Morphologies of Nano-Included Liquid Crystals in 2d Square Wells

Konark Bisht

Department of Physics, Indian Institute of Technology Delhi.

April 29, 2019

Konark Bisht (Dept. of Physics, IIT Delhi) Morphologies of Nano-Included Liquid Crystal

Plan of talk

I. Introduction

- Liquid Crystals (LCs) and Magnetism
- Nano-inclusion and stability problem
- II. Methodology
 - Coarse grained free energy models
 - Variational method
- III. Results
 - Analysis in d = 2

Collaborators:

Varsha Banerjee (IIT Delhi) Apala Majumdar (Uni. of Bath) Yiwei Wang (IIT, Chicago) Paul Milewski (Uni. of Bath) Rahul Marathe (IIT Delhi)

Acknowledgement: DST-UKIERI CSIR, India

- 4 目 ト - 4 日 ト

Liquid Crystals

- Liquid Crystals (LCs) are anisotropic systems which combine fluidity with long-range order.
- In the nematic phase, the long-range order is purely orientational.
- This order is described by a sign-invariant unit vector **n** known as the director.

• LCs are widely used in electro-optic devices such as optical switches and LCDs.

Ferro-Nematics with nano inclusion

- $\bullet\,$ LCs are usually diamagnetic materials with small anisotropy of magnetic susceptibility $\sim 10^{-7}.$
- High Magnetic field (H > 1 kOe) is required to reorient directors.
- In 1970, Brochard and de Gennes published the theory of magnetic suspensions in LCs. (Journal de Physique)
- Rault et al. produced suspensions for the first time in 1970. (Phys. Lett.)
- Dipole moments of magnetic particles are aligned by a magnetic field, which in turn results in the reorientation of LCs due to the surface anchoring.
- Transfer of magnetic ordering to the underlying LC matrix and vice versa.

MNP-Nematic coupling

MNP-Nematic coupling depends on:

- volume fraction and dimension of particles.
- elastic constants of LC.

Strong Coupling

- Director follows the particles in a magnetic field.
- Reorientation of suspension is proportional to *H* for weak *H* and saturates for high *H*.

Weak Coupling

- There is a competition between restoring elastic force acting on director and aligning force due to MNP-nematic coupling.
- After reaching a maximum, reorientation angle decreases and director returns to intial state.

Reznikon et.al., Liquid Crystals with nano

and microparticles.

Why nano-inclusion in LCs?

- Suspensions of magnetic nano particles (MNPs) in nematic LCs are of interest for both fundamental science and applications.
- Responses are enhanced and sensitised by nano-inclusion.
- MNPs in nematics can increase the magnetic susceptibility and generate new magnetic field-induced effects such as *Indirect Magneto-optic Effect* and *Converse Magnetoelectric Effect*.
- MNPs can change the hydrodynamic properties of nematics such as viscosity and diffusion.

Tomasocicova et. al., Soft Matter(2016)

Stability problem with nano-inclusion

- MNPs usually aggregates, because of dipole-dipole interactions.
- The particles coagulated within tens of minutes.
- How to form stable nano included suspensions?
- Mertlej et al. (2013) reported the existence of ferromagnetic ordering in the stable suspension of magnetic platelets in NLC.
- Platelet shape and high magnetocrystalline anisotropy of MNPs were found to be crucial for realizing the ferromagnetic phase.

Konark Bisht (Dept. of Physics, IIT Delhi) Morphologies of Nano-Included Liquid Crystal

Experimental Morphologies of FN in Confinement

- Shuai et al. (2016) studied a fluid suspension of MNPs (BaHF) in NLCs (n-butanol) confined in a thin rectangular capillary.
- The equilibrium configuration in the absence of the external field is a loop of uniform magnetic domains separated by sharp walls.
- Applying external magnetic field induces domain wall movement.

 $L=50~\mu\mathrm{m}$, $W=1~\mathrm{mm}$

Shuai et al., Nat. Commun.

Analysis in d = 2

- We study FN morphologies in a micron sized square well of size L^2 ($L \sim 80 \ \mu$ m) and having depth d < L/2.
- In this shallow geometry, the LC molecules and MNPs primarly lie in a plane.

(Tsakonas et al., Appl. Phys. Lett. (2007)

- The suspension is assumed to be diluted so that the MNPs are dispersed uniformly and there is no clustering.
- Self-assembled morphologies of suspension in the absence of external fields.
- We employ the phenomenological approach involving minimisation of free energy obtained by expansion in terms of mesoscopic order parameters.
- There are two order parameters in the system:
 - Q tensor \Rightarrow directions and degree of nematic ordering.
 - Magnetization M ⇒ spatially averaged magnetic moment of the suspended MNPs.

Boundary Conditions

Boundary Conditions for the LCs:

- For the purely nematic system, the minimum energy of bulk corresponds to Q²₁₁ + Q²₁₂ = 1.
- Tangent boundary conditions: $Q_{11} = -1, Q_{12} = 0 \text{ at } y = 0, y = L.$ $Q_{11} = 1, Q_{12} = 0 \text{ at } x = 0, x = L.$

Boundary Conditions for M:

 M1: M = (-1,0) at x = 0,1 and y = 0,1.

• M2:
$$\mathbf{M} = (1,0)$$
 at $x = 0,1;$
 $\mathbf{M} = (-1,0)$ at $y = 0,1.$

• M3:
$$M = (0, 1)$$
 at $x = 0$;
 $M = (0, -1)$ at $x = 1$;
 $M = (-1, 0)$ at $y = 0$;
 $M = (1, 0)$ at $y = 1$.

Morphologoies of Uncoupled NLC

- We reproduce the results for uncoupled systems with $c_1 = c_2 = 0$ and obtain the NLC equilibria in the well geometry.
- In all the following cases $\ell_1 = \ell_2 = 0.001$.
- There are two stable equilibria diagonal D_N and rotated R_N .

(Tsakonas et al., Appl. Phys. Lett. (2007), Luo et al., Phys. Rev. E (2012))

• Optical texutures are obtained by computing the transmission intensity $T \sim \sin^2 2\phi$, where ϕ is the angle made by **n** with the x-axis.

Konark Bisht (Dept. of Physics, IIT Delhi) Morphologies of Nano-Included Liquid Crystal

Morphologies of Uncoupled M

- Stable equilibrium solutions for $c_1 = c_2 = 0$ for BCs: M1, M2 and M3.
- M1 results in an aligned (homogeneous) magnetization state [in (a),(d)] which we refer to as H_M .
- M2 results in a twisted state T_M with defects in the corners [in (b), (e)].
- M3 results in a single vortex state $V_M(1)$ [in (c), (f)].

Case 1: $c_1 \neq 0$, $c_2 \simeq 0$

- In this case, the magnetic component affecting the nematic component but not vice-versa.
- (a) $c_1 = 1$ with BC M1 yield a homogeneous nematic morphology \tilde{H}_N .
- (b) $c_1 = 1$ with BC M2 yield a twisted nematic morphology \tilde{T}_N .
- (c) $c_1 = 10$ with BC M3 yield a morphology \tilde{V}_N enclosing a defect with charge 1.

Case 2: $c_1 \simeq 0$, $c_2 \neq 0$

- It corresponds to the case when the nematic component influences the magnetic component but not vice-versa.
- Stable equilibrium configurations of **M** resulting from (a) M2 and $c_2 = 1$, (b) M2 and $c_2 = 50$, (c) M3 and $c_2 = 50$.
- The corresponding nematic patterns are R_N for (a), (b) and D_N for (c).

< ロト < 同ト < ヨト < ヨト

Case 3: $c_1 = c_2 = c$ with M3

- The **n** and **M** morphologies when coupling is equal.
- (a) c = 1, ℓ₁ = ℓ₂ = 0.001: The configuration exhibit two defects each with a charge of 1/2.
- (b) c = 10, ℓ₁ = ℓ₂ = 0.001: The configuration have a single defect structure of charge +1 at the center.
- (c) c = 10, ℓ₂ = 0.001, ℓ₁ = ℓ₂/10: The position of the defect changes with decrease in ℓ₁.

くロト く伺 ト くきト くきト

- We have used free energy formalism to obtain mophologies of nano-included LCs in 2d wells.
- We obtain a variety of morphologies by an interplay of model parameters c_1 , c_2 , ℓ_1 and ℓ_2 and construct the solution space.
- For $c_1 \neq 0$, $c_2 \simeq 0$, nematic director **n** align along the magnetic vector **M**.
- For $c_1 \simeq 0$, $c_2 \neq 0$, there is emergence of magnetic domains with $\mathbf{M} \parallel \mathbf{n}$ and $-\mathbf{M} \parallel \mathbf{n}$.
- When $c_1 = c_2 = c$, we observe stable defects in nematic due to ferro-nematic coupling and confinement.
- How can we connect with experiments:
 - Feasible choices of c_1 , c_2 , ℓ_1 , ℓ_2 ?
 - How can anchoring of the MNPs be achieved at the boundaries?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Thank You!

Konark Bisht (Dept. of Physics, IIT Delhi) Morphologies of Nano-Included Liquid Crystal

æ

< □ > < □ > < □ > < □ > < □ >