approach

Consider multiple sets of simulations with different
timesteps hl = 2−l T, l = 0, 1, . . . , L, and payoff P̂l

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key point: approximate E[P̂l−P̂l−1] using Nl simulations
with P̂l and P̂l−1 obtained using same Brownian path.

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
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Multilevel MC Approach

Discrete Brownian path at different levels
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Multilevel MC Approach

Using independent paths for each level, the variance of the
combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡ V[P̂l−P̂l−1],

and the computational cost is proportional to
L∑

l=0

Nl h
−1
l .

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl hl.

The constant of proportionality can be chosen so that the
combined variance is O(ε2).
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Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff

V[P̂−P ] ≤ E[(P̂−P )2] ≤ c2 E

[∣∣∣ŜN−S(T )
∣∣∣
2
]

= O(h)

so V[P̂l−P̂l−1] = O(hl) and the optimal Nl is O(hl).

To make the combined variance O(ε2) requires

Nl = O(ε−2Lhl).

To make the bias O(ε) needs hL =O(ε) =⇒ L=O(log2 ε−1)

Hence, we obtain an O(ε2) MSE for a computational cost
which is O(ε−2L2) = O(ε−2(log ε)2).
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Multilevel MC Approach

For the Milstein discretisation

V[P̂l−P ] = O(h2
l ) =⇒ V[P̂l−P̂l−1] = O(h2

l )

and the optimal Nl is asymptotically proportional to h
3/2
l .

To make the combined variance O(ε2) requires

Nl = O(ε−2 h
3/2
l )

and hence we obtain an O(ε2) MSE for a computational
cost which is O(ε−2).
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Results

Geometric Brownian motion:

dS = r S dt + σ S dW, 0 < t < T,

T =1, S(0)=100, r=0.05, σ=0.2

European call option with discounted payoff

exp(−rT ) max(S(T )−K, 0)

with K =100.

Numerical results use the Milstein discretisation
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MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)

0 2 4 6 8

−15

−10

−5

0

5

10

level l

lo
g 2 v

ar
ia

nc
e

 

 

P
l

P
l
− P

l−1

0 2 4 6 8
−12

−10

−8

−6

−4

−2

0

2

4

6

level l

lo
g 2 |m

ea
n|

 

 

P
l

P
l
− P

l−1

Multilevel Monte Carlo – p. 15/41



MLMC Results

GBM: European call, exp(−rT ) max(S(T )−K, 0)
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Multilevel MC Approach

Theorem: Let P be a functional of the solution of an s.d.e., and P̂l the

discrete approximation using a timestep hl = M−l T .

If there exist independent estimators Ŷl based on Nl Monte Carlo

samples, and positive constants α≥ 1
2 , β, c1, c2, c3 such that

i)
∣∣∣E[P̂l − P ]

∣∣∣ ≤ c1 hα
l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l − P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l h

β
l

iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3 Nl h
−1
l
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Multilevel MC Approach

then there exists a positive constant c4 such that for any ε<e−1 there
are values L and Nl for which the multi-level estimator

Ŷ =
L∑

l=0

Ŷl,

has Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational complexity C with bound

C ≤






c4 ε−2, β > 1,

c4 ε−2(log ε)2, β = 1,

c4 ε−2−(1−β)/α, 0 < β < 1.
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Digital Options

What if we don’t have the Lipschitz property?

A digital call payoff has the form

f(S(T )) =

{
1, S(T ) > K

0, S(T ) ≤ K

When using the Milstein discretisation

in most cases, fine and coarse paths are on same side
of K, so P̂l − P̂l−1 = 0

for O(hl) of the paths, fine and coarse paths end up on
different sides of K so P̂l − P̂l−1 = ±1

Hence E[(P̂l−P̂l−1)
2] and V[P̂l−P̂l−1] are both O(hl).
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MLMC Results

GBM: digital call K exp(−rT )1{S(T ) > K}
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MLMC Results

GBM: digital call K exp(−rT )1{S(T ) > K}
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Digital Options

What is needed is to smooth the payoff.

On the fine path simulation, can stop one timestep before
the end and use a conditional expectation for the final value.

P̂l = EZ [f(ŜN ) | ŜN−1]

where (for a scalar SDE)

ŜN = ŜN−1 + aN−1 h + bN−1

√
h Z

The key is that we know that

EZ [f(ŜN )|ŜN−1] = Φ

(
ŜN−1 + aN−1h − K

bN−1

√
h

)

where Φ() is the cumulative Normal distribution function.
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Digital Options

What about the coarse path?

Could use

P̂l−1 = E[f(Ŝc
N ) | Ŝc

N−2] = Φ

(
Ŝc

N−2 + 2 ac
N−2h − K

bc
N−1

√
2h

)

but this gives P̂l − P̂l−1 = O(1) for paths near K, so no
benefit

Instead, we want to define P̂l−1 so that

P̂l − P̂l−1 is small

E[P̂l−1] = E[f(Ŝc
N ) | Ŝc

N−2]
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Digital Options

Starting from

Ŝc
N = Ŝc

N−2 + 2 ac
N−2 h + bc

N−2

(
∆W +

√
h Z

)

where ∆W for first half timestep is same as for fine path,
set

P̂l−1 = EZ [f(Ŝc
N ) | Ŝc

N−2,∆W ]

= Φ

(
Ŝc

N−2 + 2 ac
N−2h + bc

N−2∆W − K

bc
N−2

√
h

)

for which

P̂l − P̂l−1 = O(h1/2) for paths near K

E∆W

{
EZ [f(Ŝc

N ) | Ŝc
N−2,∆W ]

}
= E[f(Ŝc

N ) | Ŝc
N−2]
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MLMC Results

GBM: digital call K exp(−rT )1{S(T ) > K}
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MLMC Results

GBM: digital call K exp(−rT )1{S(T ) > K}
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Digital Options

What if we don’t have an analytic expression for the
conditional expectation?

Or if the payoff function is provided as a “black-box”?

Two solutions:

use a change of measure

use “splitting”
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Change of Measure

If we have two probability distributions P and Q with
probability density functions p

P
(x) and p

Q
(x) then

EP[f(x)] =

∫
p

P
(x) f(x) dx

=

∫
p

Q
(x)

p
P
(x)

p
Q
(x)

f(x) dx

= EQ[r(x) f(x)]

where r(x) =
p

P
(x)

p
Q
(x)

is the Radon-Nikodym derivative.

(This is used in importance sampling to reduce the variance
when the payoff is rarely non-zero)
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Change of Measure

In our case, Pc and Pf corresponds to the conditional
terminal distributions for the coarse and fine paths,
and Q is a similar Gaussian distribution

We then get

P̂l − P̂l−1 = EPf
[f ] − EPc

[f ]

= EQ[rff ] − EQ[rcf ] = EQ[(rf−rc)f ]

Also, if f ≡ 1 we get EQ[rf−rc] = 0, and hence when f 6= 1

P̂l − P̂l−1 = EQ[(rf−rc)(f−f0)]

where f0 is any fixed value (e.g. at peak of Q)
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Change of Measure

Q is taken to have a mean which is the average of the
means for the coarse and fine paths, and a variance which
is equal to the sum of their variances (not the average)

This makes rf−rc small in the tails where f−f0 is largest.

The expectation can be estimated using a simgle sample

For O(h1/2) paths near the strike, rf−rc = O(h1/2) and
f−f0 = O(1), while for remainder f−f0 = 0.

Hence, V[P̂l−P̂l−1] = O(h
3/2
l )
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Change of Measure

GBM: digital call K exp(−rT )1{S(T ) > K}
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Change of Measure

GBM: digital call K exp(−rT )1{S(T ) > K}
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Splitting

Splitting uses multiple samples to estimate the value of the
final conditional expectation.

If W and Z are independent random variables, then for any
function g(W,Z) the estimator

ŶM,N = N−1
N∑

n=1

(
M−1

M∑

m=1

g(W (n), Z(m,n))

)

with independent samples W (n) and Z(m,n) is an unbiased
estimator for EW,Z [g(W,Z)] ≡ EW

[
EZ [g(W,Z) |W ]

]
, and its

variance is

N−1 VW

[
EZ [g(W,Z) |W ]

]
+ (MN)−1 EW

[
VZ [g(W,Z) |W ]

]
.
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Splitting

Going back to the original multilevel estimator
(no conditional expectation) can argue that

VW

[
EZ [g(W,Z) |W ]

]
= O(h3/2)

EW

[
VZ [g(W,Z) |W ]

]
= O(h)

where g(W,Z) ≡ P̂l−P̂l−1. Hence, provided

h−1/2 ≪ M ≪ h−1

get same asymptotic variance as analytic expectation,
and at same asymptotic cost.
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Splitting

GBM: digital call K exp(−rT )1{S(T ) > K}
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Splitting

GBM: digital call K exp(−rT )1{S(T ) > K}
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Basket Option

The technqiues extend naturally to multivariate cases.

For example, the analytic conditional expectation can be
used for a basket option in which the payoff is based on a
weighted average of several stocks.

Basket of 5 underlying assets, each GBM with

r = 0.05, T = 1, Si(0) = 100, σ = (0.2, 0.25, 0.3, 0.35, 0.4),

and correlation ρ = 0.25 between each of the driving
Brownian motions.
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Basket Option

GBM: digital call on basket of 5 assets

0 2 4 6 8

−15

−10

−5

0

5

10

level l

lo
g 2 v

ar
ia

nc
e

 

 

P
l

P
l
− P

l−1

0 2 4 6 8
−12

−10

−8

−6

−4

−2

0

2

4

6

level l

lo
g 2 |m

ea
n|

 

 

P
l

P
l
− P

l−1

Multilevel Monte Carlo – p. 38/41



Basket Option

GBM: digital call on basket of 5 assets
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Conclusions

Multilevel Monte Carlo method delivers an improved
order of complexity for many applications

Discontinuous payoffs pose an interesting challenge,
but can be treated using conditional expectation to
smooth the payoff

For cases without analytic values, can use either
“splitting” or a change of measure

Conditional expectation and “splitting” can be analysed
rigorously; the change of measure is tougher

Can also handle cases in which the payoff depends on
values at intermediate times
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