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and get two different answers?
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Can you conduct an experiment twice . . .

and get two different answers?
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Introduction

Mathematical formulation

Compute the multiple solutions u of an equation

f(u, λ) = 0

f : V × R→ V ∗

as a function of a parameter λ.
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Introduction

Mathematical formulation

Compute the multiple solutions u of an equation

f(u, λ) = 0

f : V × R→ V ∗

as a function of a parameter λ.

Aircraft stiffener

u displacement, λ loading, f hyperelasticity

Today

u director field or Q-tensor, f Oseen–Frank or Landau–de Gennes
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The classical algorithm

Branch switching
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Branch switching
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The classical algorithm

Branch switching
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Step III: detect bifurcation point
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The classical algorithm

Branch switching

λ

u

Step IV: compute eigenvectors and switch
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The classical algorithm

Branch switching

λ

u

Step V: continuation on branches
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The classical algorithm

Branch switching

λ

u

A disconnected diagram.

P. E. Farrell (Oxford) Deflated continuation May 22, 2019 6 / 20



The classical algorithm

Branch switching

Disconnected diagrams

The algorithm only computes branches connected to the initial datum.
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The classical algorithm

This work

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.
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The classical algorithm

This work

Disconnected diagrams

An algorithm that can compute disconnected bifurcation diagrams.

Scaling

The computational kernel is exactly the same as Newton’s method.
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Deflation

The core idea

Deflation

Fix parameter λ. Given

I a Fréchet differentiable residual F : V → V ∗

I a solution r ∈ V , F(r) = 0, F ′(r) nonsingular

construct a new nonlinear problem G : V → V ∗ such that:

I (Preservation of solutions) F(r̃) = 0 ⇐⇒ G(r̃) = 0 ∀ r̃ 6= r;

I (Deflation property) Newton’s method applied to G will never converge
to r again, starting from any initial guess.

Find more solutions, starting from the same initial guess.
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Deflation

Finding many solutions from the same guess
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Starting setup
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Deflation

Finding many solutions from the same guess
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Step I: Newton from initial guess
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Deflation

Finding many solutions from the same guess
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Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)
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We say M(u; r) is a deflation operator if for any sequence u→ r
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Deflation

Construction of deflated problems

A nonlinear transformation

G(u) =M(u; r)F(u)

A deflation operator

We say M(u; r) is a deflation operator if for any sequence u→ r

lim inf
u→r

‖G(u)‖V ∗ = lim inf
u→r

‖M(u; r)F(u)‖V ∗ > 0.

Theorem (F., Birkisson, Funke, 2014)

This is a deflation operator for p ≥ 1:

M(u; r) =

(
1

‖u− r‖p + 1

)
IV ∗ .
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Deflation

Deflated continuation

λ

u

Step III: deflate
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Deflation

Deflated continuation

λ

u

Step III+: solve deflated problem
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Deflated continuation
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Deflation

Deflated continuation
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Step III+: solve deflated problem
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Deflation

Deflated continuation

λ

u

Step IV: continuation on branches
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Deflation

Deflated continuation

λ

u

A disconnected diagram.
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Section 4

Applications
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Applications Nonlinear PDEs

Application: Carrier’s problem

Carrier’s problem (Carrier 1970, Bender & Orszag 1999)

ε2y′′ + 2(1− x2)y + y2 − 1 = 0, y(−1) = 0 = y(1).
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Applications Nonlinear PDEs

Application: Carrier’s problem

Pitchfork bifurcations

ε ≈ 0.472537

n
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Applications Nonlinear PDEs

Application: Carrier’s problem

Pitchfork bifurcations

ε ≈ 0.472537

n

Connected Computed Asymptotic Relative
component ε estimate error

1 0.46886251 0.472537 0.7837%
2 0.23472529 0.236269 0.6574%
3 0.15703946 0.157512 0.3012%
4 0.11798359 0.118134 0.1278%

Computed and estimated parameter values for the first four pitchfork bifurcations.
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Applications Nonlinear PDEs

Application: Carrier’s problem

Fold bifurcations

ε ≈ 0.472537

n− 0.8344
n
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Applications Nonlinear PDEs

Application: Carrier’s problem

Fold bifurcations

ε ≈ 0.472537

n− 0.8344
n

Connected Computed Asymptotic Relative
component ε estimate error

2 0.28522538 0.298545 4.670%
3 0.17186970 0.173608 1.011%
4 0.12421206 0.124634 0.3397%
5 0.09762446 0.0977706 0.1497%

Computed and estimated parameter values for the first four fold bifurcations.
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Applications Nonlinear PDEs

Application: Freedericksz transition

Minimise Frank–Oseen energy on a unit square subject to

I n periodic in x and parallel to x-axis along y = 0, y = 1

I Frank constants (K1,K2,K3) = (1, 0.62903, 1.32258) (5CB)

I electric potential φ(x, 0) = 0, φ(x, 1) = V

I permittivity of free space ε0 = 1.42809

I perpendicular dielectric permittivity ε⊥ = 7

I dielectric anisotropy εa = 11.5
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Applications Nonlinear PDEs

Application: Freedericksz transition

Bifurcation diagrams for maximum angular tilt and free energy as a function of
V . The critical voltage is V ∗ ≈ 0.775.
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Applications Nonlinear PDEs

Application: Freedericksz transition

Three solutions for V = 1.1.
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Applications Nonlinear PDEs

Application: escape and disclination solutions

Minimise Frank–Oseen energy on a unit square subject to

I n radial from the centre

I Frank constants (K1,K2,K3) = (1, 3, 1.2)

I no electric field present
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Applications Nonlinear PDEs

Application: escape and disclination solutions

Two escape and one disclination solution, with energies (9.971, 24.042, 9.971).
The energy of the middle solution diverges with mesh refinement.
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Applications Nonlinear PDEs

Application: square well filled with nematic LCs

We consider the square wells filled with nematic liquid crystals considered
by Tsakonas et al. (Appl. Phys. Lett, 2007).
Minimise Landau–de Gennes energy on a square subject to

I Q11 ≥ 0 on horizontal edges

I Q11 ≤ 0 on vertical edges

I Q12 = 0 on ∂Ω
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Applications Nonlinear PDEs

Application: square well filled with nematic LCs

Bifurcation diagram showing stable states as a function of square edge length D.
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Applications Nonlinear PDEs

Application: square well filled with nematic LCs

21 different stationary points, coloured by the order parameter, for D = 1.5µm.
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Applications Nonlinear PDEs

Application: cholesteric liquid crystals

Minimise Frank–Oseen energy with cholesteric term in an ellipse subject to

I n = (0, 0, 1) on the boundary

I Frank constants (K1,K2,K3) = (1, 3.2, 1.1)

I no electric field

as a function of cholesteric pitch q0.
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Conclusion

Conclusions

I Multiple solutions of PDEs are ubiquitous and important.

I Deflation is a powerful and useful technique.

I Deflated problems can be solved efficiently.

I There are interesting applications in liquid crystals.
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Symmetries
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Nonisolated solutions

What if the equation has a continuous symmetry group?
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Symmetries

Symmetries

Nonisolated solutions

What if the equation has a continuous symmetry group?

Philosophy

The fundamental structures are the distinct orbits of solutions.

Key idea

Construct a deflation operator that respects the Lie group.
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Symmetries

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+ V (x2 + y2)φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

P. E. Farrell (Oxford) Deflated continuation May 22, 2019 3 / 4



Symmetries

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+ V (x2 + y2)φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

First symmetry group SO(2)

φ(x, y) 7→ eiθφ(x, y), θ ∈ R.

P. E. Farrell (Oxford) Deflated continuation May 22, 2019 3 / 4



Symmetries

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+ V (x2 + y2)φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

First symmetry group SO(2)

φ(x, y) 7→ eiθφ(x, y), θ ∈ R.

Resulting deflation operator

M(ψ, φ) =
∥∥∥|φ|2 − |ψ|2∥∥∥−2

+ 1.
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Symmetries

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+ V (x2 + y2)φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Second symmetry group SO(2)

φ(x, y) 7→ φ(x cos θ − y sin θ, x sin θ + y cos θ), θ ∈ R.

Resulting deflation operator

M(ψ, φ) =
∥∥∥φ̃− ψ̃∥∥∥−2

+ 1,

where

ψ̃(x, y) :=
1

2π

∫ 2π

0
ψ(x cos θ − y sin θ, x sin θ + y cos θ) dθ.
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Symmetries

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+ V (x2 + y2)φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Final deflation operator

M(ψ, φ) =

∥∥∥∥|̃φ|2 − |̃ψ|2∥∥∥∥−2

+ 1.
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Symmetries

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+ V (x2 + y2)φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Some of 21 distinct orbits of the Gross–Pitaevskii equation, µ = 1.3.
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Symmetries

Application: Bose–Einstein condensates

Stationary Gross–Pitaevskii equation

−1

2
∆φ+ V (x2 + y2)φ− µφ+ |φ|2φ = 0, φ|∂Ω = 0.

Headline result

These orbits were discovered with (almost) no user-supplied data.
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