# Multilevel Monte Carlo for Discontinuous Payoffs

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute
Oxford-Man Institute of Quantitative Finance

University of Warwick, Nov 6th, 2009

#### **SDEs** in Finance

In computational finance, stochastic differential equations are used to model the behaviour of

- stocks
- interest rates
- exchange rates
- weather
- electricity/gas demand
- crude oil prices
- **.** . . .

The stochastic term accounts for the uncertainty of unpredictable day-to-day events.

#### **SDEs** in Finance

#### Examples:

 Geometric Brownian motion (Black-Scholes model for stock prices)

$$dS = r S dt + \sigma S dW$$

Cox-Ingersoll-Ross model (interest rates)

$$dr = \alpha(b - r) dt + \sigma \sqrt{r} dW$$

Heston stochastic volatility model (stock prices)

$$dS = r S dt + \sqrt{V} S dW_1$$
  

$$dV = \lambda (\sigma^2 - V) dt + \xi \sqrt{V} dW_2$$

with correlation  $\rho$  between  $dW_1$  and  $dW_2$ 

#### Generic Problem

SDE with general drift and volatility terms:

$$dS(t) = a(S, t) dt + b(S, t) dW(t)$$

In many finance applications, we want to compute the expected value of an option dependent on the terminal state

$$P \equiv f(S(T))$$

Initially, will assume the "payoff" function f(U) has a uniform Lipschitz bound,

$$|f(U) - f(V)| \le c \|U - V\|, \quad \forall U, V.$$

Euler discretisation with timestep *h*:

$$\widehat{S}_{n+1} = \widehat{S}_n + a(\widehat{S}_n, t_n) h + b(\widehat{S}_n, t_n) \Delta W_n$$

and Milstein discretisation for a scalar SDE:

$$\widehat{S}_{n+1} = \widehat{S}_n + a_n h + b_n \Delta W_n + \frac{1}{2} b'_n b_n \left( (\Delta W_n)^2 - h \right).$$

Simplest estimator for expected payoff is an average of N independent path simulations:

$$\widehat{Y} = N^{-1} \sum_{i=1}^{N} \widehat{P}^{(i)}$$

The mean square error is defined as

$$\mathbb{E}\left[\left(\widehat{Y} - \mathbb{E}[P]\right)^{2}\right] = \mathbb{E}\left[\left(\widehat{Y} - \mathbb{E}[\widehat{P}] + \mathbb{E}[\widehat{P}] - \mathbb{E}[P]\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\widehat{Y} - \mathbb{E}[\widehat{P}]\right)^{2}\right] + (\mathbb{E}[\widehat{P}] - \mathbb{E}[P])^{2}$$

$$= N^{-1}\mathbb{V}[\widehat{P}] + \left(\mathbb{E}[\widehat{P}] - \mathbb{E}[P]\right)^{2}$$

- first term is due to variance of estimator
- second term is due to bias due to finite timestep
  - weak convergence

#### Weak convergence:

- error in the expected value,  $\mathbb{E}[\widehat{P}] \mathbb{E}[P]$
- most important error in most applications
- O(h) for both the Euler and Milstein discretisations

#### Strong convergence:

error in path approximation

$$\sqrt{\mathbb{E}\left[\left\|\widehat{S}_{T/h} - S(T)\right\|^2\right]}$$
 or  $\sqrt{\mathbb{E}\left[\max_{0 < t < T}\left\|\widehat{S}(t) - S(t)\right\|^2\right]}$ 

- usually not relevant, but important for multilevel method
- $O(h^{1/2})$  for the Euler discretisation O(h) for the Milstein discretisation

Combined mean-square-error is  $O(N^{-1} + h^2)$ .

To make this equal to  $\varepsilon^2$  requires

$$N = O(\varepsilon^{-2}), \quad h = O(\varepsilon) \implies \cos t = O(N h^{-1}) = O(\varepsilon^{-3})$$

Aim is to improve this cost to  $O(\varepsilon^{-2})$ , by combining simulations with different numbers of timesteps – same accuracy as finest calculations, but at a much lower computational cost.

Note: objective is equivalent to using  $\mathcal{O}(1)$  timesteps per path, on average.

Consider multiple sets of simulations with different timesteps  $h_l = 2^{-l} T$ , l = 0, 1, ..., L, and payoff  $\widehat{P}_l$ 

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{l=1}^L \mathbb{E}[\widehat{P}_l - \widehat{P}_{l-1}]$$

Expected value is same – aim is to reduce variance of estimator for a fixed computational cost.

Key point: approximate  $\mathbb{E}[\widehat{P}_l - \widehat{P}_{l-1}]$  using  $N_l$  simulations with  $\widehat{P}_l$  and  $\widehat{P}_{l-1}$  obtained using <u>same</u> Brownian path.

$$\widehat{Y}_{l} = N_{l}^{-1} \sum_{i=1}^{N_{l}} \left( \widehat{P}_{l}^{(i)} - \widehat{P}_{l-1}^{(i)} \right)$$

Discrete Brownian path at different levels



Using independent paths for each level, the variance of the combined estimator is

$$\mathbb{V}\left[\sum_{l=0}^{L} \widehat{Y}_{l}\right] = \sum_{l=0}^{L} N_{l}^{-1} V_{l}, \qquad V_{l} \equiv \mathbb{V}[\widehat{P}_{l} - \widehat{P}_{l-1}],$$

and the computational cost is proportional to  $\sum_{l=0}^{L} N_l h_l^{-1}$ .

Hence, the variance is minimised for a fixed computational cost by choosing  $N_l$  to be proportional to  $\sqrt{V_l h_l}$ .

The constant of proportionality can be chosen so that the combined variance is  $O(\varepsilon^2)$ .

For the Euler discretisation and the Lipschitz payoff

$$\mathbb{V}[\widehat{P} - P] \leq \mathbb{E}[(\widehat{P} - P)^2] \leq c^2 \mathbb{E}\left[\left|\widehat{S}_N - S(T)\right|^2\right] = O(h)$$

so  $\mathbb{V}[\widehat{P}_l - \widehat{P}_{l-1}] = O(h_l)$  and the optimal  $N_l$  is  $O(h_l)$ .

To make the combined variance  $O(\varepsilon^2)$  requires

$$N_l = O(\varepsilon^{-2}L\,h_l).$$

To make the bias  $O(\varepsilon)$  needs  $h_L = O(\varepsilon) \implies L = O(\log_2 \varepsilon^{-1})$ 

Hence, we obtain an  $O(\varepsilon^2)$  MSE for a computational cost which is  $O(\varepsilon^{-2}L^2) = O(\varepsilon^{-2}(\log \varepsilon)^2)$ .

For the Milstein discretisation

$$\mathbb{V}[\widehat{P}_l - P] = O(h_l^2) \quad \Longrightarrow \quad \mathbb{V}[\widehat{P}_l - \widehat{P}_{l-1}] = O(h_l^2)$$

and the optimal  $N_l$  is asymptotically proportional to  $h_l^{3/2}$ .

To make the combined variance  $O(\varepsilon^2)$  requires

$$N_l = O(\varepsilon^{-2} h_l^{3/2})$$

and hence we obtain an  $O(\varepsilon^2)$  MSE for a computational cost which is  $O(\varepsilon^{-2})$ .

#### **Results**

Geometric Brownian motion:

$$dS = r S dt + \sigma S dW, \qquad 0 < t < T,$$

$$T=1$$
,  $S(0)=100$ ,  $r=0.05$ ,  $\sigma=0.2$ 

European call option with discounted payoff

$$\exp(-rT) \max(S(T)-K,0)$$

with K=100.

Numerical results use the Milstein discretisation

#### **MLMC Results**

GBM: European call,  $\exp(-rT) \max(S(T)-K,0)$ 



#### **MLMC Results**

GBM: European call,  $\exp(-rT) \max(S(T)-K,0)$ 



**Theorem:** Let P be a functional of the solution of an s.d.e., and  $\widehat{P}_l$  the discrete approximation using a timestep  $h_l = M^{-l} T$ .

If there exist independent estimators  $\widehat{Y}_l$  based on  $N_l$  Monte Carlo samples, and positive constants  $\alpha \geq \frac{1}{2}, \beta, c_1, c_2, c_3$  such that

i) 
$$\left| \mathbb{E}[\widehat{P}_l - P] \right| \leq c_1 h_l^{\alpha}$$

ii) 
$$\mathbb{E}[\widehat{Y}_l] = \begin{cases} \mathbb{E}[\widehat{P}_0], & l = 0 \\ \mathbb{E}[\widehat{P}_l - \widehat{P}_{l-1}], & l > 0 \end{cases}$$

iii) 
$$\mathbb{V}[\widehat{Y}_l] \leq c_2 N_l^{-1} h_l^{\beta}$$

iv)  $C_l$ , the computational complexity of  $\hat{Y}_l$ , is bounded by

$$C_l \le c_3 \, N_l \, h_l^{-1}$$

**then** there exists a positive constant  $c_4$  such that for any  $\varepsilon < e^{-1}$  there are values L and  $N_L$  for which the multi-level estimator

$$\widehat{Y} = \sum_{l=0}^{L} \widehat{Y}_{l},$$

has Mean Square Error 
$$MSE \equiv E\left[\left(\widehat{Y} - E[P]\right)^2\right] < \varepsilon^2$$

with a computational complexity C with bound

$$C \le \begin{cases} c_4 \varepsilon^{-2}, & \beta > 1, \\ c_4 \varepsilon^{-2} (\log \varepsilon)^2, & \beta = 1, \\ c_4 \varepsilon^{-2 - (1 - \beta)/\alpha}, & 0 < \beta < 1. \end{cases}$$

What if we don't have the Lipschitz property?

A digital call payoff has the form

$$f(S(T)) = \begin{cases} 1, & S(T) > K \\ 0, & S(T) \le K \end{cases}$$

When using the Milstein discretisation

- in most cases, fine and coarse paths are on same side of K, so  $\widehat{P}_l \widehat{P}_{l-1} = 0$
- for  $O(h_l)$  of the paths, fine and coarse paths end up on different sides of K so  $\widehat{P}_l \widehat{P}_{l-1} = \pm 1$

Hence 
$$\mathbb{E}[(\widehat{P}_l - \widehat{P}_{l-1})^2]$$
 and  $\mathbb{V}[\widehat{P}_l - \widehat{P}_{l-1}]$  are both  $O(h_l)$ .

#### **MLMC Results**

GBM: digital call  $K \exp(-rT) \mathbf{1} \{ S(T) > K \}$ 



#### **MLMC Results**

GBM: digital call  $K \exp(-rT) \mathbf{1} \{ S(T) > K \}$ 



What is needed is to smooth the payoff.

On the fine path simulation, can stop one timestep before the end and use a conditional expectation for the final value.

$$\widehat{P}_l = \mathbb{E}_Z[f(\widehat{S}_N) \mid \widehat{S}_{N-1}]$$

where (for a scalar SDE)

$$\widehat{S}_N = \widehat{S}_{N-1} + a_{N-1} h + b_{N-1} \sqrt{h} Z$$

The key is that we know that

$$\mathbb{E}_{Z}[f(\widehat{S}_{N})|\widehat{S}_{N-1}] = \Phi\left(\frac{\widehat{S}_{N-1} + a_{N-1}h - K}{b_{N-1}\sqrt{h}}\right)$$

where  $\Phi()$  is the cumulative Normal distribution function.

What about the coarse path?

Could use

$$\widehat{P}_{l-1} = \mathbb{E}[f(\widehat{S}_{N}^{c}) \mid \widehat{S}_{N-2}^{c}] = \Phi\left(\frac{\widehat{S}_{N-2}^{c} + 2a_{N-2}^{c}h - K}{b_{N-1}^{c}\sqrt{2h}}\right)$$

but this gives  $\widehat{P}_l - \widehat{P}_{l-1} = O(1)$  for paths near K, so no benefit

Instead, we want to define  $\widehat{P}_{l-1}$  so that

- $\widehat{P}_l \widehat{P}_{l-1}$  is small
- $\mathbb{E}[\widehat{P}_{l-1}] = \mathbb{E}[f(\widehat{S}_N^c) \mid \widehat{S}_{N-2}^c]$

#### Starting from

$$\widehat{S}_{N}^{c} = \widehat{S}_{N-2}^{c} + 2 a_{N-2}^{c} h + b_{N-2}^{c} \left( \Delta W + \sqrt{h} \ Z \right)$$

where  $\Delta W$  for first half timestep is same as for fine path, set

$$\widehat{P}_{l-1} = \mathbb{E}_{Z}[f(\widehat{S}_{N}^{c}) | \widehat{S}_{N-2}^{c}, \Delta W] 
= \Phi\left(\frac{\widehat{S}_{N-2}^{c} + 2 a_{N-2}^{c} h + b_{N-2}^{c} \Delta W - K}{b_{N-2}^{c} \sqrt{h}}\right)$$

for which

• 
$$\widehat{P}_l - \widehat{P}_{l-1} = O(h^{1/2})$$
 for paths near  $K$ 

#### **MLMC Results**

GBM: digital call  $K \exp(-rT) \mathbf{1} \{ S(T) > K \}$ 



#### **MLMC Results**

GBM: digital call  $K \exp(-rT) \mathbf{1} \{ S(T) > K \}$ 



What if we don't have an analytic expression for the conditional expectation?

Or if the payoff function is provided as a "black-box"?

#### Two solutions:

- use a change of measure
- use "splitting"

If we have two probability distributions  $\mathbb P$  and  $\mathbb Q$  with probability density functions  $p_{\mathbb P}(x)$  and  $p_{\mathbb O}(x)$  then

$$\mathbb{E}_{\mathbb{P}}[f(x)] = \int p_{\mathbb{P}}(x) f(x) dx$$

$$= \int p_{\mathbb{Q}}(x) \frac{p_{\mathbb{P}}(x)}{p_{\mathbb{Q}}(x)} f(x) dx$$

$$= \mathbb{E}_{\mathbb{Q}}[r(x) f(x)]$$

where  $r(x) = \frac{p_{\mathbb{P}}(x)}{p_{\mathbb{Q}}(x)}$  is the Radon-Nikodym derivative.

(This is used in importance sampling to reduce the variance when the payoff is rarely non-zero)

In our case,  $\mathbb{P}_c$  and  $\mathbb{P}_f$  corresponds to the conditional terminal distributions for the coarse and fine paths, and  $\mathbb{Q}$  is a similar Gaussian distribution

We then get

$$\widehat{P}_{l} - \widehat{P}_{l-1} = \mathbb{E}_{\mathbb{P}_{f}}[f] - \mathbb{E}_{\mathbb{P}_{c}}[f] 
= \mathbb{E}_{\mathbb{Q}}[r_{f}f] - \mathbb{E}_{\mathbb{Q}}[r_{c}f] = \mathbb{E}_{\mathbb{Q}}[(r_{f} - r_{c})f]$$

Also, if  $f \equiv 1$  we get  $\mathbb{E}_{\mathbb{Q}}[r_f - r_c] = 0$ , and hence when  $f \neq 1$ 

$$\widehat{P}_l - \widehat{P}_{l-1} = \mathbb{E}_{\mathbb{Q}}[(r_f - r_c)(f - f_0)]$$

where  $f_0$  is any fixed value (e.g. at peak of  $\mathbb{Q}$ )

Q is taken to have a mean which is the average of the means for the coarse and fine paths, and a variance which is equal to the <u>sum</u> of their variances (not the average)

This makes  $r_f - r_c$  small in the tails where  $f - f_0$  is largest.

The expectation can be estimated using a simgle sample

For  $O(h^{1/2})$  paths near the strike,  $r_f - r_c = O(h^{1/2})$  and  $f - f_0 = O(1)$ , while for remainder  $f - f_0 = 0$ .

Hence, 
$$\mathbb{V}[\widehat{P}_l - \widehat{P}_{l-1}] = O(h_l^{3/2})$$

GBM: digital call  $K \exp(-rT) \mathbf{1} \{ S(T) > K \}$ 



GBM: digital call  $K \exp(-rT) \mathbf{1} \{ S(T) > K \}$ 



Splitting uses multiple samples to estimate the value of the final conditional expectation.

If W and Z are independent random variables, then for any function g(W,Z) the estimator

$$\widehat{Y}_{M,N} = N^{-1} \sum_{n=1}^{N} \left( M^{-1} \sum_{m=1}^{M} g(W^{(n)}, Z^{(m,n)}) \right)$$

with independent samples  $W^{(n)}$  and  $Z^{(m,n)}$  is an unbiased estimator for  $\mathbb{E}_{W,Z}\left[g(W,Z)\right] \equiv \mathbb{E}_{W}\left[\mathbb{E}_{Z}[g(W,Z) \mid W]\right]$ , and its variance is

$$N^{-1} \mathbb{V}_W \left[ \mathbb{E}_Z[g(W,Z) \mid W] \right] + (MN)^{-1} \mathbb{E}_W \left[ \mathbb{V}_Z[g(W,Z) \mid W] \right].$$

Going back to the original multilevel estimator (no conditional expectation) can argue that

$$\mathbb{V}_W \left[ \mathbb{E}_Z [g(W, Z) \mid W] \right] = O(h^{3/2})$$

$$\mathbb{E}_W \left[ \mathbb{V}_Z [g(W, Z) \mid W] \right] = O(h)$$

where  $g(W,Z) \equiv \widehat{P}_l - \widehat{P}_{l-1}$ . Hence, provided

$$h^{-1/2} \ll M \ll h^{-1}$$

get same asymptotic variance as analytic expectation, and at same asymptotic cost.

GBM: digital call  $K \exp(-rT) \mathbf{1} \{ S(T) > K \}$ 



GBM: digital call  $K \exp(-rT) \mathbf{1} \{ S(T) > K \}$ 



#### **Basket Option**

The technquies extend naturally to multivariate cases.

For example, the analytic conditional expectation can be used for a basket option in which the payoff is based on a weighted average of several stocks.

Basket of 5 underlying assets, each GBM with

$$r = 0.05, T = 1, S_i(0) = 100, \sigma = (0.2, 0.25, 0.3, 0.35, 0.4),$$

and correlation  $\rho=0.25$  between each of the driving Brownian motions.

#### **Basket Option**

GBM: digital call on basket of 5 assets



#### **Basket Option**

#### GBM: digital call on basket of 5 assets



#### **Conclusions**

- Multilevel Monte Carlo method delivers an improved order of complexity for many applications
- Discontinuous payoffs pose an interesting challenge, but can be treated using conditional expectation to smooth the payoff
- For cases without analytic values, can use either "splitting" or a change of measure
- Conditional expectation and "splitting" can be analysed rigorously; the change of measure is tougher
- Can also handle cases in which the payoff depends on values at intermediate times

#### **Papers**

"Multilevel Monte Carlo path simulation", *Operations Research*, 56(3):607-617, 2008.

"Improved multilevel Monte Carlo convergence using the Milstein scheme", pp. 343-358 in *Monte Carlo and Quasi-Monte Carlo Methods 2006*, Springer, 2007.

"Multilevel Monte Carlo for basket options", Winter Simulation Conference 2009

Papers are available from:

www.maths.ox.ac.uk/~gilesm/finance.html