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High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and

paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a

magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles

removing them from the fluid. We model such a system by considering the motion of a

paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is

a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured

irrespective of its initial position in the array. Above this threshold, particle capture is only partially

successful and depends on the particle’s entry position. We determine the relationship between the

critical Mason number and the system geometry using numerical and asymptotic calculations. If a

capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS

system above the critical Mason number but with multiple separation cycles may increase

efficiency. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890965]

Various applications require efficient removal of mag-

netic and paramagnetic particles from a carrier fluid including

waste water treatment, food processing, and microfluidics.1–5

In high gradient magnetic separation (HGMS), a suspension

flows through a filter made of magnetized material, such as

regular mesh grids or randomly packed material (steel wool),

in the field of a strong electromagnet.6 The particles are

deflected by magnetic forces due to the strong magnetic field

gradients between the filter wires, which enables particle

capture within the filter. Despite these techniques remaining

effectively unchanged since the 1970s,7,8 several theoretical

questions remain unanswered.

The wire volume fraction in a typical HGMS system

(2%–15%) is well below what would be necessary for me-

chanical filtration. Nevertheless, the magnetic and hydrody-

namic interactions between wires can play an important role

in the trajectory of contaminant particles and whether they

are captured. However, many previous attempts to model

HGMS systems focus on the ability of a single wire to capture

a single particle8–11 or to retain large numbers of particles in

the late stages of filtration.12–14 To model the effects of many

wires, single-wire results are often superposed15,16 or particu-

lar geometries and parameter values are studied.3,17–19 These

studies reveal that for potential flow within a periodic square

lattice of cylinders, particles may escape filtration if they enter

in a narrow escape trajectory whose width depends on the ge-

ometry, strength of magnetic interactions, and viscous drag.

In this Letter, we focus on providing a complete understand-

ing of this dependence, examining, in particular, the role of

the packing density of the wires, which has not been system-

atically considered before, and how filtration efficiency can be

maximized.

As a simplified model for the filter material, here, we

consider a large square array of long parallel cylinders of

radius R with a constant magnetization perpendicular to their

axes (Fig. 1). The magnetic dipole moment of the particle is

constant and kept aligned with the magnetization of the cyl-

inders by the action of a strong, uniform outer magnetic field.

The smallest distance between cylinders in the x- and

y-direction is denoted by 2d, so that the period of the array in

both directions is 2L¼ 2(Rþ d). Using symmetry across the

y-axis, we may reduce the computational domain to half the

periodic cell, 0� x� L, �L � y � L (Fig. 1). We assume

that the filtrate is a dilute suspension of magnetic particles.

This allows us to neglect interactions between particles and

focus on a single spherical magnetic particle moving through

this cylinder array, carried by a fluid flow and deflected by

the magnetic force exerted by the magnetic field of the cylin-

ders. This model captures the important physics of the

system and represents a worst-case scenario, since higher

particle concentrations would cause chains to form that

would be captured more easily.20

We consider two different setups. In setup A, the mag-

netization of the cylinders and the particle are perpendicular

FIG. 1. Cylinder array and particle in setup A (top view). The dotted box

indicates the computational domain.a)ian.griffiths@maths.ox.ac.uk
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to the flow direction (Fig. 1). In setup B, both magnetizations

are parallel to the flow direction. For a given setup and

operating conditions, we are interested in whether a

particle entering the computational domain at the inlet with

(xp(0), yp(0))¼ (x0,� L) can escape, that is, leave the domain

at some (xp(t), yp(t))¼ (xp(t), L), or whether its trajectory inter-

sects the cylinder, in which case we say it has been captured.

For the calculations, we make the following assumptions:

(a) The cylinders are infinitely long and the flow field is

planar, i.e., two-dimensional.

(b) The cylinder array is infinite, thus, both the flow field

and the magnetic field can be considered to be periodic.

(c) The flow is steady and laminar.

(d) The particle diameter, 2a, is small compared to the small-

est distance between cylinders, 2d, that is, a/d� 1, and

so the particle does not disturb the flow field.

In practical applications, the operating Reynolds number

ranges from 10�4 (e.g., in food processing) to several hun-

dreds (e.g., in waste water treatment).3,16 Here, we are con-

cerned with full particle capture, which can be achieved

either by increasing the strength of the magnetization or by

decreasing the flow rate. Since the latter is more feasible in

most cases, we assume that we are in the lower Reynolds

number range and model the fluid flow as Stokes flow.

However, the following analysis may readily be extended to

potential flow or the full Navier–Stokes equations.

Neglecting inertial terms, the net force on the particle

must be zero, i.e., the magnetic force, Fm, and the viscous

drag force (Stokes drag) must balance, giving

6pga½uðxpÞ � _xp� þ Fm ¼ 0; (1)

where g is the fluid viscosity and xp is the particle position.

The dot _ denotes differentiation with respect to time. The

force exerted on a particle due to a single magnetic cylinder

is given by21

Fm; single ¼ 7
l0mM

R

R

r

� �3
cos 3h
sin 3h

� �
; (2)

where 7 corresponds to setup A/B, respectively, l0 is the

permeability of free space, M is the magnetization of the cyl-

inders, m is the magnetic dipole moment of the particle, and

r and h are the plane-polar coordinates centered at the cylin-

der midpoint. The total magnetic force on a particle is the

sum of the contributions from all cylinders in the array.

Upon nondimensionalizing the system, we find that the

behavior of the particle is governed only by its initial posi-

tion and the so-called Mason number, which measures the

strength of the viscous forces compared with the magnetic

forces in the system21,22

Mn ¼ 6
6pgaRU

l0mM
(3)

for setups A and B, respectively. Here, the velocity scale, U,

is taken as the maximum fluid velocity, occurring at the ori-

gin, i.e., at the midpoint between neighboring cylinders.

We solve the flow problem of periodic Stokes flow

through an infinite, regular cylinder array numerically with

the Finite Element Method in FreeFEMþþ for a range of

cylinder radii and spacings.23 Using this fluid velocity and

approximating the magnetic field of an infinite cylinder array

by that of a sufficiently large finite array (in practice a

10� 19 array is sufficient), we can compute the particle ve-

locity for any particle position and thus numerically integrate

the particle trajectory from any given initial position (Fig. 2).

In the case of a moderate cylinder magnetization, the particle

can escape if it starts close enough to the midline between

two cylinders. Along these trajectories, the magnetic force

on the particle is too weak to overcome the viscous drag

force. Since both the fluid flow and the magnetic force are

periodic in y, these trajectories have to be periodic and so a

particle that escapes one periodic cell of the cylinder array

will also escape all subsequent cells.18

If a particle enters the cell closer to the cylinder, the

stronger magnetic force and lower drag force due to slower

fluid speeds closer to the cylinder wall both result in a trajec-

tory that is more strongly influenced by the magnetic field.

In setup A, the particle is repelled from the front of the cylin-

der and attracted to its side, where it is eventually captured

(Fig. 2(a)). In setup B, the particle is instead attracted to, and

captured at, the front of the cylinder (Fig. 2(b)).

At the critical point, where the trajectories diverge

between escape and capture, a particle would have zero

speed, as indicated by the white background in Fig. 2. This

stationary point is unstable with respect to lateral displace-

ments. Comparing the two setups, the position of this critical

point is mirrored along the x-axis. As the absolute value of

the Mason number is decreased, the critical point moves

from the cylinder wall to the y-axis.

We denote by xc the critical initial x-position, i.e., the

initial x-position of the critical trajectory that leads from the

inlet to the cell to the critical point. Particles with initial

position x< xc will escape, those with x� xc will get cap-

tured.24 Surprisingly, the value of xc only depends on the

absolute value of the Mason number, despite the very dissim-

ilar limiting trajectories for positive and negative Mason

numbers (Fig. 2). Assuming the filtrate is well mixed, the

capture efficiency is given by 100(1� xc/L)% and only

FIG. 2. Example particle trajectories (black curves) through a single peri-

odic cell of the cylinder array and dimensionless particle speed (gray shad-

ing) as a function of position for dimensionless cylinder radius d/R¼ 1 and

Mn¼ 1: (a) setup A, (b) setup B. The cross (�) indicates the critical point

between escape and capture. This point is a stationary point that is unstable

to lateral perturbations. The dashed trajectories indicate the critical trajecto-

ries starting and ending in the critical point. The value xc denotes the critical

initial x-position between capture and escape at the inlet to the periodic cell.

033508-2 Eisentr€ager, Vella, and Griffiths Appl. Phys. Lett. 105, 033508 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

129.67.187.244 On: Thu, 24 Jul 2014 17:18:00



depends on the absolute value of the Mason number and the

geometry (Fig. 3).

For each geometry there exists a critical absolute Mason

number, Mncrit, below which no particle can escape, regard-

less of its initial position at the inlet to the cell, and all par-

ticles are instead captured at the side or front of the cylinder

depending on the setup (Fig. 3). The particle whose initial

position lies on the midline between the two cylinders, i.e.

(xp(0), yp(0))¼ (0, �L), is the particle that is most easily able

to escape, and will thus determine the critical Mason num-

ber. Due to symmetry, both the magnetic force and the fluid

velocity have only components in the y-direction along this

line and a particle that originates at (0, �L) will, in theory,

remain on the y-axis for all time. Thus, to find the critical

Mason number, we may restrict our focus to the one-

dimensional problem of whether or not a particle travelling

along the y-axis escapes. In practice, instabilities or diffusion

might move the particle away from the y-axis, so that it is

captured even at higher Mason numbers, but the one-

dimensional problem considered here provides an upper

bound for the critical Mason number.

For Mason numbers with absolute value below the criti-

cal Mason number, the critical point lies on the y-axis, and

the particle velocity is negative along parts of this axis. For

values above the critical Mason number, the particle velocity

needs to be positive along the whole y-axis for the particle to

be able to escape. Thus, the critical Mason number is that

absolute Mason number for which the particle velocity on

the y-axis just reaches the value zero at some position.21 The

capture efficiency and thus the critical Mason number

depend on the geometry, namely, the ratio d/R of the small-

est distance between cylinders to the cylinder diameter (Fig.

3), which is related to the filter volume fraction, /, by

d=R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð4/Þ

p
� 1.

If the distances between cylinders are very small com-

pared to their radii, that is d/R � 1, the flow field in the gap

between two cylinders can be approximated by lubrication

theory.25 In addition, since all other cylinders are further away

and thus contribute less to the overall magnetic force, we con-

sider only the influence of these two cylinders on the magnetic

field as a first approximation. Hence, we obtain the following

asymptotic approximation for the critical Mason number:21

Mncrit ¼
1

216
34

ffiffiffi
2
p
þ 5

ffiffiffi
5
p� �R

d
� 0:27

d

R

� ��1

(4)

as d/R! 0.

For distant cylinders, such that d/R	 1, the velocity

away from the cylinders along the y-axis is approximately

constant, while the magnetic force along the y-axis decreases

as

Fm;y 0; yð Þ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ Rð Þ2 þ y2

q
R

 !�3


 O d

R

� ��3

(5)

as d/R ! 1. Thus, we obtain Mncrit 
 Oðd=RÞ�3
in this

limit.21

For cylinder separations that are of the same order of

magnitude as the cylinder radius, that is d=R ¼ Oð1Þ, numer-

ical solutions of the fluid flow field must be used (here

obtained with the Finite Element package FreeFEMþþ).23

The critical Mason numbers obtained via numerical solutions

are in excellent agreement with the asymptotic limits

(Fig. 4). If the setup is chosen such that the absolute value of

the Mason number is below the critical Mason number then

capture of all particles sent through the system can be guar-

anteed. To lower the Mason number to achieve this, one can,

for example, reduce the fluid velocity through the cylinder

array. Alternatively, our results imply that closer packing of

the filter material improves capture efficiency by increasing

the critical Mason number (Fig. 4). However, these improve-

ments need to be weighed against the drop in flow rate and

the concomitant reduced rate of production of clean water

that this implies or the necessary increase in the pressure gra-

dient to keep the flow rate the same.

If full capture is required, the system must operate

below the critical Mason number. If, however, the required

capture efficiency is lower, say only 95%, then for any given

geometry and Mason number, it is possible to achieve this

by repeating the separation several times, which may be

faster than doing a single cycle at a lower Mason number.

Before each separation cycle, we assume that the suspension

is mixed again to randomize the initial x-position of the par-

ticles. The separation cycles are then independent, and we

can infer how many cycles are necessary from the capture ef-

ficiency of a single separation cycle (Fig. 5(a)).

FIG. 3. Influence of the Mason number on the capture efficiency, 1� xc/L,

for different geometries: d/R¼ 9 (dashed), d/R¼ 1 (solid), and d/R¼ 1/9

(dashed dotted).

FIG. 4. Critical Mason number for different ratios of cylinder spacing and

radius: numerical computation using the finite element flow field and the

magnetic force from a cylinder array (thick solid), numerical computation

using the lubrication flow field and the magnetic force from a cylinder array

(thick dotted), numerical computation using the lubrication flow field and

the magnetic force from only two cylinders (thick gray), asymptotic limit for

small distances using the lubrication flow field and the magnetic force from

only two cylinders (dot-dashed), asymptotic behavior for large distances

(dashed). The shading indicates the parameter range representative of typical

HGMS systems.9,16
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Since the absolute value of the Mason number depends

linearly on the flow velocity, (3), doubling the flow rate

through the system doubles the Mason number. Hence, this

increases the number of cycles necessary to achieve the

required capture efficiency, but also halves the time each

separation cycle lasts. Thus, by dividing the number of nec-

essary cycles by the absolute value of the Mason number, we

can infer the effect of changing the Mason number on the

total separation time, tsep / # cycles=jMnj, neglecting any

additional time that might be necessary between cycles (Fig.

5(b)). It is clearly inefficient to run the system below the

highest Mason number that achieves the required capture ef-

ficiency or just above a Mason number at which the required

number of cycles increases by one. Furthermore, our data

suggest that it would be overall more efficient to increase the

flow rate and adapt the number of cycles accordingly.

However, there are some caveats that must be considered.

First, a higher flow rate requires higher pressure gradients,

which in turn implies a higher energy consumption. Second,

we have not included any time for the tasks that may be nec-

essary between separation cycles such as re-mixing the solu-

tion. Finally, in many industrial HGMS systems, the filter

material is randomly packed rather than periodic. In this

case, unlike in our setups, particles that escape the first wires

in a filter may well be captured further downstream. Thus,

the increasing number of cycles necessary to achieve a

required captures efficiency at higher Mason numbers would

then simply translate to increasing the length of the filter.

We have demonstrated two potential methods that guar-

antee a certain required particle capture efficiency in a peri-

odic model of high gradient magnetic separation. We have

computed the critical Mason number, below which full parti-

cle capture can be ensured, numerically and asymptotically,

and shown how this depends on the filter geometrical param-

eter d/R. If the required capture efficiency is below 100%,

then this can be achieved by repeating the separation process

several times at Mn>Mncrit. We have shown how the num-

ber of necessary cycles depends on the Mason number and

the geometry and that it may be overall more efficient to

carry out multiple separation cycles at a higher flow rate.

The results of this work should be useful in advancing strat-

egies for the removal of magnetic or paramagnetic particles.
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