
Using GPUs for
Computational Finance

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford-Man Institute of Quantitative Finance

Oxford University Mathematical Institute

NVIDIA CUDA Fellow for Computational Finance

NAG / Wilmott Quant Day, October 22, 2009

GPUs for Finance – p. 1/28



Opportunity

CPUs have up to 6 cores (each with a SSE vector unit)
and 10-30 GB/s bandwidth to main system memory

NVIDIA GPUs have up to 30×8 cores on a single chip
and 100+ GB/s bandwidth to graphics memory

offer 50–100× speedup relative to a single CPU core

roughly 10× speedup relative to two quad-core Xeons

also 10× improvement in price/performance and
energy efficiency

How is this possible? Logically simpler cores (SIMD units,
no out-of-order execution or branch prediction) for vector
computing, not general purpose

GPUs for Finance – p. 2/28



Opportunity

Is this GPU advantage sustainable? Yes!

IBM, AMD and Intel all producing GPUs too

NVIDIA has a good headstart on software side with
CUDA environment

new OpenCL software standard (based on CUDA and
pushed by Apple) will probably run on all platforms

driving applications are:
computer games “physics”
video (e.g. HD video decoding)
computational science
computational finance
oil and gas

GPUs for Finance – p. 3/28



Why GPUs will stay ahead

Technical reasons:

SIMD units means larger proportion of chip devoted to
floating point computation (but CPUs will respond with
longer vector units – AVX)

tightly-coupled fast graphics memory means much
higher bandwidth

Commercial reasons:

CPUs driven by price-sensitive office/home computing;
not clear these need vastly more speed

CPU direction may be towards low cost, low power
chips for mobile and embedded applications

GPUs driven by high-end applications – prepared to
pay a premium for high performance

GPUs for Finance – p. 4/28



Use in computational finance

Bloomberg has a large cluster:
48 NVIDIA Tesla units, each with 4 GPUs
alternative to buying 2000 CPUs

BNP Paribas has a small cluster:
2 NVIDIA Tesla units
replacing 250 dual-core CPUs
factor 10x savings in power (2kW vs. 25kW)

lots of other banks doing proof-of-concept studies
my impression is that IT groups are keen, but
quants are concerned about effort involved

Several ISV’s now offer software based on CUDA

GPUs for Finance – p. 5/28



Programming

Big breakthrough in GPU computing has been NVIDIA’s
development of CUDA programming environment

C plus some extensions and some C++ features

host code runs on CPU, CUDA code runs on GPU

explicit movement of data across the PCIe connection

very straightforward for Monte Carlo applications,
once you have a random number generator

significantly harder for finite difference applications
(but will be much easier with next-generation GPU)

see example codes on my website

GPUs for Finance – p. 6/28



My experience

Random number generation (mrg32k3a/Normal):
2500M values/sec on GTX 280
70M values/sec/core on Xeon using Intel’s VSL

LIBOR Monte Carlo testcase:
180x speedup on GTX 280 compared to single
thread on Xeon

3D PDE application:
factor 50x speedup on GTX 280 compared to
single thread on Xeon
factor 10x speedup compared to two quad-core
Xeons

GPU results are all single precision – double precision is
currently 2-4 times slower, no more than factor 2 in future

GPUs for Finance – p. 7/28



Random number generation

Main challenge for Monte Carlo simulation is parallel
random number generation

want to generate same random numbers as in
sequential single-thread implementation

two key steps:
generation of [0, 1] uniform random number
conversion to other output distributions
(e.g. unit Normal)

many of these problems are already faced with
multi-core CPUs and cluster computing

NVIDIA does not provide a RNG library, so I have
developed one with NAG

GPUs for Finance – p. 8/28



Random number generation

Key issue in uniform random number generation:

when generating 10M random numbers, might have
5000 threads and want each one to compute 2000
random numbers

need a “skip-ahead” capability so that thread n can
jump to the start of its “block” efficiently
(usually log N cost to jump N elements)

GPUs for Finance – p. 9/28



Random number generation

mrg32k3a (Pierre l’Ecuyer, ’99, ’02)

popular generator in Intel MKL and ACML libraries

pseudo-uniform (0, 1) output is

(xn,1−xn,2 mod m1) /m1

where integers xn,1, xn,2 are defined by recurrences

xn,1 = a1 xn−2,1 − b1 xn−3,1 mod m1

xn,2 = a2 xn−1,2 − b2 xn−3,2 mod m2

a1 =1403580, b1 =810728, m1 =232
−209,

a2 =527612, b2 =1370589, m2 =232
− 22853.

GPUs for Finance – p. 10/28



Random number generation

Both recurrences are of the form

yn = Ayn−1 mod m

where yn is a vector yn = (xn, xn−1, xn−2)
T and A is a

3×3 matrix. Hence

yn+2k = A2
k

yn mod m = Ak yn mod m

where Ak is defined by repeated squaring as

Ak+1 = Ak Ak mod m, A0 ≡ A.

Can generalise this to jump N places in O(log N)
operations.

GPUs for Finance – p. 11/28



Random number generation

output distributions:
uniform
exponential: trivial
Normal: Box-Muller or inverse CDF
Gamma: using “rejection” methods which require
a varying number of uniforms and Normals to
generate 1 Gamma variable

producing Normals with mrg32k3a:
2400M values/sec on a 216-core GTX260
70M values/sec on a Xeon using Intel’s VSL

have also implemented a Sobol generator to produce
quasi-random numbers

6500M Normals/sec on a 216-core GTX260 using
an inverse CDF implementation

GPUs for Finance – p. 12/28



Finite Difference Model Problem

Jacobi iteration to solve discretisation of Laplace equation

V n+1

i,j = 1

4

(

V n
i+1,j + V n

i−1,j + V n
i,j+1 + V n

i,j−1

)

v v v

v

v

v

How should this be programmed?

GPUs for Finance – p. 13/28



Finite Difference Model Problem

@@
��

Key idea: take ideas from distributed-memory parallel
computing and partition grid into pieces

GPUs for Finance – p. 14/28



Finite Difference Model Problem

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

GPUs for Finance – p. 15/28



Finite Difference Model Problem

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r r r r r r r

r r r r r r r r

Each block of threads will work with one of these grid
blocks, reading in old values (including the “halo nodes”
from adjacent partitions) then computing and writing out
new values

GPUs for Finance – p. 16/28



Finite Difference Model Problem

Old data is loaded into shared memory:

each thread loads in the data for its grid point
(coalesced) and maybe one halo point (only partially
coalesced)

data is then available for neighbouring threads when
they need it

each thread computed its new value and writes it to
graphics memory

this is slightly tedious, manually programming to
duplicate what is done in a cache in a CPU; will be
much simpler on new GPUs which have a cache

GPUs for Finance – p. 17/28



Finite Difference Model Problem

2D finite difference implementation:

good news: 30× speedup relative to Xeon single core,
compared to 4.5× speedup using OpenMP with 8 cores

bad news: grid size has to be 10242 to have enough
parallel work to do to get this performance

in a real financial application, more sensible to do
several 2D calculations at the same time, perhaps with
different payoffs

GPUs for Finance – p. 18/28



Finite Difference Model Problem

3D finite difference implementation:

insufficient shared memory for whole 3D block, so hold
3 working planes at a time

key steps in kernel code:
load in k=0 z-plane (inc x and y-halos)
loop over all z-planes

load k+1 z-plane
process k z-plane
store new k z-plane

50× speedup relative to Xeon single core, compared to
5× speedup using OpenMP with 8 cores.

GPUs for Finance – p. 19/28



More on Finite Differences

ADI implicit time-marching:

each thread handles tri-diagonal solution along a line in
one direction

easy to get coalescence in y and z directions, but not in
x-direction

again roughly 10× speedup compared to two quad-core
Xeons

GPUs for Finance – p. 20/28



More on Finite Differences

Implicit time-marching with iterative solvers:

BiCGStab: each iteration similar to Jacobi iteration
except for need for global dot-product

See “reduction” example and documentation in CUDA
SDK for how shared memory is used to compute partial
sum within each block, and then these are combined at
a higher level to get the global sum

ILU preconditioning could be tougher

GPUs for Finance – p. 21/28



More on Finite Differences

Generic 3D financial PDE solver:

available on my webpages

development funded by TCS/CRL (leading Indian IT
company)

uses ADI time-marching

designed for user to specify drift and volatility functions
as C code – no need for user to know anything about
CUDA programming

an example of what I think is needed to hide
complexities of GPU programing

GPUs for Finance – p. 22/28



Programming

Software alternatives:

OpenCL
no personal experience
looks similar to the lower-level CUDA device API
I’m waiting for simpler higher-level layer, and
to hear from others on pros/cons versus CUDA
will probably start using it within a year or so

GPUs for Finance – p. 23/28



Programming

Software alternatives:

Microsoft’s DX Compute
unlikely to be used for scientific computing, but
maybe for games and multimedia applications

Intel: Ct, TBB, SSE/AVX vectors, icc, OpenCL
I find range of alternatives confusing – look to Intel
for clear guidance on pros and cons
I think SSE/AVX vectors may offer best performance
but programming is tedious (worse than CUDA?)
I hope OpenCL support is good (should map very
naturally to SSE/AVX vectors)

GPUs for Finance – p. 24/28



Current developments

NVIDIA: new “Fermi” GPUs just announced

512 SP cores (1.5 TFlops), 256 DP cores (750 GFlops)

L1 / L2 cache – will simplify programming

AMD: new GPUs out now – OpenCL support coming soon

IBM: Cell hard-to-use – terminating future development?

Intel:

Larrabee GPU badly delayed (2011?)

Also watch AVX vectors for mainstream CPUs, but
performance limited by available bandwidth?

GPUs for Finance – p. 25/28



Current developments

Supermicro, HP: 1U / 2U servers with built-in GPUs

IBM: planning a GPU blade solution (in addition to Cell)

Dell: “personal supercomputer” with up to 3 GPUs

Portland Group: developing additional compiler support
for CUDA – may extend it to OpenCL and target other
back-ends in the future?

GPUs for Finance – p. 26/28



What is needed now?

Skilled manpower, training:

50+ on Oxford CUDA mailing list: students and
post-docs in almost all science departments

1-week CUDA course this summer

in 3 years time, many PhDs in computational science
will have these skills

More development of libraries, high-level packages:

Monte Carlo simulation

PDE solvers

. . .

GPUs for Finance – p. 27/28



Further information

LIBOR and finite difference test codes
www.maths.ox.ac.uk/∼gilesm/hpc/

NAG numerical routines for GPUs
www.nag.co.uk/numeric/GPUs/

NVIDIA’s CUDA homepage
www.nvidia.com/object/cuda home.html

NVIDIA’s computational finance page
www.nvidia.com/object/computational finance.html

GPUs for Finance – p. 28/28


	Opportunity
	Opportunity
	Why GPUs will stay ahead
	Use in computational finance
	Programming
	My experience
	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	More on Finite Differences
	More on Finite Differences
	More on Finite Differences
	Programming
	Programming
	Current developments
	Current developments
	What is needed now?
	Further information

