Computing disconnected bifurcation diagrams of partial differential equations

P. E. Farrell¹

S. P. MacLachlan, T. J. Atherton, M. Robinson, A. Majumdar, R. Erban, ...

¹University of Oxford

May 22, 2019

Section 1

Introduction

Can you conduct an experiment twice

and get two different answers?

Can you conduct an experiment twice

and get two different answers?

Axial displacement test of an Embraer aircraft stiffener.

Can you conduct an experiment twice ...

and get two different answers?

Two different, stable configurations.

Mathematical formulation

Compute the multiple solutions u of an equation

$$f(u,\lambda) = 0$$
$$f: V \times \mathbb{R} \to V^*$$

as a function of a parameter λ .

Mathematical formulation

Compute the multiple solutions u of an equation

$$f(u,\lambda) = 0$$
$$f: V \times \mathbb{R} \to V^*$$

as a function of a parameter λ .

Aircraft stiffener

u displacement, λ loading, f hyperelasticity

Mathematical formulation

Compute the multiple solutions u of an equation

$$f(u,\lambda) = 0$$
$$f: V \times \mathbb{R} \to V^*$$

as a function of a parameter λ .

Aircraft stiffener

u displacement, λ loading, f hyperelasticity

Today

 \boldsymbol{u} director field or Q-tensor, f Oseen–Frank or Landau–de Gennes

Section 2

The classical algorithm

Step II: continuation

Step III: detect bifurcation point

Step IV: compute eigenvectors and switch

Step V: continuation on branches

Disconnected diagrams

The algorithm only computes branches connected to the initial datum.

This work

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.

This work

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.

Scaling

The computational kernel is exactly the same as Newton's method.

Section 3

Deflation

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a new nonlinear problem $\mathcal{G}: V \to V^*$ such that:

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a **new nonlinear problem** $\mathcal{G}: V \to V^*$ such that:

• (Preservation of solutions) $\mathcal{F}(\tilde{r}) = 0 \iff \mathcal{G}(\tilde{r}) = 0 \ \forall \ \tilde{r} \neq r;$

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a **new nonlinear problem** $\mathcal{G}: V \to V^*$ such that:

- (Preservation of solutions) $\mathcal{F}(\tilde{r}) = 0 \iff \mathcal{G}(\tilde{r}) = 0 \ \forall \ \tilde{r} \neq r;$
- (Deflation property) Newton's method applied to G will never converge to r again, starting from any initial guess.

Deflation

Fix parameter λ . Given

- ▶ a Fréchet differentiable residual $\mathcal{F}: V \to V^*$
- ▶ a solution $r \in V$, $\mathcal{F}(r) = 0$, $\mathcal{F}'(r)$ nonsingular

construct a **new nonlinear problem** $\mathcal{G}: V \to V^*$ such that:

- (Preservation of solutions) $\mathcal{F}(\tilde{r}) = 0 \iff \mathcal{G}(\tilde{r}) = 0 \ \forall \ \tilde{r} \neq r;$
- (Deflation property) Newton's method applied to G will never converge to r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.

Finding many solutions from the same guess

Finding many solutions from the same guess

Step I: Newton from initial guess

Finding many solutions from the same guess

Step II: deflate solution found

DE	Earroll ((Oxford)
F. L.	rarren	

Finding many solutions from the same guess

Step I: Newton from initial guess

Finding many solutions from the same guess

Step II: deflate solution found

Finding many solutions from the same guess

Step I: Newton from initial guess

Finding many solutions from the same guess

Step II: deflate solution found

Finding many solutions from the same guess

Step III: termination on nonconvergence

Finding many solutions from the same guess

Step III: termination on nonconvergence

Construction of deflated problems

A nonlinear transformation

$$\mathcal{G}(u) = \mathcal{M}(u; r) \mathcal{F}(u)$$

Construction of deflated problems

A nonlinear transformation

$$\mathcal{G}(u) = \mathcal{M}(u; r) \mathcal{F}(u)$$

A deflation operator

We say $\mathcal{M}(u; r)$ is a deflation operator if for any sequence $u \to r$ $\liminf_{u \to r} \|\mathcal{G}(u)\|_{V^*} = \liminf_{u \to r} \|\mathcal{M}(u; r)\mathcal{F}(u)\|_{V^*} > 0.$
Construction of deflated problems

A nonlinear transformation

$$\mathcal{G}(u) = \mathcal{M}(u; r) \mathcal{F}(u)$$

A deflation operator

We say $\mathcal{M}(u;r)$ is a deflation operator if for any sequence $u \to r$

$$\liminf_{u \to r} \|\mathcal{G}(u)\|_{V^*} = \liminf_{u \to r} \|\mathcal{M}(u; r)\mathcal{F}(u)\|_{V^*} > 0.$$

Theorem (F., Birkisson, Funke, 2014)

This is a deflation operator for $p\geq 1$: $\mathcal{M}(u;r)=\left(\frac{1}{\|u-r\|^p}+1\right)\mathcal{I}_{V^*}.$

Deflated continuation

Deflated continuation

Step I: continuation

Deflated continuation

Step II: continuation

Deflated continuation

Deflated continuation

Step III+: solve deflated problem

Deflated continuation

Deflated continuation

Step III+: solve deflated problem

Deflated continuation

Step IV: continuation on branches

Deflated continuation

A disconnected diagram.

Section 4

Applications

Nonlinear PDEs

Application: Carrier's problem

Carrier's problem (Carrier 1970, Bender & Orszag 1999)

$$\varepsilon^2 y'' + 2(1-x^2)y + y^2 - 1 = 0, \quad y(-1) = 0 = y(1).$$

Pitchfork bifurcations

$$\varepsilon \approx \frac{0.472537}{n}$$

Pitchfork bifurcations

$$\varepsilon \approx \frac{0.472537}{n}$$

Connected	Computed	Asymptotic	Relative
component	ε	estimate	error
1	0.46886251	0.472537	0.7837%
2	0.23472529	0.236269	0.6574%
3	0.15703946	0.157512	0.3012%
4	0.11798359	0.118134	0.1278%

Computed and estimated parameter values for the first four pitchfork bifurcations.

Fold bifurcations

$$\varepsilon \approx \frac{0.472537}{n - \frac{0.8344}{n}}$$

Fold bifurcations

$$\varepsilon \approx \frac{0.472537}{n - \frac{0.8344}{n}}$$

Connected	Computed	Asymptotic	Relative
component	ε	estimate	error
2	0.28522538	0.298545	4.670%
3	0.17186970	0.173608	1.011%
4	0.12421206	0.124634	0.3397%
5	0.09762446	0.0977706	0.1497%

Computed and estimated parameter values for the first four fold bifurcations.

Application: Freedericksz transition

Minimise Frank-Oseen energy on a unit square subject to

- ▶ n periodic in x and parallel to x-axis along y = 0, y = 1
- Frank constants $(K_1, K_2, K_3) = (1, 0.62903, 1.32258)$ (5CB)
- electric potential $\phi(x,0) = 0, \phi(x,1) = V$
- permittivity of free space $\epsilon_0 = 1.42809$
- perpendicular dielectric permittivity $\epsilon_{\perp} = 7$
- dielectric anisotropy $\epsilon_a = 11.5$

Nonlinear PDEs

Application: Freedericksz transition

Bifurcation diagrams for maximum angular tilt and free energy as a function of V. The critical voltage is $V^* \approx 0.775$.

Nonlinear PDEs

Application: Freedericksz transition

Three solutions for V = 1.1.

Application: escape and disclination solutions

Minimise Frank-Oseen energy on a unit square subject to

- n radial from the centre
- Frank constants $(K_1, K_2, K_3) = (1, 3, 1.2)$
- no electric field present

Application: escape and disclination solutions

Two escape and one disclination solution, with energies (9.971, 24.042, 9.971). The energy of the middle solution diverges with mesh refinement.

Application: square well filled with nematic LCs

We consider the square wells filled with nematic liquid crystals considered by Tsakonas et al. (Appl. Phys. Lett, 2007). Minimise Landau-de Gennes energy on a square subject to

- ▶ $Q_{11} \ge 0$ on horizontal edges
- ▶ $Q_{11} \leq 0$ on vertical edges
- ► $Q_{12} = 0$ on $\partial \Omega$

Application: square well filled with nematic LCs

Bifurcation diagram showing stable states as a function of square edge length D.

Application: square well filled with nematic LCs

21 different stationary points, coloured by the order parameter, for $D = 1.5 \,\mu m$.

Application: cholesteric liquid crystals

Minimise Frank-Oseen energy with cholesteric term in an ellipse subject to

- ▶ n = (0, 0, 1) on the boundary
- Frank constants $(K_1, K_2, K_3) = (1, 3.2, 1.1)$
- no electric field

as a function of cholesteric pitch q_0 .

Application: cholesteric liquid crystals

Nonlinear PDEs

Application: cholesteric liquid crystals

P. E. Farrell (Oxford)

Deflated continuation

Multiple solutions of PDEs are ubiquitous and important.

Conclusions

- Multiple solutions of PDEs are ubiquitous and important.
- Deflation is a powerful and useful technique.

Conclusions

- Multiple solutions of PDEs are ubiquitous and important.
- Deflation is a powerful and useful technique.
- Deflated problems can be solved efficiently.

Conclusions

- Multiple solutions of PDEs are ubiquitous and important.
- Deflation is a powerful and useful technique.
- Deflated problems can be solved efficiently.
- ► There are **interesting applications** in liquid crystals.

Section 6

Symmetries
Nonisolated solutions

What if the equation has a continuous symmetry group?

Nonisolated solutions

What if the equation has a continuous symmetry group?

Philosophy

The fundamental structures are the distinct orbits of solutions.

Nonisolated solutions

What if the equation has a continuous symmetry group?

Philosophy

The fundamental structures are the distinct orbits of solutions.

Key idea

Construct a deflation operator that respects the Lie group.

Stationary Gross-Pitaevskii equation

н

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Application: Bose–Einstein condensates

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

First symmetry group SO(2)

1

$$\phi(x,y) \mapsto e^{i\theta}\phi(x,y), \quad \theta \in \mathbb{R}.$$

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

First symmetry group SO(2)

1

$$\phi(x,y) \mapsto e^{i\theta}\phi(x,y), \quad \theta \in \mathbb{R}.$$

Resulting deflation operator

$$M(\psi, \phi) = \left\| |\phi|^2 - |\psi|^2 \right\|^{-2} + 1.$$

Application: Bose–Einstein condensates

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Second symmetry group SO(2)

1

 $\phi(x,y) \mapsto \phi(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta), \quad \theta \in \mathbb{R}.$

Application: Bose–Einstein condensates

Stationary Gross-Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Second symmetry group SO(2)

1

$$\phi(x,y) \mapsto \phi(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta), \quad \theta \in \mathbb{R}$$

Resulting deflation operator

$$M(\psi,\phi) = \left\|\tilde{\phi} - \tilde{\psi}\right\|^{-2} + 1,$$

where

$$\tilde{\psi}(x,y) := \frac{1}{2\pi} \int_0^{2\pi} \psi(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta) \, \mathrm{d}\theta.$$

Stationary Gross–Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Final deflation operator

-1

$$M(\psi,\phi) = \left\| \widetilde{|\phi|^2} - \widetilde{|\psi|^2} \right\|^{-2} + 1.$$

Stationary Gross–Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Stationary Gross–Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Stationary Gross–Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Stationary Gross–Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Stationary Gross–Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Stationary Gross–Pitaevskii equation

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Stationary Gross–Pitaevskii equation

н

$$-\frac{1}{2}\Delta\phi + V(x^2 + y^2)\phi - \mu\phi + |\phi|^2\phi = 0, \qquad \phi|_{\partial\Omega} = 0.$$

Headline result

These orbits were discovered with (almost) no user-supplied data.