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From isotropic fluids to (active) nematic liquid crystals

I Isotropic fluids flow through external influences (i.e. shear,
pressure, gravity). Such fluids are governed by the Navier-Stokes
equations.

I Nematic liquid crystals induce flow, but only when out of
equilibrium (i.e. backflow and kickback in a Freedericksz
transition). Such fluids are governed by the Ericksen-Leslie
equations.

I Active nematic liquid crystals (ANLC) consist of objects (i.e.
living organisms not molecules) which form a nematic phase and
also have the ability to continuously produce and expend energy
internally.

This normally means they can generate forces on each other as well as
the surrounding fluid and hence induce flow.
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Continuum modelling of active nematics

I Continuum hydrodynamic models based on liquid crystal theory
have been used to describe dynamic self-organising systems such as
bacterial swarms.

I The velocity at a point in space is taken to be the average velocity
of a large number of swimmers.

I We think of the “swimming” organisms as either pushers or
pullers. We only consider flow aligning organisms.

I One model uses the Ericksen-Leslie theory with an extra active
stress term σζij where the activity “strength” is governed by ζ.

σζij = ζninj .

4 / 17



Continuum modelling of active nematics

I Continuum hydrodynamic models based on liquid crystal theory
have been used to describe dynamic self-organising systems such as
bacterial swarms.

I The velocity at a point in space is taken to be the average velocity
of a large number of swimmers.

I We think of the “swimming” organisms as either pushers or
pullers. We only consider flow aligning organisms.

I One model uses the Ericksen-Leslie theory with an extra active
stress term σζij where the activity “strength” is governed by ζ.

σζij = ζninj .
4 / 17



Geometry and the Ericksen-Leslie equations

The Ericksen-Leslie equations for this set-up are (in the absence of fluid
inertia, pressure gradient and an electric field)

γ1θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)
2 −m(θ)vz,

0 = (g(θ)vz +m(θ)θt + ζ cos θ sin θ)z,

where

m(θ) = α3 cos2 θ − α2 sin2 θ,

g(θ) =
1

2

(
α4 + (α5 − α2) sin2 θ + (α3 + α6) cos2 θ

)
+ α1 sin2 θ cos2 θ.
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Decoupling of the Ericksen-Leslie equations is possible...

(
γ1 −

m2(θ)

g(θ)

)
θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)

2

− m(θ)A
g(θ)B

+
ζm(θ)

g(θ)

[
cos θ sin θ −K2 −

C
B

]
,

where

A =

∫ d

0

m(θ)[(K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)
2]

γ1g(θ)−m2(θ)
dz,

B =

∫ d

0

γ1
γ1g(θ)−m2(θ)

dz,

C =

∫ d

0

m2(θ) cos θ sin θ

g(θ)(γ1g(θ)−m2(θ))
dz −K2

∫ d

0

m2(θ)

g(θ)(γ1g(θ)−m2(θ))
dz,

K2 =

∫ d

0

cos θ sin θ

g(θ)
dz

/∫ d

0

1

g(θ)
dz.
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The effects due to flow appear in three terms in the governing equation
for θ.(
γ1 −

m2(θ)

g(θ)︸ ︷︷ ︸
rotational viscosity

)
θt = (K1 cos2 θ +K3 sin2 θ)θzz + (K3 −K1) sin θ cos θ(θz)

2

− m(θ)A
g(θ)B︸ ︷︷ ︸

director-flow coupling

+
ζm(θ)

g(θ)

[
cos θ sin θ −K2 −

C
B

]
︸ ︷︷ ︸

activity

.

I θ = 0 is a solution of this equation (and leads to v = 0 ).

I The activity term in this equation is similar to a magnetic/electric
field term in a Freedericksz transition but a non-local version.

I This term introduces the possibility that θ = 0 could be unstable.
At a critical value of activity, a Freedericksz-like transition will
occur from a trivial state.

I What are the non-trivial steady state solutions?

I What are the stabilities of these solution?
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Spontaneous flow transitions due to activity
Considering the stability of the state θ = 0 we find there are modes of
instability

Mode 1 : θ(z, t) = Θ

[
cos

(
2q

d

(
z − d

2

))
− cos q

]
exp(σt),

Mode 2 : θ(z, t) = Θ sin

(
2nπz

d

)
exp(σt),

where n ∈ Z. Mode 1 is a symmetric solution, whereas Mode 2 is
anti-symmetric.

Linearising the decoupled dynamic equation for the
director angle around θ = 0 gives

ηsplayθt = K1θzz −
K1α

2
3

γ1η1d

∫ d

0

θzz dz +
ζα3

η1

[
θ − 1

d

∫ d

0

θ dz

]
,

where ηsplay = γ1 − α2
3/η1. These modes lead to instability when (with

q = nπ)

ζc =
4n2π2K1η1

α3d2
.
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Non-trivial solutions for extensile swimmers
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Bifurcation diagram for extensile swimmers
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Non-trivial solutions for contractile swimmers
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Bifurcation diagram for contractile swimmers

12 / 17



How does temperature effect the critical activities?

I We consider an order parameter model of active nematics based on
Q-tensor theory.

I The critical activity can be determined analytically in the same
manner as done in the Ericksen-Leslie model.

ζc(Seq) =
4n2π2K1(Seq)η1(Seq)

α3(Seq)d2
× S̄

Seq
.

I S̄ = 0.6 (the uniaxial order parameter of the liquid crystal when the
experimental measurements were taken).

I Seq are the values of S which satisfy the minimisation of the
Landau-de Gennes potential

2α∆T

3
S2 +

4b

27
S3 +

2c

9
S4 = 0.

I For the choice of parameter values, the nematic phase disappears at
critical temperature ∆T = 0.5 K.

I At temperature ∆T = 0 K, we recover the results from the
Ericksen-Leslie model.
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Conclusions

I We have used the Ericksen-Leslie and Q-tensor theories of liquid
crystals to explain flow generation in active fluids.

I The results are analogous to the classic Freedericksz transition due
to external orienting field.

What else have we looked at?

I Pressure driven active nematics.

I The influence of external orienting fields.

I Flow of active fluids in 2D geometries.

Future questions

I What alternative terms can be used to model the activity?

I Most marine based organisms are polar; how does this break in
nematic symmetry change the results?

I What happens in 3D?

16 / 17



Conclusions

I We have used the Ericksen-Leslie and Q-tensor theories of liquid
crystals to explain flow generation in active fluids.

I The results are analogous to the classic Freedericksz transition due
to external orienting field.

What else have we looked at?

I Pressure driven active nematics.

I The influence of external orienting fields.

I Flow of active fluids in 2D geometries.

Future questions

I What alternative terms can be used to model the activity?

I Most marine based organisms are polar; how does this break in
nematic symmetry change the results?

I What happens in 3D?

16 / 17



Conclusions

I We have used the Ericksen-Leslie and Q-tensor theories of liquid
crystals to explain flow generation in active fluids.

I The results are analogous to the classic Freedericksz transition due
to external orienting field.

What else have we looked at?

I Pressure driven active nematics.

I The influence of external orienting fields.

I Flow of active fluids in 2D geometries.

Future questions

I What alternative terms can be used to model the activity?

I Most marine based organisms are polar; how does this break in
nematic symmetry change the results?

I What happens in 3D?

16 / 17



Ericksen–Leslie and Q-tensor models of
spontaneous flow transitions in active nematic

liquid crystals

Josh Walton
Supervised by Prof. Nigel Mottram and Dr Geoff McKay

PhD Project Funded by EPSRC

University of Strathclyde
Department of Mathematics and Statistics

22nd May, 2019

17 / 17


	From nematic to active nematic liquid crystals
	Continuum modelling of active nematics
	Geometry and the Ericksen-Leslie equations
	Spontaneous flow transitions due to activity
	Conclusions

