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• We explore the equilibria in nematic microfluidics as a function of pa- rameters (G, B).
• We demonstrate multistability for admissible pairs (G, B).
• We perform an asymptotic analysis of the static equilibria in the limits G → 0 and G → ∞.
• We study the sensitivity of the dynamic solutions to initial conditions.
• We control the final steady state by manipulating the rate of change of G and B.
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a b s t r a c t

We study the static equilibria of a simplified Leslie–Ericksen model for a unidirectional uniaxial nematic
flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring
strength, B. We numerically find multiple static equilibria for admissible pairs (G, B) and classify
them according to their winding numbers and stability. The case G = 0 is analytically tractable and
we numerically study how the solution landscape is transformed as G increases. We study the one-
dimensional dynamical model, the sensitivity of the dynamic solutions to initial conditions and the rate
of change of G and B. We provide a physically interesting example of how the time delay between the
applications of G and B can determine the selection of the final steady state.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Recent years have seen a tremendous surge in research in
complex fluids, of which nematic liquid crystals (NLC) are a prime
example [1–3]. Nematic liquid crystals are anisotropic liquids that
combine the fluidity of liquids with the orientational order of
solids i.e. the constituent rod-like molecules typically align along
certain preferred or distinguished directions and this orientational
anisotropy can have a profound optical signature [4]. Various
researchers have already looked at effects of magnetic, electric or
flow fields on pattern formation in confined nematic systems [1,5].
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In particular, microfluidics is a thriving area of research; scientists
typicallymanipulate fluid flow, say conventional isotropic fluids, in
narrowchannels complementedbydifferent boundary treatments,
leading to novel transport and mixing phenomena for fluids and
potentially new health and pharmaceutical applications [6–8].
A natural question to ask is what happens when we replace a
conventional isotropic liquid with an anisotropic liquid, such as
a nematic liquid crystal? [3] Nematic microfluidics have recently
generated substantial interest by virtue of their optical, rheological
and backflow properties along with their defect profiles [9].

In Sengupta et al. [3], the authors investigate, both experimen-
tally and numerically, microfluidic channels filled with nematic
solvents. The authors work with a thin microfluidic channel with
length much greater than width and width much greater than
depth. A crucial consideration is the choice of boundary condi-
tions and the authors work with homeotropic or normal bound-
ary conditions on the top and bottom channel surfaces, which
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require the molecules to be oriented in the direction of the sur-
face normal. The anchoring strength is a measure of how strongly
the boundary conditions are enforced: strong anchoring roughly
corresponds to Dirichlet conditions for the director field and zero
anchoring describes free (Neumann homogeneous) boundary con-
ditions. We expect most experiments to have moderate to strong
anchoring conditions. The authors impose a flow field transverse
to the anchoring conditions so that there are at least two compet-
ing effects in the experiment: anchoring normal to the boundaries
and flow along the length of the microfluidic channel. They work
with weak, medium, and strong flow speeds in qualitative terms
and observe complex flow transitions. In the weak-flow regime,
the molecules are only weakly affected by the flow and the molec-
ular orientations are largely determined by the anchoring condi-
tions. As the flow strength increases, a complex coupling between
the molecular alignments and the flow field emerges and the ne-
matic molecules reorient to align somewhat with the flow field.
The medium-flow director field exhibits boundary layers near the
center and the boundaries where the director field is strongly in-
fluenced by either the flow field or the boundary conditions. In
the strong-flow regime, themolecules are almost entirely oriented
with the flow field, with the exception of thin boundary layers near
the channel surfaces to match the boundary conditions. The au-
thors study these transitions experimentally and their experimen-
tal results suggest a largely uniaxial profile wherein the molecules
exhibit a single distinguished direction of molecular alignment
and this direction is referred to as being the director in the liter-
ature [1]. The authors present experimental measurements for the
optical profiles and flow fields and their experimentalwork is com-
plemented by a numerical analysis of the nematodynamic equa-
tions in the Beris–Edwards theory [10]. The Beris–Edwards theory
is one of the most general formulations of nematodynamics, that
accounts for both uniaxial and biaxial systems (with a primary
and secondary direction of molecular alignment) and variations
in the degree of orientational order. The authors numerically re-
produce the experimentally observed flow transitions, the director
and flow-field profiles, all of which are in good qualitative agree-
ment with the experiments.

In Anderson et al. [11], the authors model this experimental
set-up within the Leslie–Ericksen model for nematodynamics.
Their Leslie–Ericksen model is restricted to uniaxial nematics with
constant ordering (a constant degree of orientational order) [5].
They present governing equations for the flow field and the
nematic director field along with the constitutive relations that
describe the coupling between the director and the flow field (see
Appendix A for details) and assume that all dependent variables
only vary along the channel depth, with a unidirectional flow
along the channel length, consistent with the experiments. These
assumptions greatly simplify the mathematical model, yielding a
decoupled system of partial differential equations for the director
field, which captures the flow dynamics through a single variable:
the pressure gradient, G, along the channel length. The authors
define two separate boundary-value problems: one for weak-flow
solutions and one for strong-flow solutions, described by two
different sets of boundary conditions for the director field. They
find weak- and strong-flow solutions for all values of the pressure
gradient and they relate the resulting flow profile to themean flow
speed by a standard Poiseuille-flow-type relation. The energy of
the weak-flow solution is lower than the strong-flow solution for
smallG and there is an energy cross-over at some critical value,G∗,
that depends on the anchoring strength at the channel surfaces.
Recently, Batista et al. [12] undertook a comprehensive study
of the interplay between the pressure gradient and anchoring
conditions on the transition between the weak-flow and strong-
flow solutions, which they related to a discontinuity in the mass
flow rate function.
In this paper, we build on the work in Anderson et al. [11] by
performing an extensive study of the static solution landscape,
complemented by some numerical investigations of the dynam-
ical behavior, as the system evolves to these equilibrium config-
urations. We adopt the same model with the same underpinning
assumptions as in Anderson et al. [11], but we do not define two
separate boundary-value problems. We impose weak anchoring
conditions for the director field on the top and the bottom surfaces
since it includes both the weak and strong anchoring configura-
tions and allows us to capture the competition between the flow
field and the anchoring strength. In Bevilacqua et al. [13], the au-
thors adopt a similar approach to study the competition between
themagnetic field and the anchoring strength on static equilibrium
profiles, described by critical points of a suitably defined energy.

We compute the static equilibrium solutions, using a combi-
nation of analytic and numerical methods, as a function of G and
the inverse anchoring strength B. The case G = 0 is analytically
tractable and we identify two different classes of solutions and
characterize their stability. This is complemented by an asymp-
totic analysis in the limits G → 0 and G → ∞, with the lat-
ter regime yielding useful information about the boundary layers
near channel surfaces, which are experimentally observed in the
strong-flow regimes [3]. We then study the solution landscape for
G ≠ 0 and track the stable and unstable solution branches as a
function of (G, B). Ourwork largely focuses on the static equilibria
but the last section is devoted to a numerical study of the dynamic
Leslie–Ericksen model and its sensitivity to the initial condition. In
particular, we present a numerical example for which we can con-
trol the final steady state bymanipulating the rate of change of the
pressure gradient and anchoring conditions.

The paper is organized as follows. In Section 2, we present
the Leslie–Ericksen dynamic model, the governing equations and
boundary conditions. In Section 3, we explore the static solution
landscape as a function of the pressure gradient and anchoring
strength. In Section 4, we study the dynamic model, with focus
on the effects of initial conditions and the time-dependent forms
of the pressure gradient and anchoring strength, and conclude
in Section 5 by putting our work in context and discuss future
developments.

2. Mathematical model

As in Anderson et al. [11], we model the NLC within the mi-
crofluidic channel in the Leslie–Ericksen framework. The chan-
nel has dimensions, Lx̂ ≫ Lŷ ≫ Lẑ , in the x̂, ŷ and ẑ directions
respectively, consistent with the experimental set-up in Ander-
son et al. [11] and Sengupta et al. [3] The NLC is purely uniax-
ial with constant order parameter, by assumption, and is hence
fully described by a director field, n, that represents the single pre-
ferred direction of nematic alignment. Here, n and −n are phys-
ically indistinguishable (in the absence of polarity the sign of n
has no physical meaning). We additionally assume that all depen-
dent variables only depend on the ẑ-coordinate, along the channel
depth, as depicted in Fig. 1. Then the director field is of the form
n = (sin(θ(ẑ, t̂)), 0, cos(θ(ẑ, t̂))) and the velocity field is unidirec-
tional, of the form v = (û(ẑ, t̂), 0, 0), with−h ≤ ẑ ≤ h. Sincen and
−n are indistinguishable, θ and θ + kπ , k ∈ Z, describe the same
director profile. We assume that û(ẑ, t̂) is symmetric around the
center-line (i.e. around ẑ = 0) and no-slip conditions are imposed
on the channel walls (i.e. û(±h, t̂) = 0). We assume weak anchor-
ing boundary conditions for θ on ẑ = ±h, that can be derived from
the well-known Rapini–Papoular weak-anchoring energy [14],

ES =


ẑ=±h

A
2
sin2 θ dx̂ dŷ,



M. Crespo et al. / Physica D 351–352 (2017) 1–13 3
Fig. 1. Schematic of the microfluidic channel set-up. The nematic molecules are
anchored at the top and bottom surfaces and are deformed by the fluid flow from
the left.

which enforces θ(−h) = k1π and θ(h) = k2π (k1, k2 ∈ Z) for large
anchoring coefficients A > 0. In other words, the Rapini–Papoular
energy enforces homeotropic anchoring (along the normal to the
surface) described by, n = ± (0, 0, 1) on ẑ = ±h.

We substitute the assumed forms for v and ninto the full
Leslie–Ericksen governing equations, as outlined in Appendix A,
and obtain the following system describing the evolution of θ and
û:

γ1
∂θ

∂ t̂
=K

∂2θ

∂ ẑ2
−

∂ û
∂ ẑ

m(θ) ẑ ∈ (−h, h), t̂ > 0, (1a)

−Gẑ =
∂ û
∂ ẑ

g(θ) +
∂θ

∂ t̂
m(θ) ẑ ∈ (−h, h), t̂ > 0, (1b)

θ(ẑ, 0) =Θ(ẑ) ẑ ∈ (−h, h), (1c)

û(±h, t̂) = 0 t̂ > 0, (1d)

K
∂θ

∂ ẑ
= −

A
2
sin(2θ(ẑ, t̂)) ẑ = h, t̂ > 0, (1e)

K
∂θ

∂ ẑ
=

A
2
sin(2θ(ẑ, t̂)) ẑ = −h, t̂ > 0, (1f)

where K (N) is the elastic constant of the NLC, Θ is the initial
condition, −G =

∂P
∂ x̂ is the component of the pressure gradient

in the channel direction and A (Nm−1) is the surface anchoring
strength.Note that for a physically realistic solution,we expect that
as A → ∞, 2θ tends to an integer multiple of π on ẑ = ±h.

The functions

m̂(θ) = α̂2 cos2(θ) − α̂3 sin2(θ) and

ĝ(θ) = α̂1 cos2(θ) sin2(θ) +
α̂5 − α̂2

2
cos2(θ)

+
α̂3 + α̂6

2
sin2(θ) +

α̂4

2
,

the α̂i (Nm−2 s), i ∈ {1, . . . , 6}, are constant viscosities related
to each other by the Parodi relation [15], α̂2 + α̂3 = α̂6 − α̂5.
Characteristic values for the dimensionless nematic viscosities are
α1 = −0.1549, α2 = −0.9859, α3 = −0.0535, α5 = 0.7324
and α6 = −0.39 [11]. Note that the following inequalities must be
satisfied (see Appendix A.1.1):

ĝ(θ) > 0, γ̂1ĝ(θ) > m̂2(θ), (2)

where γ̂1 = α̂3 − α̂2.
We non-dimensionalize the system (1) using the scalings

z =
ẑ
h
, u =

ûα4h
K

, αi =
α̂i

α̂4
,

γ1 =
γ̂1

α̂4
, t =

K t̂
α̂4h2

. (3)

Furthermore, using (1a), (1b) we obtain the following decoupled
dimensionless initial–boundary-value problem for θ :
γ1g(θ) − m(θ)2

 ∂θ

∂t
= g(θ)

∂2θ

∂z2
+ Gzm(θ) z ∈ (−1, 1), t > 0, (4a)
θ(z, 0) = Θ(z) z ∈ (−1, 1), (4b)

B
∂θ

∂z
(1, t) = − sin(2θ(1, t)) t > 0, (4c)

B
∂θ

∂z
(−1, t) = sin(2θ(−1, t)) t > 0, (4d)

the velocity u being available via equation

u(z, t) = −


Gz +

∂θ
∂t (z, t)m(θ(z, t))
g(θ(z, t))

dz, (5)

whereG = h3G/K andB = 2K/Ah are the dimensionless pressure
gradient and the dimensionless inverse anchoring strength respec-
tively,

m(θ) = α2 cos2(θ) − α3 sin2(θ) and

g(θ) = α1 cos2(θ) sin2(θ) +
1
2


(α5 − α2) cos2(θ)

+ (α3 + α6) sin2(θ) + 1

.

Note that, if θ1, θ2 are the solutions of (4) corresponding, respec-
tively, to initial conditionsΘ1(z) andΘ2(z) = Θ1(z)+kπ (k ∈ Z),
then θ2 = θ1 + kπ and both θ1 and θ2 correspond to the same
physical description.

We compute equilibrium solutions and dynamic time-
dependent solutions of system (4) for different values of dimen-
sionless pressure gradient G, dimensionless inverse anchoring
strengthB and initial conditionsΘ , using parameter values for the
NLC 5CB as in Anderson et al. [11].

3. Equilibrium solutions

We begin by studying the static equilibria of the system (4),
θ∗(z), which satisfy

g(θ∗(z))
d2θ∗

dz2
(z) = −Gzm(θ∗(z)) z ∈ (−1, 1),

B
dθ∗

dz
(1) = − sin(2θ∗(1)),

B
dθ∗

dz
(−1) = sin(2θ∗(−1)).

(6)

We characterize the equilibrium solutions in terms of their
winding number, defined to be

ω(θ∗) =
θ∗(1) − θ∗(−1)

2π
. (7)

The winding number is typically used in the literature in relation
with topological defects [16], however here we use it as a measure
of the rotation of the director field between the top and bottom
surfaces. The limit B → 0 is the strong anchoring limit, when
the boundary conditions on z = ±1 are strongly enforced and
both θ∗(1) and θ∗(−1) are integer multiples of π

2 in this limit.
Particularly, as we will see in Section 3.1, as B → 0, the stable
equilibria at z = ±1 tend to θ∗(±1) = nπ, n ∈ Z (homeotropic
anchoring) and the unstable equilibria to θ∗(±1) = (n+

1
2 )π, n ∈

Z (planar anchoring at the boundaries). This is simply because
θ∗(±1) = nπ is a minimum of the surface energy used to derive
the anchoring conditions at z = ±1. See Appendix B.1.1 for a
detailed description of different nematic configurations. In what
follows, we track the stable and unstable solutions of (6) as the
model parameters are varied.
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Fig. 2. Case G = 0: Solutions of (10) indicating the emergence of non-constant
steady-state solutions θ∗

an , n = 0, ±1, . . . at critical valuesB∗

2n for n = ±1, ±2, . . . .
The solid and dashed lines represent, respectively, the values ofω(θ∗

an ) forwhich the
steady state θ∗

an is stable or unstable.

3.1. No fluid flow (G = 0)

WhenG = 0,we can explicitly solve the system (6) to obtain the
static equilibria (see Appendix B for more details). We divide the
potentially stable equilibria (see Appendix B.1) into two families:

Type I θ∗

an(z) = anz, where Ban = − sin(2an), (8)

Type II θ∗

ãn(z) = ãnz +
π

2
, where Bãn = sin(2ãn). (9)

For every value of B, we obtain an ordered set of solutions for
(8), with 0 = a0 < a1 < · · · < an, n ∈ N ∪ {0}
depending on B. Moreover, if an defines a solution, so does −an,
which we denote by a−n (identical remarks apply to (9)). Let
θ∗
an denote the solution corresponding to an in (8), then θ∗

an =

−θ∗
a−n

and ω(θ∗
an) = −ω(θ∗

a−n
) =

an
π
, where ω(θ∗

an) satisfies the
transcendental equation

B = −
sin(2πω(θ∗

an))

πω(θ∗
an)

. (10)

Analogous statements apply to solutions θ∗

ãn
with ãn a solution of

Eq. (9), where ω(θ∗

ãn
) satisfies the transcendental equation

B =
sin(2πω(θ∗

ãn
))

πω(θ∗

ãn
)

. (11)

Thus there is a symmetric (with respect to ω(θ∗) = 0)
arrangement of solutions, which is physically reasonable since we
do not expect to have a preferred twist direction when G = 0.
In Appendix B.1 we analyze the linear stability of the equilibria
(8)–(9) to conclude that

Type I is stable if n is even and is unstable if n is odd,
Type II is stable if n is odd and is unstable if n is even.

It is clear that the director profiles for θ∗
an and θ∗

a−n
are reflections

of each other about the angle θ = 0. The constant solutions θ∗
a0 ≡ 0

and θ∗

ã0
≡

π
2 exist for all values of B. These are the only solutions

for large values of B. Non-constant solutions subject to (8) and (9)
emerge as B decreases.

We define critical values B∗

2n with n = ±1, ±2, . . . such that,
for n > 0, the solution branches,


ω(θ∗

a2n), B

and


ω(θ∗

a2n−1
), B


(and


ω(θ∗

a2n+1
), B


if n < 0) coalesce at the critical valueB = B∗

2n
and cease to exist for B > B∗

2n (see Fig. 2). Similarly, we define
Fig. 3. Case G = 0: Solutions of (11) indicating the emergence of non-constant
steady-state solutions θ∗

ãn
,n = 0, ±1, . . . at critical valuesB∗

2n+1 forn = 0, ±1, . . . .
The solid and dashed lines represent, respectively, the values ofω(θ∗

ãn
) forwhich the

steady state θ∗

ãn
is stable or unstable.

the critical values B∗

2n+1 with n = 0, ±1, . . . as the coalescence
points for solutions of Type II (see Fig. 3 for a complete description).
Solutions with large winding numbers are only observable in the
strong-anchoring limit. Notice that forB → 0 the stable equilibria
are either θ∗

an with ω(θ∗
an) = kπ or θ∗

ãn
with ω(θ∗

ãn
) = (k +

1
2 )π ,

k ∈ Z, and in both cases θ∗(±1) tends to a multiple of π . We can
apply the same reasoning to deduce that for B → 0, the unstable
equilibria are such that θ∗(±1) → (k+

1
2 )π , as previously claimed

before Section 3.1. For weaker anchoring, the director profile has
greater freedom to reorient at the boundaries and escape from the
energetically expensive fixed rotation imposed by large winding
numbers. For G = 0, B∗

i = B∗

−i (i ∈ N). For B > B∗

1 , θ
∗
a0 and

θ∗

ã0
are the only constant steady states of system (6). For simplicity,

in what follows we denote the equilibrium solutions as θ∗
a , where

θ∗
a = θ∗

an if it is of Type I and θ∗
a = θ∗

ãn
if it is of Type II.

3.2. Fluid flow (G > 0)

Next, we study the static equilibria of the system (6) when we
apply a pressure difference G > 0 across the microfluidic channel,
inducing a fluid flow. The solutions are computed numerically for
all values of G using Chebfun via the method of continuation [17].
When the G = 0 solution θ∗

a is taken as the initial condition (see
Section 3.1), the corresponding solution with G > 0 is denoted by
θ∗
a,G. We numerically compute the stability of the equilibria with

G > 0 (using the function eigs of theMATLABpackage Chebfun) and
find that the stability properties of the G = 0 equilibria propagate
to the G > 0 cases.

3.2.1. Asymptotics when G ≪ 1
When G ≪ 1, we can approximate θ∗

a,G by the expansion

θ∗
a,G(z) = θ∗

a (z) + Gθ
(1)
G (z) + · · · , where θ∗

a is the corresponding

solution for G = 0. It is straightforward to verify that θ
(1)
G is a

solution of

d2θ
(1)
G

dz2
(z) = zQ (θ∗

a (z)) z ∈ (−1, 1)

B
dθ (1)

G

dz
(1) = −2θ (1)

G (1) cos(2θ∗a(1)),

B
dθ (1)

G

dz
(−1) = 2θ (1)

G (−1) cos(2θ∗a(−1)),

(12)
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Fig. 4. Static equilibria θ∗
a0,G when B =

1
3 . Comparison of the asymptotic solution

given by (13) (dashed) with the full numerical solution to (6) (solid).

where Q (s) = −m(s)/g(s). The solution to (12) is given by

θ
(1)
G (z) = J(z) + Cz + D, (13)

where

I(r) =

 r

0
sQ (as + b)ds, J(z) =

 z

0
I(r)dr, (14)

C =
2(−1)k cos(2a)


J(−1) − J(1)


− B


I(1) + I(−1)


2B + 4(−1)k cos(2a)

, (15)

D = −
1
2


J(1) + J(−1)


+

B(−1)k

I(−1) − I(1)


4 cos(2a)

, (16)

with b = k = 0 for Type I solutions where a satisfies (8)
and b =

π
2 and k = 1 for Type II solutions, where a satisfies

(9). We validate the asymptotic analysis performed above by
numerically computing the equilibria θ∗

a,G of (4) for small values
of G by solving (6) with Chebfun and comparing this with the
asymptotic result (13). When θ∗

a = θ∗
a0 ≡ 0 and θ∗

a = θ∗

ã1
the

asymptotic solution approximates the actual solution for values
of G significantly beyond the expected regime (see respectively
Figs. 4(a) and 5(a), where we find that the asymptotic solution
approximates the full numerical solution well for values of G
as large as 7). We note that the graphical representation of the
solutions θ∗

a0,G and θ∗

ã1,G
in Figs. 4 and 5 agrees well with the

experimental situations reported by Jewell et al. [18], where the
authors study the role of the pressure gradient into the transition
between these two steady states in the limiting case B = 0. We
choose a moderate anchoring strength to illustrate the differences
between the numerics and asymptotics clearly. The asymptotic
approximations rapidly improve asB → 0. Fig. 6 plots the director
field n and the flow profile u (obtained by using (5)) associated
with the equilibria θ∗

a0,G and θ∗

ã1,G
, computed when G = 0.5 and

B =
1
3 . The director fields exhibit a continuous rotation between

the two channel surfaces. This behavior is broadly known as the
tumbling regime and is typically observed in nematic microfluidics
with small flow rates [19]. We note that solutions θ∗

a0,G and
θ∗

ã1,G
correspond to the weak- and strong-flow solutions (obtained

with weak anchoring) in Anderson et al. [11], Fig. 6 being easily
comparedwith Fig. 4(d)–(f) in [11]. In contrast to [11], our stability
analysis suggests that both solutions are stable when G = 0.5 and
B =

1
3 .
Fig. 5. Static equilibria θ∗

ã1,G
when B =

1
3 . Comparison of the asymptotic solution

given by (13) (dashed) with the full numerical solution to (6) (solid).

3.2.2. Asymptotics when G → ∞

For G ≫ 1, we can perform a similar asymptotic expansion of
the form θ∗

G(z) = θ
(0)
G (z) + (1/G)θ

(1)
G (z) + · · · . Substituting this

expansion into (6) and equating terms at leading order gives

zQ (θ
(0)
G (z)) = 0, z ∈ (−1, 1) (17a)

B
dθ (0)

G

dz
(1) = − sin(2θ (0)

G (1)), (17b)

B
dθ (0)

G

dz
(−1) = sin(2θ (0)

G (−1)). (17c)

Eq. (17a) implies that θ
(0)
G (0) can take arbitrary values in R and

θ
(0)
G (z) ≡ ± arctan


α2

α3


+ kπ ≡ σ±

k (18)

with k ∈ Z arbitrary; the value σ+

0 is broadly known as the
flow-aligning angle or Leslie angle [20]. However, the boundary
conditions (17b), (17c) are not satisfied by (18) and hence we
expect to find boundary layers near z = −1, 0 and 1, in order
to match the boundary conditions. The solution in the two outer
regions −1 < z < 0 and 0 < z < 1 are given by (18) for any two
particular integer values of k, say k1 and k2.

Near z = −1, we rescale in (6) by introducing the variable
η =

√
G(z + 1) and perform an asymptotic expansion in powers

of 1/
√

G. The corresponding leading-order term in G, θ (0)
L,G(η), is a

solution of

d2θ
(0)
L,G

dη2
(η) = −Q (θ

(0)
L,G(η)), η > 0 (19a)

B̄
dθ (0)

L,G

dη
(0) = sin(2θ (0)

L,G(0)), (19b)

lim
η→∞

θ
(0)
L,G(η) = σ±

k1
, (19c)

where we have rescaled B̄ =
√

GB assuming that B̄ = O(1)
to obtain the richest asymptotic limit. We point out that the
asymptotic analysis could be done without this assumption. Then

(19b) would be B
dθ (0)

L,G
dη = 0 and θ

(0)
L,G(η) = σ±

k1
. We would need

to use the second term, θ (1)
L,G , of the asymptotic expansion (at least)

and the results with these two terms would be worse than those
obtained here. Eq. (19c) is thematching condition between θ

(0)
L,G and

θ
(0)
G .
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(a) nwith θ∗

a0,0.5 . (b) Velocity profiles associated to θ∗

a0,0.5 (solid) and θ∗

â1,0.5 (dashed). (c) nwith θ∗

ã1,0.5 .

Fig. 6. Director and flow profiles associated with the static equilibria θ∗

a0,0.5 and θ∗

ã1,0.5 when B =
1
3 . We note that, in (a), n ≈ (0, 0, 1) but different scales have been used

in the x and z axis to allow the reader to appreciate the change between θ∗

a0,0.5 and θ∗

a0,0 (corresponding to n = (0, 0, 1)). In (b), x and z axis have the same scale.
Near z = 0, we set ξ = G1/3z and the corresponding leading-
order term, θ (0)

C,G(ξ), satisfies

d2θ
(0)
C,G

dξ 2
= ξQ (θ

(0)
C,G(ξ)), ξ ∈ (−∞, ∞), (20a)

lim
ξ→−∞

θ
(0)
C,G(ξ) = σ±

k1
, (20b)

lim
ξ→∞

θ
(0)
C,G(η) = σ±

k2
, (20c)

where (20b), (20c) describe the matching conditions.
Finally, we introduce the variable ζ =

√
G(1 − z) near z = 1

and θ
(0)
R,G(ζ ), the leading-order solution in G, satisfies

d2θ
(0)
R,G

dζ 2
= Q (θ

(0)
R,G(ζ )), ζ > 0, (21a)

B̄
dθ (0)

L,G

dη
(0) = sin(2θ (0)

L,G(0)), (21b)

lim
ζ→∞

θ
(0)
R,G(ζ ) = σ±

k2
, (21c)

where (21c) is the matching condition.
We numerically solve the three boundary layer problems

(19)–(21), using Chebfun, matching to the constant values in (18).
For our particular choice of dimensionless nematic viscosities α2
and α3, all values of σ±

k (defined in (18)) are close to some odd
multiple of π

2 , and thus the inner director field is largely flow-
aligned and is rotated kπ times with respect to the flow direction.
There are multiple choices for the outer solutions, σ±

k1
and σ±

k2
, for

−1 < z < 0 and 0 < z < 1 respectively, yielding different
asymptotic approximations. In Figs. 7 and 8 we compare the
asymptotic approximations (18)–(21) with numerical solutions
of the full system (6) for large values of G. The two cases are
labeled as θ∗

a0,G and θ∗

ã1,G
respectively, depending on the initial

condition used to generate them. The values of σ±

k1
and σ±

k2
are

extracted from the numerical solution and used in the asymptotic
approximation (18)–(21) (these values are different for solutions
θ∗
a0,G and θ∗

ã1,G
). Once the outer values are determined, we can

compute the asymptotic approximation using the methodology
outlined above. The asymptotic solution approximates the full
Fig. 7. Static equilibria θ∗
a0,G with G → ∞ and B =

1
3 . Comparison of asymptotic

solution given by (13) (dashed) with the full numerical solution to (6) (solid).

numerical solution well. The asymptotic solutions also show that
the boundary layers near the walls have width proportional to
G−1/2, consistent with the experimental findings in Sengupta
et al. [3]. Fig. 9 plots the director field n and the flow profile u
(obtained by using (5)) associated with the equilibria θ∗

a0,G and
θ∗

ã1,G
, computed for G = 100 and B =

1
3 . The director field

is largely flow-aligned, this behavior being typically observed in
nematic microfluidics with high flow rates [19]. Furthermore, the
director field associated with θ∗

a0,G exhibits a third transition layer
near the center as predicted by the asymptotic analysis. In contrast
to [11], our stability analysis suggests that both solutions are stable
when G = 100 and B =

1
3 .

3.3. Equilibrium solution landscape in G

In this section, we study how the static solution landscape for
the system (4) evolves as the pressure gradientG increases. Figs. 10
and 11 show the evolution of the steady state solutions, θ∗

an and θ∗

ãn
,

as G increases. For G = 0 and B > B∗

1 , the trivial solution θ∗
a0 ≡ 0

is the unique stable equilibrium. For G > 0 the trivial solution is
not an equilibrium and for B > B∗

1 , θ
∗
a0,G is not the unique stable



M. Crespo et al. / Physica D 351–352 (2017) 1–13 7
Fig. 8. Static equilibria θ∗

ã1,G
when G → ∞ and B =

1
3 . Comparison of asymptotic

solution given by (13) (dashed) with the full numerical solution to (6) (solid).

equilibrium. As the pressure gradient G increases, new equilibria
appear for B > B∗

1 . Additionally, some equilibria, e.g. those with
a large positive winding number, become suppressed or have a
smaller window of existence in B, as G increases.

We believe that the asymmetry in the solution branches
with positive and negative winding numbers for G > 0 is a
consequence of the fact that we work with unit-vector fields,
and not director fields without a direction. We speculate that a
more sophisticated model, such as the Beris–Edwards model for
nematodynamics which accounts for the head–tail symmetry of
nematic molecules, may resolve this asymmetry between positive
and negative winding numbers for large G.

Let B∗

i,G denote a critical value of B for a fixed G > 0; this
definition is analogous to the definition of B∗

i for G = 0. We
conjecture that there is a saddle–node bifurcation at each critical
value such that if n > 0, the stable branch, θ∗

a2n,G, and the unstable
branch, θ∗

a2n−1,G
(θ∗

a2n+1,G
for n < 0), collide at B = B∗

2n,G and
cease to exist for B > B∗

2n,G (similarly for B∗

2n+1,G and solutions
of Type II). In Fig. 12 we plot the critical values B∗

i,Gi = ±2, 3, . . .
as a function of the pressure gradient. For example, if G ≈ 15, the
critical valueB∗

−2,G → ∞ so that forG > 15, the solution branches
θ∗
a−2,G

and θ∗
a−1,G

do not coalesce and exist for all B.
Fig. 10. Evolution of the steady-state solutions of Type I as G increases. The solid
and dashed lines represent, respectively, the values ofω(θ∗

an,G) for which the steady
states, θ∗

an,G , are stable or unstable.

Fig. 11. Evolution of the steady-state solutions of Type II as G increases. The solid
and dashed lines represent, respectively, the values ofω(θ∗

ãn,G
) for which the steady

states, θ∗

ãn,G
, are stable or unstable.
(a) nwith θ∗

a0,100 . (b) Velocity profiles associated with θ∗

a0,100 (solid) and θ∗

â1,100 (dashed). (c) nwith θ∗

ã1,100 .

Fig. 9. Director and flow profiles associated to the static equilibria θ∗

a0,100 and θ∗

ã1,100 when B =
1
3 .
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Fig. 12. Evolution of the critical values B∗

i,G as G increases.

4. Time-dependent solutions

In this section, we study the time-dependent behavior of
the system (4). We numerically compute the time-dependent
solutions using a self-implemented finite-difference method, with
mesh resolution 1z = 0.0125 and time step 1t = 0.01. As we
have seen in Section 3, there are multiple static equilibria for a
given pair (G, B) and it is of interest to investigate steady-state
selection, for different choices of the initial conditions.We perform
a preliminary investigation of the parameter space by working
with either constant or linear initial conditions. We conclude that
the time-dependent system converges to:

θ∗

a0,G if Θ(z) = C, (22)

θ∗

an,G if Θ(z) = Cz, (23)

θ∗

ãn,G if Θ(z) = Cz +
π

2
, (24)

where C is a constant. We note that the initial conditions in
(22)–(24) do not satisfy the boundary conditions in (4) and
in Section 4.1, we propose alternative initial conditions that
respect these boundary conditions. In Fig. 13 we use linear initial
conditions (23) that have C ∈ [−

7π
2 , 7π

2 ], G = 2, B =
1
10 , and

find that the steady state converges to different equilibria θ∗

an,2,
depending on the initial value C . We compute the corresponding
winding numbers and use the winding number to label the static
equilibria in Fig. 13. Particularly, for anypair (G,B),wenumerically
find a critical value C∗ such that if C ∈ (C∗

−ϵ, C∗
+ϵ), with ϵ > 0

sufficiently small, we have

lim
t→∞

θ(t, z; Cz) =


θ∗

a−2,G
if C ∈ (C∗

− ϵ, C∗),

θ∗

a0,G if C ∈ [C∗, C∗
+ ϵ).

(25)

Fig. 14 plots the initial condition Θ(z) = C∗(z), where C∗ is
the critical value obtained with G = 2 and B =

1
10 . System (4)

with initial condition Θ(z) = Cz approaches either θ∗

a0,2
or θ∗

a−2,2
if C ≥ C∗ or C < C∗, respectively.

4.1. Tuning the pressure gradient and the boundary conditions

The pressure gradient and boundary conditions have been
assumed to be constants in our computations so far. However, it
is of experimental interest to consider situations where both the
pressure gradient and boundary conditions are continuously tuned
over a short period of time until they attain the desired state. We
Fig. 13. Winding number for the solution of the system (4) with B =
1
10 , G = 2,

with different linear initial conditions Θ(z) = Cz, C ∈ [−7 π
2 , 7 π

2 ]. The critical
value C∗ is indicated on the x-axis.

Fig. 14. Solutions θ∗
a0,G and θ∗

a2,G obtained with B =
1
10 and G = 2. The critical

initial condition Θ(z) = C∗z is plotted with dashed line.

consider tuning the flow at a rate δ by applying

G(t) =


0 if t ≤ t1,
Ḡ tanh(δ(t − t1)) otherwise. (26)

Similarly, we apply time-dependent anchoring conditions of the
form

θz(1, t)

=


C if t ≤ t2
C(1 − tanh(κ(t − t2)))

−
sin(2θ(1, t)) tanh(κ(t − t2))

B
otherwise,

θz(−1, t)

=


C if t ≤ t2
C(1 − tanh(κ(t − t2)))

+
sin(2θ(1, t)) tanh(κ(t − t2))

B
otherwise,

(27)

for some constant κ > 0. In particular, these conditions are
satisfied by the initial (linear) condition Θ = Cz for t ≤ t2 and
then, the anchoring is switched on with a tuning rate κ , to attain
the required weak anchoring conditions at z = ±1.

Wenumerically study thismodified dynamic system, using (26)
and (27), and find that if t1 ≤ t2, then the final steady state is
identical to the steady state attained with constant values G =

Ḡ and boundary conditions (4c)–(4d), for the parameter sweep
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Fig. 15. Critical values t∗1 (C) obtained when solving the system (4), (26)–(27) with
Ḡ = 40, t2 = 0 and δ = κ = 5. For t1 < t∗1 (C), the solution evolves to the steady
state θ∗

a−2,Ḡ
; for t1 ≥ t∗1 (C), the system evolves to the steady state θ∗

a0,Ḡ
. Note that

t∗1 = 0 when C = C∗ (see Definition (25)).

that we performed. This indicates that if we first apply a pressure
gradient and then enforce strong anchoring, the systemwill always
relax to the same equilibrium state, regardless of the time delay
between application of the pressure gradient and anchoring.

On the other hand, if we apply the anchoring condition before
the pressure gradient by choosing t1 > t2, then a different
steady state can be attained, depending on the time delay and
the respective rates. As an illustrative example, we find that if
Θ = Cz with C < C∗ and B > B∗

−2, solutions of system (4) with
(26)–(27) may approach the equilibrium solution, θ∗

a0,Ḡ
, instead

of the expected solution, θ∗

a−2,Ḡ
. This can be explained as follows:

when t2 < t ≤ t1, i.e. while G = 0, the trivial solution θ∗
a0 = 0

is the unique steady state and thus the system must approach this
solution during the early stages. As a consequence, when the flow
begins (t > t1), the solution is already sufficiently close to θ∗

a0 and
thus can no longer access the equilibrium state θ∗

a−2,Ḡ
, as it would

do if t1 ≤ t2. Hence, given model parameters Ḡ, B, t2, κ and δ, if
the initial condition isΘ = Cz, one can define a critical value t∗1 (C)
such that lim

t→∞
θ(t, z; Cz) = θ∗

a−2,Ḡ
if t1 < t∗1

lim
t→∞

θ(t, z; Cz) = θ∗

a0,Ḡ
if t1 ≥ t∗1 .


(28)

If C is such that limt→∞ θ(t, z; Cz) = θ∗

a−2,Ḡ
for all t1 > 0, t∗1 (C) is

not defined.
Fig. 15 shows the dependence of the critical times t∗1 on C andB.

We observe that, as the inverse anchoring strengthB increases, the
critical time t∗1 (C) decreases. This is expected since asB increases,
the anchoring strength decreases and thus the system is able to
reorient itself more easily.

5. Conclusions

We have explored the static equilibria of a Leslie–Ericksen
model for a unidirectional uniaxial nematic flow in a prototype
microfluidic channel, as a function of the pressure gradient G and
inverse anchoring strength, B. As B → 0, we approach the
strong-anchoring limit. Since the Leslie–Ericksen model can be
seen as a limiting case of the more general Beris–Edwards and
Stark–Lubensky models, we expect that our analytical treatment
of the static equilibria may be useful for other researchers in terms
of comparison with their flow profile simulations.
We adopt the same model with the same underpinning
conditions as in Anderson et al. [11] and build on their work by
performing an extensive study of the static solutions (instead of
limiting ourselves to two specific steady states). In particular, the
weak- and strong-flow solutions (obtained with weak anchoring)
in Anderson et al. [11] correspond to θ∗

a0,G and θã1,G. AsB → 0, the
solution θã1,G has 1/2-winding number (associated with a rotation
byπ radians between the top and bottom surfaces) consistentwith
the Dirichlet conditions for the strong-flow solution in Anderson
et al. [11]. Our stability analysis suggests that both solutions are
stable when G = 0 and do not lose stability as G increases.
In Anderson et al. [11] the authors report that the strong-flow
solution has lower energy than the weak-flow solution for large
G and the critical G∗ depends on the anchoring strength. This
is in line with our stability analysis and we speculate that the
unstable solution branches in our numerical picture may provide
valuable information about how thedifferent solutionbranches are
connected in the full solution landscape. The asymptotic analysis in
the limit G → +∞ allowed us to obtain useful information about
the boundary layers near the center and the channel surfaces,
which were experimentally observed by Sengupta et al. [3] in the
strong-flow regimes. It is also shown that the transition layer at
the center may have a different width compared to the surface
boundary layers.

We assume symmetry in the flow profile, which allows the
liquid crystal dynamics to be decoupled from the flow dynamics.
This enables us to determine explicit and asymptotic solutions
that provide key insight into the system behavior. In practice we
might expect to observe transitions between the steady states that
we have computed here. However, in evolving from one steady
state to another the configurations may not exhibit symmetry, and
thus this behavior cannot be captured by our model. Solving the
fully coupled Leslie–Ericksen model would determine the range of
validity of our model in such situations.

We numerically find static equilibria with large winding
numbers that are linearly stable within the simple Leslie–Ericksen
model. We expect these distorted equilibria to lose stability with
respect to perturbations in the x and ydirections and so are unlikely
to be observable in practice. Finally, we perform a preliminary
investigation of the sensitivity of dynamic solutions to initial
conditions.Workingwith a linear initial condition, we numerically
find critical values that separate basins of attraction for the distinct
steady states. Further, we also study the effect of varying the
pressure gradient and anchoring conditions with time and how
the rate of change can affect the critical initial conditions that
lead to the selection of a particular steady state. This numerical
experiment may guide future physical experiments on these lines
if experimentalists can control fluid flow and anchoring conditions
with time, so as to attain a desired state or at least control transient
dynamics. We hope that our results may aid experimentalists to
designnewcontrol strategies formicrofluidic transport andmixing
phenomena.

Acknowledgments

This work was carried out thanks to the financial support of
the ‘‘Spanish Ministry of Economy and Competitiveness’’ under
projects MTM2011-22658 and MTM2015-64865-P. The authors
gratefully acknowledge many helpful discussions with L. J. Cum-
mings and D. Vigolo, and discussions at an Oxford Collaborative
Workshop Initiative workshop. AM and IMG are grateful for dis-
cussions on nematic microfluidics with A. Sengupta. MC thanks
the French Labex Numev (grant number APP2016-1-023) (conven-
tion ANR-10-LABX-20) for the postdoctoral grant of the First Au-
thor at UMR MISTEA, Montpellier, France. AM’s research is sup-
ported by an EPSRC Career Acceleration Fellowship EP/J001686/1



10 M. Crespo et al. / Physica D 351–352 (2017) 1–13
and EP/J001686/2, an OCIAMVisiting Fellowship and the Advanced
Studies Centre at Keble College. IMG gratefully acknowledges sup-
port from the Royal Society through a University Research Fellow-
ship.

Appendix A. Leslie–Ericksen continuum theory for nematody-
namics

The Leslie–Ericksen dynamic theory is widely accepted to
model dynamic phenomena in nematic liquid crystals. A unit
vector n = (n1, n2, n3), called the director, is defined to describe
the local direction of the average molecular alignment in liquid
crystals,while the instantaneousmotion of the fluid is described by
its velocity vector v = (v1, v2, v3). The full equations for nemato-
dynamics describe the evolution of n and v. When electromagnetic
and gravitational forces are disregarded, the Leslie–Ericksenmodel
for incompressible fluids is [20–23]:

vi,i = 0 in Ω, (A.1a)

ρ
dvi

dt̂
= σji,j in Ω × (0, +∞), (A.1b)

ρ1
d
dt̂

dni

dt̂
+ v · ∇ni


= gi + πji,j in Ω × (0, +∞), (A.1c)

where ξj denotes the partial derivative of ξ with respect to x̂j and
t̂ represents the time. Eqs. (A.1a)–(A.1c) represent mass, linear
and angular momentum conservation, respectively, with Ω being
the domain occupied by the liquid crystal, ρ is the mass density
(assumed constant) and ρ1 is a constant, measured in terms of
weight divided by distance, that arises from the consideration of a
rotational kinetic energy of the material element. Here, σ , π and g
represent, respectively, the stress tensor, the director stress tensor
and the intrinsic director body force. They are defined as

σji = −Pδij −
dF
dnk,j

nk,i + σ̄ji,

πji = βjni +
dF
dni,j

,

gi = γ ni − βjni,j −
dF
dni

+ ḡi,

(A.2)

where P is the pressure of the fluid flow and δij is the Kronecker
delta. The vector (β1, β2, β3) and the scalar function γ (sometimes
called direction tension) are Lagrange multipliers ensuring ∥n∥ =

1 [23]. F represents the Frank–Oseen free elastic energy, which
is associated to distortions of the anisotropic axis. In the case
of nematic liquid crystals, F depends on four elastic constants
Ki (i = 1, 2, 3, 4), corresponding to the curvature components
describing splay, twist, bend and saddle-splay effects (see for
instance equation (4.130) in Stewart [24]). Here, we exploit
the one-constant approximation of the Frank–Oseen elastic free
energy density given by [1]

F =
K
2
ni,jni,j, (A.3)

where K is the only elastic constant considered. This condition
has been taken for analytical purposes, since the simpler form of
Eq. (A.3) makes it a valuable tool to reach a qualitative insight into
distortions in nematics [1]. Note that in this framework, F does not
depend on ni, so that the term dF

dni
appearing in the definition of gi

can be disregarded. Furthermore,

σ̄ji = α1nknpAkpninj + α2Ninjα3Njni + α4Aij

+ α5Aiknknj + α6Ajknkni,

Ni =
dni

dt̂
+ v · ∇ni − ωijnj,
ωij =
vi,j − vj,i

2
, Aij =

vi,j + vj,i

2
, and

ḡi = −γ1Ni − γ2njAji,

whereαi are constant viscosities satisfying the Parodi relation [15],
α2 + α3 = α6 − α5, and γ1 = α3 − α2, γ2 = α6 − α5. More details
about these parameters can be found in Appendix A.1.1.

A.1. Simplified model

In this work, we assume that the microfluidic channel, with
domain (0, l) × (0, w) × (−h, h) has length l much greater than
width w and width much greater than height 2h, so that the
director and the flow fields may be assumed to depend only on
the ẑ-coordinate. In the case of the director field, this assumption
is not unrealistic for confined systems where the third dimension
is very small compared to the lateral dimensions (in our case l ≫

w ≫ 2h) and has been broadly considered in the literature (see
e.g. [21,24,25]). In the case of the flow field, this assumption comes
from the fact that the flow velocity is dictated by the pressure
gradient and, as shown in Anderson et al. [11], is consistent
with the experiments in Sengupta et al. [3]. Thus, we let n =

(sin(θ(ẑ, t̂)), 0, cos(θ(ẑ, t̂))), v = (û(ẑ, t̂), 0, 0). Moreover, û(ẑ, t̂)
is considered symmetric around ẑ = 0 and the no-slip condition is
assumed in the channel walls (i.e. û(±h, t̂) = 0).

Using this information in the constitutive formulas, one has
that

• Aij = 0 except for A13 = A31 =
ûẑ
2 .

• ωij = 0 except for ω13 =
ûẑ
2 and ω31 =

−ûẑ
2 .

• N1 = n1,t̂ −w13n3 = cos(θ)θt̂ −
ûẑ
2 cos(θ) = cos(θ)(θt̂ −

hatuẑ
2 ).

• N2 = 0.
• N3 = n3,t̂ − w31n1 = − sin(θ)θt̂ +

ûẑ
2 sin(θ) = sin(θ)(

ûẑ
2 − θt̂).

• ḡ1 = −γ1N1 − γ2A31n3 =
cos(θ)ûẑ

2 (γ1 − γ2) − γ1 cos(θ)θt̂ .
• ḡ2 = 0.
• ḡ3 = −γ1N3 − γ2A13n1 = −

sin(θ)ûẑ
2 (γ1 + γ2) + γ1 sin(θ)θt̂ .

Now, taking into account that F only depends on the
variables n1,3 and n3,3 one has that πij,i = 0 except for π31,3
and π33,3. Thus,

• π31,3 =


dF

dn1,3


,3

= Kn1,33.

• π33,3 =


dF

dn3,3


,3

= Kn3,33.

• g1 = γ n1 + ḡ1 = γ n1 +
cos(θ)ûẑ

2 (γ1 − γ2) − γ1 cos(θ)θt̂ .
• g2 = 0.
• g3 = γ n3 + ḡ3 = γ n3 −

sin(θ)ûẑ
2 (γ1 + γ2) + γ1 sin(θ)θt̂ .

• σ̄ij = 0 except for σ̄11, σ̄13, σ̄31 and σ̄33.

In our case, it follows from the linear momentum equation
(A.1b) that

ρ
dû
dt̂

= σ11,1 + σ31,3 = −P,1 + σ̄31,3,

0 = σ22,2 = −P,2,

0 = σ33,3 = −(P + 2F),3 + σ̄33,3.

Note that we will use the notation f,1, f,2, f,3; f,x̂, f,ŷ, f,ẑ and fx̂, fŷ, fẑ
interchangeably. Therefore, it follows from (A.1b) that

−(P + 2F)x̂ + σ̄31,ẑ = ρ
dû
dt̂

in (0, l) × (0, w) × (−h, h) × (0, +∞),

(A.4a)

(P + 2F)ŷ = 0 in (0, l) × (0, w) × (−h, h) × (0, +∞),
(A.4b)

−(P + 2F)ẑ + σ̄33,ẑ = 0 in (0, l) × (0, w) × (−h, h) × (0, +∞).
(A.4c)
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The Reynolds number for the flow can be defined as Re = ρUl/α4,
where l is a representative axial length of the channel and U is a
typical axial velocity. Since U = l/τ , where τ = K/α4h2 is the
relevant timescale of interest in the channel (see Eq. (3)), this gives
a reduced Reynolds number ϵ2Re ≡ (h/l)2Re = ρK/α2

4 ≪ 1.[3,11]
Thus we may safely neglect the inertial terms, i.e., ρdû/dt̂ = 0 in
Eq. (A.4a). From (A.4b), one has that P +2F = q(x̂, ẑ, t̂). Now, if we
integrate with respect to x̂ in Eq. (A.4a) and take into account that
F only depends on ẑ and t̂ ,

P + 2F = x̂σ̄31,ẑ + r(ẑ, t̂). (A.5)

If relation (A.5) is introduced in Eq. (A.4c), one has that (x̂σ̄31,ẑ +

r(ẑ, t̂)),ẑ = σ̄33,ẑ . Consequently, σ̄31,ẑẑ = 0, and so

σ̄31 = C(t̂)ẑ + D(t̂), (A.6)

where C(t̂) and D(t̂) are functions to be determined. Then, from
relation (A.5), one has that

P + 2F = C(t̂)x̂ + r(ẑ, t̂). (A.7)

From Eqs. (A.7) and (A.4c) it follows that (C(t̂)x̂ + r(ẑ, t̂)),ẑ =

(r(ẑ, t̂)),ẑ = σ̄33,ẑ , where integrating with respect to ẑ one has
that r(ẑ, t̂) = σ̄33 + s(t̂), s being a time-dependent function to
be determined. Returning to Eq. (A.7), it follows that

P = −2F + C(t̂)x̂ + s(t̂) + σ̄33. (A.8)

Replacing the value of σ̄31 in Eq. (A.6) one has that

ûẑg(θ) + θt̂m(θ) = C(t̂)ẑ + D(t̂).

A consequence of the symmetry of û enforces ∂θ

∂ t̂
= 0 at ẑ = 0.

Any scenario for which ∂θ

∂ t̂
≠ 0would induce a velocity profile that

is non-symmetric and thus violate our original assumption. As a
result, this implies that D(t̂) = 0 for our system and hence

ûẑg(θ) + θt̂m(θ) = C(t̂)ẑ, (A.9)

where

g(θ) = α1 cos2(θ) sin2(θ) +
α5 − α2

2
cos2(θ)

+
α3 + α6

2
sin2(θ) +

α4

2
, (A.10a)

m(θ) = α2 cos2(θ) − α3 sin2(θ). (A.10b)

Note that we have reduced Eqs. (A.4a)–(A.4c) to Eq. (A.9), the
pressure being available via Eq. (A.8). Now, the angularmomentum
balance Eq. (A.1c) for i = 1 and i = 3 reduces, respectively, to

ρ1n1,t̂ t̂ = g1 + π31,3 = γ n1 + ḡ1
+ π31,3 = γ n1 + ḡ1 + Kn1,33,

ρ1n3,t̂ t̂ = g3 + π33,3 = γ n3 + ḡ3
+ π33,3 = γ n3 + ḡ3 + Kn3,33.

It remains to compute n1,33, n3,33, n1,t̂ t̂ and n2,t̂ t̂ :

• n1 = sin(θ) ⇒ n1,3 = cos(θ)θẑ ⇒ n1,33 = − sin(θ)(θẑ)
2

+

cos(θ)θẑẑ ,
• n1,t̂ = cos(θ)θt̂ ⇒ n1,t̂ t̂ = − sin(θ)(θt̂)

2
+ cos(θ)θt̂ t̂ ,

• n3 = cos(θ) ⇒ n3,3 = − sin(θ)θẑ ⇒ n3,33 = − cos(θ)(θẑ)
2
−

sin(θ)θẑẑ ,
• n3,t̂ = − sin(θ)θt̂ ⇒ n3,t̂ t̂ = − cos(θ)(θt̂)

2
− sin(θ)θt̂ t̂ .

Thus, Eq. (A.1c) when i = 1 and i = 3 becomes

ρ1(− sin(θ)(θt̂)
2
+ cos(θ)θt̂ t̂)

= γ sin(θ) − γ1 cos(θ)θt̂ + cos(θ)
ûẑ

2
(γ1 − γ2)
+ K(− sin(θ)θ2
ẑ + cos(θ)θẑẑ),

ρ1(− cos(θ)(θt̂)
2
− sin(θ)θt̂ t̂)

= γ cos(θ) + γ1 sin(θ)θt̂ − sin(θ)
ûẑ

2
(γ1 + γ2)

+ K(− cos(θ)θ2
ẑ − sin(θ)θẑẑ).

We neglect the term ρ1θt̂ t̂ , since the rotational inertia of the
molecules is accepted to be much smaller than the elastic and
viscous torques [25]. Then,multiplying the first equation by cos(θ),
the second one by sin(θ) and subtracting them, one obtains:

γ1θt̂ = Kθẑẑ +
ûẑ

2


γ1 − γ2 cos(2θ)


. (A.11)

Thus, the evolution of θ and û are described by the following
system

γ1θt̂ = Kθẑẑ − ûẑm(θ) ẑ ∈ (−h, h), t̂ > 0, (A.12a)

C(t̂)ẑ = ûẑg(θ) + θt̂m(θ) ẑ ∈ (−h, h), t̂ > 0, (A.12b)

θ(ẑ, 0) = Θ(ẑ) ẑ ∈ (−h, h), (A.12c)

û(±h, t̂) = 0 t̂ > 0, (A.12d)

whereΘ is the initial condition for θ andC(t̂) = Px̂, i.e., the channel
direction component of the pressure gradient. Although system
(A.12) has been derived from the Leslie–Ericksenmodel (A.1), it can
be also obtained by simplifying the more general Beris–Edwards
and Stark–Lubensky models [10,26,27].

A.1.1. Remarks on coefficients
The coefficients αi and γi are usually called Leslie Coefficients

(see for instance Lee [28] or Wang et al. [25] for further informa-
tion about their physical meaning and how to approximate them
experimentally). They depend only on the temperature and have
the dimension of viscosity. Some constraints on the Leslie Coef-
ficients come from the non-negativity of the Dissipative function,
[21,24].When the Parodi relation is used [15], the dissipative func-
tion is defined as [24]:

D = α1(niAijnj)
2
+ 2γ2NiAijnj

+ α4AijAij + (α5 + α6)AijAjknink + γ1NiNi.

In our particular case,

D = α1û2
ẑ sin

2(θ) cos2(θ)

+ 2γ2
ûẑ

2


θt̂ −

ûẑ

2


(cos2(θ) − sin2(θ))

+ α4
û2
ẑ

2
+ (α5 + α6)

û2
ẑ

4
+ γ1


θt̂ −

ûẑ

2

2

= 2θt̂ ûẑm(θ) + γ1θ
2
t̂ + g(θ)û2

ẑ .

This expression is a quadratic form and can be rewritten as:

D =

X Y

 
g(θ) m(θ)
m(θ) γ1

 
X
Y


,

with X = ûẑ, Y = θt̂ .

A reasonable assumption is that the dissipation function is posi-
tive [24], which is fulfilled if and only if the determinant of every
principal submatrix is positive [29], i.e.,

g(θ) > 0 and γ1g(θ) − m2(θ) > 0. (A.13)

When θ = 0, this implies that

γ1 > 0, α5 − α2 + α4 > 0 and γ1(α5 − α2 + α4) > 2α2
2 .
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Fig. B.16. Solution landscape with a ∈ [−2π, 2π ] and b ∈ [0, π
2 ]. Solutions of

Type I (Type II) correspond to b = 0 (b =
π
2 ) and are plotted in black (red). Solutions

of Types III and IV correspond to b ∈ [0, π
2 ] and are plotted in blue and green,

respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Appendix B. Equilibrium Solutions with G = 0

WhenG = 0,we can explicitly solve the first equation of system
(6) to obtain θ∗(z) = az + b where a and b are constants to be
determined by the boundary conditions. These solutions may be
categorized as

Type I θ∗(z) = anz + mπ, wherem ∈ Z and

Ban = − sin(2an), (B.1)

Type II θ∗(z) = ãnz +


m +

1
2


π, wherem ∈ Z and

Bãn = sin(2ãn), (B.2)

Type III θ∗(z) =


n +

1
4


πz + bm, where n ∈ Z and

cos(2bm) = −B


n +

1
4


π, (B.3)
Type IV θ∗(z) =


n +

3
4


πz + b̃m, where n ∈ Z and

cos(2b̃m) = B


n +

3
4


π. (B.4)

For every value of B, we obtain ordered set of solutions for (B.1),
with 0 = a0 < a1 < · · · < an (n ∈ N ∪ {0} depending on
B). Furthermore, if an provides a solution, so does −an, which we
denote by a−n. Equivalent statement can bemade for ãn, bm and b̃m,
solutions of equations (B.2), (B.3) and (B.4), respectively.

We observe that constant solutions of Types I and II, θ∗
≡ kπ

2
(k ∈ Z) exist for all values of B, while solutions of Types III and IV
exist only if B ≤

4
π
. The associated director fields are

Type I n(z) = (−1)m(sin(anz), 0, cos(anz)),
Type II n(z) = (−1)m(cos(ãnz), 0, − sin(ãnz)),

Type III n(z) = (−1)m

sin


n +

1
4


πz + b0


, 0,

cos


n +
1
4


πz + b0


Type IV n(z) = (−1)m


sin


n +

3
4


πz + b̃0


, 0,

cos


n +
3
4


πz + b̃0



and thus, since director fields with m ∈ Z are the same but with
opposite direction, all possible director profiles in (B.1)–(B.4) are
covered bym = 0. Fig. B.16 shows the solution landscape in terms
of a, b and B, restricted to a ∈ [2π, 2π ] and b ∈ [0, π

2 ].
Since solutions of Types III and IV are always unstable (see

Appendix B.1), we only track solutions of Types I and II in this
paper.
(a) θ∗
a−4

. (b) θ∗
a−3

. (c) θ∗
a−2

. (d) θ∗
a−1

. (e) θ∗
a0 . (f) θ∗

a1 . (g) θ∗
a2 . (h) θ∗

a3 . (i) θ∗
a4 .

Fig. B.17. n associated with steady states θ∗
an (Type I), obtained with B = 0.001 and G = 0. These states are stable if n is even and unstable if n is odd.
(a) θ∗

ã−4
. (b) θ∗

ã−3
. (c) θ∗

ã−2
. (d) θ∗

ã−1
. (e) θ∗

ã0
. (f) θ∗

ã1
. (g) θ∗

ã2
. (h) θ∗

ã3,0 . (i) θ∗

ã4,0 .

Fig. B.18. n associated with steady states θ∗

ãn
(Type II), obtained with B = 0.001 and G = 0. These states are stable if n is odd and unstable if n is even.
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B.1. Linear Stability of Equilibrium Solutions

B.1.1. Sample liquid crystal molecular configurations
In this sectionwe show the director field corresponding to some

steady state solutions of the system (4) with G = 0. Particularly,
Figs. B.17 and B.18 show the director profiles associated, respec-
tively, to solutions θ∗

an and θ∗

ãn
, n = 0, ±1, ±2 ± 3, ±4.
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