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1. Introduction

Fibre drawing is an important industrial process used to manufacture
fibre-optic cables for telecommunications applications. A cylindrical
glass preform, of diameter around 5 centimetres, is lowered into a
furnace. Here the preform melts, the glass viscosity decreases, and a
fibre of thickness around 100 microns may be drawn by applying a
tension at the end. As it exits the furnace, the glass is cooled by the
air and solidifies into the desired solid fibre. A schematic of the process
is shown in figure 1.

One of the most interesting aspects of the process is that it is
not isothermal and many of the material properties, most notably the
glass viscosity, are found to depend on the temperature. In general,
the glass temperature is governed by a balance between thermal con-
vection, radiation, and conduction, although the relative importance of
these effects changes with distance down the fibre. In particular, there
is typically a sharp transition in the glass thickness, with the glass
behaving differently on either side of the transition point.

There have been many theoretical studies of the drawing process
in the literature stretching back over 40 years. Early work consid-
ered the one-dimensional problem, in which quantities of interest vary
only in the axial direction and not radially (Paek and Runk, 1978,
Geyling and Homsy, 1980). Later studies concentrated on improving
the modelling of the radiative heat transfer (Myers, 1989), with Jaluria
and co-workers gradually developing methods to solve the full three-
dimensional conjugate heat transfer between the glass, surrounding
gas, and furnace (Lee and Jaluria, 1997, Roy Choudhury et al., 1999).
However, these solutions are computationally very demanding, and so
simpler models remain desirable for quick scenario testing and to give
clearer insight into the parameter dependencies. To that end, Huang
and co-workers extended earlier one-dimensional models to investigate
the effects of, for example, viscous dissipation (Wylie and Huang, 2007)
and dopant diffusion (Huang et al., 2008), but often at the expense of
realistic radiative modelling, which is an inherent part of the industrial
process. Other studies ignored radiative heating altogether and consid-
ered only the cooling stage of the process
(Papamichael and Miaoulis, 1991).

In this paper we derive simplified but realistic models for fibre
drawing including both radiative and convective heat transfer through-
out the process and determine where each mechanism dominates. We
exploit both the small aspect ratio of the fibre and the relative orders of
magnitude of the dimensionless parameters to reduce the problem to
a one- or two-dimensional system of equations that may be readily

corning11.tex; 22/09/2012; 10:57; p.2



Asymptotic solutions for steady optical fibre drawing 3

R̂0
r̂

ẑ
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Figure 1. Schematic diagram for the drawing of optical glass fibres. The (dimen-
sional) furnace temperature is given by T̂f (ẑ) while the ambient air temperature in
the furnace is denoted T̂a(ẑ).

solved numerically, and for which some approximate analytical so-
lutions exist. In particular, we aim to give a systematic asymptotic
breakdown of the dependencies of convection, surface radiation, and
conduction, and how their relative importance changes with axial dis-
tance down the furnace. We investigate different possible functional
forms for the radius-dependent radiative and convective heat transfer
coefficients, and in addition consider the effect of non-uniform furnace
temperatures.

The paper is laid out as follows. In § 2 we describe our theoretical
formulation of the problem by coupling together the axisymmetric slow-
flow equations to an energy equation governing the temperature of the
glass. In § 3 we exploit the small aspect-ratio of the fibre to derive
one-dimensional equations for the fluid flow. We then consider the
temperature profiles of the glass in § 4, considering a number of different
asymptotic limits that may be relevant to the industrial process. Finally
in § 5 we discuss our results and consider possible avenues for future
research.
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2. Problem description

2.1. Governing equations

2.1.1. Fluid flow

We consider the steady-state configuration where the input radius of
the fibre preform is R̂0 and the length of the furnace is L̂, as depicted
in figure 1, and we note that for clarity all dimensional quantities are
denoted with hats. Based on typical parameter values for the process,
given in table I, we find that the Reynolds number for the flow, based
on the fibre radius, is very small and, assuming axisymmetry, the fluid
flow is governed by the slow-flow equations (Fitt et al., 2002),

1
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∂ŵ

∂ẑ
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where r̂ and ẑ denote the radial and axial coordinates, p̂ is the pressure
within the molten glass, and û and ŵ are the radial and axial velocities
of the glass. The glass viscosity, denoted µ̂, is a function of its tem-
perature T̂ only, which may in general vary both along and across the
fibre. At the centre of the fibre, symmetry provides the conditions

û =
∂ŵ

∂r̂
= 0, (2a)

on r̂ = 0, while the kinematic and dynamic boundary conditions are
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on the glass–air interface r̂ = R̂(ẑ), where we are neglecting any effects
due to surface tension since these are typically small (Huang et al., 2008).
The fluid problem is closed by specifying the velocity at the two ends
of the tubing,

ŵ(r̂, ẑ = 0) = Ŵ0, ŵ(r̂, ẑ = L̂) = Ŵ1. (2e)
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Table I. Typical parameter values for the high-speed drawing of glass fibres, from
1Paek and Runk (1978), 2Myers (1989), 3Lee and Jaluria (1997), 4Yin and Jaluria
(2000), 5 Huang et al. (2008).

Parameter Symbol Approximate value Units

tubing length4,5 L̂ 0.5 m

initial radius4 R̂0 0.05 m

input speed4 Ŵ0 10−3 ms−1

draw speed4 Ŵ1 30 m s−1

density1,5 ρ̂ 2200 kgm−3

furnace temperature2,3 T̂f 3000 K

ambient air temperature2,3 T̂a 2000 K

glass softening temperature2,3 T̂s 1900 K

softening viscosity3 µ̂s 4500 N sm−2

specific heat1,3,5 ĉp 1000 J kg−1 K−1

heat transfer coefficient1,3,5 k̂h 100 Wm−2

thermal conductivity3,5 k̂c 1.1 Wm−1 K−1

Stefan–Boltzmann constant3 σ̂ 5.67 × 10−8 Wm−2 K−4

specific emissivity2 εr 0.9 —

refractive index3 n0 1.5 —

absorption coefficient1,2 χ̂ 200 m−1

2.1.2. Glass viscosity

The viscosity of glass varies significantly with temperature, with a
number of expressions for µ̂(T̂ ) having been reported in the literature
depending on the type of glass (Geyling and Homsy, 1980). We choose

µ̂ = µ̂s exp

(

a

(

1

T̂
− 1

T̂s

))

, (3)

which is suitable for fused silica, where T̂s is the softening temperature
for glass, µ̂s the softening viscosity, and a an empirically determined
constant (Myers, 1989).

2.1.3. Temperature equation

The equation governing the distribution of temperature is

ρ̂ĉp
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∂ẑ

)

, (4)

where the left-hand side represents thermal convection and the right-
hand side thermal conduction, with k̂(T̂ ) denoting the conductivity of
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glass. For transparent materials, radiative transfer within the material
is of significance, especially at high temperatures. A full description
of this effect is a formidable challenge; however provided the fibre is
optically thick, that is, R̂ is much greater than the absorption length-
scale 1/χ̂, where χ̂ is the glass absorption coefficient (with typical values
given in table I) one may use the Rosseland approximation to include

a radiative contribution to the thermal conductivity, k̂c, so that the
apparent conductivity k̂(T̂ ) = k̂c+k̂r(T̂ ), where (Paek and Runk, 1978)

k̂r(T̂ ) =
16n2

0
ˆ̂σT̂ 3

3 ˆ̂χ
. (5)

Here σ̂ is the Stefan–Boltzmann constant and n0 denotes the refrac-
tive index for the glass (with typical values given in table I). We may
therefore separate the respective conductive components in (4) to give
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∂ẑ

)

+
1

r̂

∂

∂r̂

(

κ̂r(T̂ )r̂
∂T̂ 4

∂r̂

)

+
∂

∂ẑ
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∂ẑ

)

,

(6)

where κ̂r(T̂ ) = k̂r/4T̂ 3. The assumption may break down once the fibre
is drawn down to a thickness of O(100µm), at which point one might
expect the glass to absorb the radiation directly from the surrounding
furnace and re-radiate heat back to the furnace.† Nevertheless, given
that the absorption length-scale is highly dependent on the glass prop-
erties and radiation wavelength, in the interest of simplicity we limit
ourselves to considering only the optically thick limit. Furthermore, we
note that the validity of the Rosseland approximation for the fibre
drawing process has been confirmed by numerical tests using more
realistic models for bulk radiation (Yin and Jaluria, 1997).

The boundary condition at the glass–air interface r̂ = R̂(ẑ) is

−k̂
∂T̂

∂r̂
= σ̂εr

(

T̂ 4 − T̂ 4
f

)

+ k̂h

(

T̂ − T̂a

)

, (7)

where T̂f = T̂f (ẑ) and T̂a = T̂a(ẑ) are, respectively, the temperatures of
the furnace and ambient air in the furnace, both of which are assumed
to be known functions of the distance along the furnace, as discussed in

† We note that one can tackle this optically thin limit in an ad hoc manner by
including an additional radiative term in the temperature equation (4), as done by
Fitt et al. (2002).
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§ 2.1.4. The terms on the right-hand side represent respectively radia-
tive transfer and convective heating to the surroundings via Newton
cooling (Carslaw and Jaeger, 1959). Here εr is the specific emissivity

and k̂h is the heat transfer coefficient, which may depend on the radius
of the fibre; appropriate functional forms are discussed in § 2.1.5.

Finally, the system is closed by specifying the input temperature
T̂ = T̂0 at ẑ = 0. For simplicity, we assume that T̂0 is a constant, so that
∂T̂0/∂r̂ = 0 and, assuming continuity in the temperature, (7) implies

that T̂0 is given by the solution to the quartic equation

ˆ̂σεr

(

T̂ 4
0 − T̂f (0)4

)

+ k̂h

(

T̂0 − T̂a(0)
)

= 0. (8)

However we note that, in reality, the temperature of the glass entering
the furnace is unlikely to satisfy (8), rather it will come in at the far
lower ambient temperature outside the furnace, say around 300K. In
this case we expect there to be a small transient near the inlet over
which the system quickly adjusts to the solution of (8). We investigate
this thermal boundary layer in § 4.1.1.

2.1.4. The form of T̂f and T̂a

The furnace temperature T̂f is not very well characterized, but it is
known that the furnace is generally hottest in the central portion
and coolest at the ends (Lee and Jaluria, 1997), and has been typi-
cally modelled as having either a Gaussian or parabolic profile Roy
Choudhury and Jaluria (1998). In order to evaluate the effect of the
furnace temperature, we consider both an isothermal and varying tem-
perature profile, with the latter taken to be of the functional form
(Filippov, 2011)

T̂f (ẑ) = T̂m

(

1
5 + 4

5e−0.5(ẑ/L̂−0.35)2
)

, (9)

with the maximum temperature T̂m ≈ 3000K.
For a given furnace profile, the ambient air temperature should

be determined as part of the solution to the full heat transfer problem
(Roy Choudhury et al., 1999). However, for simplicity we assume the
ambient temperature to be known. Several authors take this to be con-
stant, with T̂a ≈ 1

2 T̂m (Paek and Runk, 1978, Lee and Jaluria, 1997)
or equal to room temperature (Huang et al., 2008). However, full nu-

merical simulations suggest that T̂a(ẑ) follows the same profile as T̂f (ẑ),

so we follow Filippov and set T̂a(ẑ) = 3
4 T̂f (ẑ) throughout.

2.1.5. The form of εr and k̂h

Although typical values for the specific emissivity εr and heat transfer
coefficient k̂h are given in table I and these parameters are often treated
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as constant, they are in fact both dependent on the material properties,
temperature, and radius of the fibre. The emissivity is particularly
tricky to measure at typical furnace temperatures, and is usually as-
sumed to behave as if at room temperature, where it is experimentally
found to decrease with decreasing fibre radius. While Paek and Runk
(1978) posed an ad hoc smoothly varying εr(R̂) ∈ [0.1, 0.6], Myers

(1989) derived a more accurate model with εr(R̂) ∈ (0, 0.9], reaching

the higher value for R̂ & 1/χ̂ ≈ 10−2m.
To maintain generality we consider separately the cases of an

emissivity that is constant and one that is of the functional form

εr ∼ 1 − e−φR̂, with φ ≈ 2.5χ̂ chosen so as to give qualitative agreement
with Myers’s model.

The heat transfer coefficient k̂h is generally thought to vary only
weakly throughout the process, although values between 10–300 Wm−2

have been reported in the literature. While it is generally taken to be
constant, Geyling and Homsy (1980) and Forest and Zhou (2001) have

assumed the functional form R̂k̂h ∼ (wR̂)1/3, derived by considering
flow past a cylinder. In this paper we therefore investigate the effect
of a k̂h that is both constant and of the form posed by Geyling and
Homsy.

2.2. Non-dimensionalization

We exploit the slenderness of the geometry, that is, we introduce the
inverse aspect ratio ǫ = R̂0/L̂ ≈ 0.1 ≪ 1, and scale using

r̂ = ǫL̂r, ẑ = L̂z, û = ǫŴ0u, ŵ = Ŵ0w,

R̂ = ǫL̂R, T̂ = T̂sT, p̂ =
µ̂sŴ0

ǫ2L̂
p, µ̂ = µ̂sµ. (10)

Substituting into (1) and (4) provides the dimensionless system

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (11a)

−∂p

∂r
+ ǫ4 ∂

∂z

(

µ
∂u

∂z

)

+ ǫ2µ
∂

∂r

(

1

r

∂

∂r
(ru)

)

+ ǫ2 ∂µ

∂z

∂w

∂r
+ 2ǫ2 ∂µ

∂r

∂u

∂r
= 0,

(11b)

−∂p

∂z
+ ǫ2 ∂

∂z

(

2µ
∂w

∂z

)

+
1

r

∂

∂r

(

µr
∂w

∂r

)

+
ǫ2

r

∂

∂r

(

µr
∂u

∂z

)

= 0, (11c)

ǫ2Pe

(

u
∂T

∂r
+ w

∂T

∂z

)

=
1

r

∂

∂r

(

r
∂T

∂r
+ γr

∂T 4

∂r

)

+ ǫ2 ∂2

∂z2

(

T + γ
∂T 4

∂z

)

,

(11d)
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where Pe = ρ̂ĉpŴ0L̂/k̂c is the Péclet number and γ = 4n2
0σ̂T̂ 3

s /3χ̂k̂c

measures the importance of bulk diffusion. The dimensionless boundary
conditions are

u =
∂w

∂r
= 0, (12a)

on r = 0, and

u = w
dR

dz
, (12b)

−p + 2ǫ2µ
∂u

∂r
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dR
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(

ǫ2 ∂u

∂z
+

∂w

∂r

)

, (12c)

µ

(

ǫ2 ∂u

∂z
+

∂w

∂r

)

=
dR

dz

(

−p + 2ǫ2µ
∂w

∂z

)

, (12d)

−
(

1 + 4γT 3
) ∂T

∂r
= ǫα

(

T 4 − T 4
f

)

+ ǫβ (T − Ta) , (12e)

on r = R(z), where α = σ̂εrT̂
3
s L̂/k̂c and β = k̂hL̂/k̂c represent the

importance of conduction relative to radiation and convection respec-
tively. We note that, when only one of these effects is accounted for,
both α and β have been referred to as the Biot number (Wylie et al., 2007,
Huang et al., 2008). Typical values are given in table II, although we
note that these may vary both with the fibre radius and the type of glass
used. Finally we have boundary conditions on the fibre temperature and
velocity at input and the pulling speed as the fibre exits the furnace,
namely

w(r, 0) = 1, T (r, 0) = T0, w(r, 1) = w1, (13f–h)

where the draw ratio w1 = Ŵ1/Ŵ0 is the ratio of axial draw speed

to input speed and T0 = T̂0/Ts is the dimensionless inlet temperature.
Finally, from (3) and taking a ≈ 61000K (Myers, 1989) we find the
dimensionless viscosity

µ(T ) = exp (32(1/T − 1)) . (14)

3. Fluid flow

Seeking regular parameter expansions of the form u = u(0)+ǫ2u(1)+· · · ,
the flow problem, (11a–c) and (12a–c), indicates that w(0) = w(0)(z)
and thus the flow is extensional. A similar approach to Cummings and
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Table II. Dimensionless parameter definitions and approximate values.

Parameter Symbol Approximate value

Aspect ratio ǫ = R̂0/L̂ 0.1

Reynolds number Re =
ρ̂Ŵ0L̂

µ̂s

. 10−3

Péclet number Pe =
ρ̂ĉpŴ0L̂

k̂c

1000

Draw ratio w1 =
Ŵ1

Ŵ0

3 × 104

Surface radiation parameter α =
σ̂εrT̂

3
s L

k̂c

160

Conduction parameter β =
k̂hL̂

k̂c

50

Bulk radiation parameter γ =
4n2

0σ̂T̂ 3
s

3χ̂k̂c

5

Howell (1999) may then be used to derive the following leading-order
equations

d

dz

(

w(0)R(0)2
)

= 0, (15a)

d

dz

(

3µ̄(0)R(0)2 dw(0)

dz

)

= 0, (15b)

representing conservation of mass and an axial stress balance respec-
tively, where overbars denote the radially averaged quantity

φ̄(z) =
2

R2

∫ R

0
rφ(r, z)dr. (16)

Integrating (15a-b) and applying boundary condition (13f ) yields

w(0)R(0)2 = 1, (17a)

3µ̄(0)R(0)2 dw(0)

dz
= F, (17b)

where F is the (constant) tension in the fibre. In our problem we
prescribe the draw speed w(1) = w1 (chosen here to be 3 × 104 which

corning11.tex; 22/09/2012; 10:57; p.10



Asymptotic solutions for steady optical fibre drawing 11

corresponds to a dimensional draw speed of 30ms−1). Then F is de-
termined as part of the solution once we have found the temperature
and hence radially-averaged viscosity µ̄(0) using (14) and (16). We dis-
cuss the variation of F with w1 (and other parameters?) in § [INSERT
SECTION].

4. Temperature profiles

The temperature system (11d) and (12e) possesses various asymptotic
limits of interest and we address these below. We note that several of the
dimensional parameters given in table I, and thus their dimensionless
counterparts given in table II, are uncertain and may vary by up to an
order of magnitude depending on the glass used, and so the different
limits will be applicable to these different scenarios.

4.1. Rapid heat transport across the fibre radius

4.1.1. Surface radiation and conduction balance axial convection

We begin by supposing that Pe = Pe∗/ǫ where Pe∗ = O(1), and also
assume α, β, and γ to be of order unity. In practice this corresponds
to low draw ratios and high conduction, so that it balances both with
surface radiation and axial convection. Substituting a regular parame-
ter expansion of the form T = T (0) + ǫT (1) + · · · into (11d) and using
(12e) indicates that T (0) = T (0)(z), and thus there are no variations
in temperature across the fibre. The system is closed by proceeding to
second order in (11d), integrating over the fibre radius and using (12e)
and (17a), leading to the system

3µ̄(0)(T (0))
dw(0)

dz
= Fw(0), (18a)

1

2

√

w(0)Pe∗
dT (0)

dz
= −

(

α
(

T (0)4 − T 4
f

)

+ β
(

T (0) − Ta

))

, (18b)

subject to boundary conditions

w(0)(r, 0) = 1, T (0)(r, 0) = T0, w(0)(r, 1) = w1.
(19a-c)

The evolution of temperature, viscosity, axial velocity, and radius
with axial position taking the illustrative parameter choice Pe∗ = 1,
and different, but constant in space, values of α, β are shown in figure 2,
where we have assumed the Gaussian furnace temperature profile (9).
We see that the viscosity varies through many orders of magnitude as
the fibre is drawn through the furnace. The fibre temperature is heavily
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guided by the furnace temperature, peaking around or just after the
furnace peak temperature. Following this, the temperature then falls
throughout the remainder of the furnace. The axial velocity and fibre
radius both vary over a relatively small axial distance, corresponding
to the region where the glass temperature is near its maximum.

We notice that the axial velocity of the glass dramatically increases
as we move down the profile. As a result it is useful to visualize the
temperature profile of a material element of molten glass as it moves
through the furnace. This corresponds to determining the temperature
as a function of a dimensionless ‘time variable’, τ = τ(z) defined by

τ =

∫ z

0

1

w(0)(ζ)
dζ, (20)

which we identify with the time at which an element starting at the
top of the furnace reaches the axial position z. The rapid acceleration
of the glass as it moves towards the end of the furnace is clearly shown
by the relation between τ and axial position z in figure 3(a). The rapid
cooling is evident in figures 3(b)-(d), where we show the temperature,
viscosity, and fibre radius varying dramatically in the final stages of
the drawing process.

Aside from exhibiting all of the general features that are found
in practice, these examples also illustrate the effect of α and β on the
process: a higher β leads to stronger cooling, while a higher α is needed
to raise the glass temperature to the furnace temperature. In order to
examine this more closely, we consider the case of a constant furnace
temperature Tf in figure 4.‡ These plots clearly illustrate the initial
boundary layer in which the glass temperature rapidly increases from
T0 to its equilibrium value Te given by the solution to

α
(

T 4
e − T 4

f

)

+ β (Te − Ta) = 0. (21)

Furthermore, we see that the boundary layer width decreases with
increasing α, while changing β affects only the steady state value at-
tained. For the large values of α typically observed in practice, we are
therefore justified in ignoring this initial transient and setting T0 = Te

as the initial condition for the temperature.

‡ We note that the constant Tf case is amenable to phase-plane analysis, of which
details may be found in the Appendix. ***To add***
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Figure 2. Effect of varying furnace temperature on the leading-order variation of
(a) temperature, (b) viscosity, (c) axial velocity, and (d) radius, with axial position
for Pe∗ = 1, w1 = 3 × 104, Ta = 3

4
Tf , T0 = 1

10
Ts. In all cases the black solid

line illustrates the case when α = 160, β = 1, the dot-dashed line shows the case
α = 1, β = 50, and the dashed line shows the case α = 1, β = 1. The red dashed line
in (a) shows the furnace temperature Tf (z), given by (9) with Tm = 3000K.

4.1.2. The effect of α(z), β(z)
We now consider the effect of α(z), β(z). Following our discussion in
§ 2.1.5 and using (17a) these are taken to be of the form

α(z) = α0(1 − e−25/
√

w(0)(z)), (22a)

β(z) = β0w
(0)2/3

, (22b)

where α0 and β0 are constant values used for comparison.
We compare the difference between constant α and α(z) (with

β held constant) in figure 5a, where we see that former choice over-
estimates the amount of cooling, with a large contribution coming from
radiative cooling. The more realistic case of α(z) predicts that Newton
cooling is the dominant mechanism in the later stages of the process,
as argued by, for example, Huang et al. (2008).

On the other hand, we see in figure 5c that the proposed func-
tional form for β(z) vastly over-estimates the effect of conduction,
with the temperature dropping off before the furnace reaches its maxi-
mum temperature. We therefore believe that this form is not realistic,
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Figure 3. (a) Time variable τ against axial distance z for α = 160, β = 1 (solid line),
α = 1, β = 50, (dot-dashed line) and α = 1, β = 1 (dashed line). The corresponding
(b) temperature, (c) viscosity, and (d) radius are plotted against τ . In all cases
Pe∗ = 1, w1 = 3 × 104, Ta = 3

4
Tf , T0 = 1
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Ts.
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Figure 4. Influence of (a) α and (b) β on the variation of glass temperature with axial
position taking a constant furnace temperature Tf = 2500K, shown red (dashed).
In (a) we take β = 5, α = {1, 5, 20}, while in (b) α = 1, β = {1, 5, 20}. In all cases
Pe∗ = 1, w1 = 3 × 104, Ta = 3

4
Tf , T0 = 1
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Ts.
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Figure 5. Influence of (a) α(z) given by equation (22a), solid curve, and (b) β(z)
given by equation (22b), solid curve, compared to constant values α0 = 160 and
β0 = 50, shown dot-dashed; the furnace temperature is also shown (dashed). In all
cases Pe∗ = 1, w1 = 3 × 104, Ta = 3

4
Tf , T0 = 1

10
Ts.

and that β should be kept constant. This is in agreement with the
numerical results to the full conjugate heat transfer problem which
reported that k̂h remained approximately constant throughout the pro-
cess (Yin and Jaluria, 2000).

4.1.3. The force

An important quantity for industrial applications is the force F , found
as part of solution to (18), satisfying F = 3 lnw1/

∫ 1
0 1/µ̄(0)dz. We plot

the force as a function of the prescribed draw ratio w1 in figure 6a,
which as expected is a monotonically increasing function. We also plot
the force against α, and β in figures 6b–c; interestingly the former is
found to be non-monotonic at low values of α.

We note that for a rapidly varying choice of µ(T ), Wylie et al.
(2007) reported that a simplified model with constant heating and no
cooling could predict three possible branches in force/draw ratio space,
two of which were potentially stable. This surprising result was later ex-
tended to include surface tension and inertial effects
(Suman and Kumar, 2009). Although we have also been able to repro-
duce their results for our model using the µ(T ) form suggested by Wylie
et al., we note that the solutions are very sensitive to the parameter
values; in particular we have not found the three branches for our choice
of µ(T ) and range of realistic parameter values.

4.1.4. Surface radiation and conduction dominate

Our parameter estimates given in Table I suggest that both α and
β may in fact be quite large. If we therefore assume that α = λα∗

and β = λβ∗ where α∗, β∗ are of order unity and λ ≫ 1, then sur-
face radiation conduction dominate over axial convection and we may
neglect the left-hand side of (18b). If we now assume that α∗ and β∗
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Figure 6. Force F against (a) w1 for α = 160, β = 50 (solid), α = 1, β = 50(dashed),
α = 1, β = 1 (dot-dashed); (b) α for β = {1, 10, 50}, w1 = 3 × 104; (c) β for
α = {10, 20, 50, 100}, w1 = 3 × 104. In all cases Pe∗ = 1, Ta = 3

4
Tf , T0 = 1
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Ts.

are constant, then T (0)(z) is given simply by T (z), the solution to the
quartic equation

α∗

(

T (z)4 − Tf (z)4
)

+ β∗ (T (z) − Ta(z)) = 0, (23)

which may be expressed explicitly although, due to its complicated
form, we refrain from writing it here. Once determined, (18a) may be
integrated to give

w = exp

(
∫ z

0

3F

µ̄(T (s))
ds

)

, (24)

with F chosen so that w(1) = w1, and R(0) may then be calculated
from (17a).

Towards the end of the furnace the fibre velocity rises significantly
and the term neglected on the left-hand side of (18b) becomes important
again; a boundary layer is thus present. Rescaling w(0) = λ2W we find
that the system (18b) now reads

1

2

√
WPe∗

dT (0)

dz
= −

(

α∗

(

T (0)4 − T 4
f

)

+ β∗

(

T (0) − Ta

))

, (25)

and we return to solving the original full system (18). However, since
the numerical simulations indicate that the velocity evolves to its final
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Figure 7. (a) Variation of leading-order temperature with axial position given by
the full system (18) when Pe = 1, α = 160 and β = 50 (black), while the blue
dashed line shows the asymptotic solution T given by (23). In both cases Pe∗ = 1,
w1 = 3 × 104, Ta = 3

4
Tf , T0 = Te. Figure (b) shows the corresponding numerical

and asymptotic solutions for the fibre radius.

value over a fairly narrow window (near where the temperature attains
its maximum) its value is approximately constant (and equal to the
draw speed) for an appreciable portion of the fibre drawing. We thus
propose that we may set W1 = W1/λ2(= O(1)), the (known) fibre
pulling speed, so that (25) provides a decoupled autonomous equation
for T (0) in this region which may be solved implicitly to give

z
(

T (0)
)

=

∫ T (0)

1
−

√
W1Pe∗ ds

(

α∗

(

s4 − T 4
f

)

+ β∗(s − Ta)
) . (26)

We may then patch the solution to (23) with the solution to (26)
to find an approximation to the full temperature distribution. Once
determined, w(0) and R(0) are easily calculated from (18a) and (17a) as
before. This patched asymptotic solution is compared with the solution
to the full coupled system (18) in figure 7, showing excellent agreement,
with the two solutions almost indistinguishable. The asymptotic solu-
tions derived here thus provide a simple yet accurate description of the
system behaviour.

4.1.5. First-order correction

The α, β limit discussed in § 4.1.4 may be treated in an asymptotically
rigorous manner by setting α = α∗/ǫp, β = β∗/ǫq, where p, q ∈ Z+.
Since the leading-order system depends only on axial position, to quan-
tify the radial variations we must analyse the system at the next order
in the expansion in powers of ǫ. In doing so, provided w(0) is of order
unity, which we have seen is true up to the point at which the glass
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Figure 8. Numerical (solid) and asymptotic (dashed) results for the temperature
against (a) axial position, with x = 0, and (b) scaled radial position, x, with
z = {0.1, 0.2, 0.3}, taking ǫ = 0.1, Pe∗ = 1, α = 1.6/ǫ2, β = 5/ǫ, γ = 0, w1 = 3×104,
Ta = 3

4
Tf , and T0 = Te.

reaches its maximum temperature, equation (12e) indicates that

T (r, z) = T (z) + ǫ

[

Pe∗(r2 − R(0)2)w(0)T ′(z)

4(1 + 4γT 3)
+ T (1)

∣

∣

r=R(z)

]

, (27)

where the final term depends on the size of p and q. Provided α∗ and
β∗ are kept constant, we find from (12e) that

T (1)
∣

∣

r=R(z)
=























































− Pe∗w(0)T ′(z)R

2(β∗ + 4α∗T (z)3)
, p = q = 1,

−β∗

α∗

(Tf − Ta)

4T 3
f

, p = 2, q = 1,

−α∗

β∗

1

(T 4
a − T 4

f )
, p = 1, q = 2,

0, p, q ≥ 2.

(28)

We plot the temperature profile (27) against both axial position
and scaled radial position, x(r, z) = r/R(0)(z), for the case p = 2,
q = 1 in figure 8, showing excellent agreement with the numerical
solution to the full two-dimensional problem (see §4.2), at least until the
temperature reaches its maximum. After this point the axial velocity
w(0) increases rapidly and we can no longer ignore the left-hand side of
(11d). Nevertheless, these asymptotic results give us a useful check on
our two-dimensional numerical solution, which we now discuss.
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4.2. Transport across the fibre balancing convection

4.2.1. Surface radiation and conduction balance convection

We now let Pe = O(1/ǫ2) = P/ǫ2, which we note is likely to be relevant
to fibre drawing at the higher speeds that have become possible more
recently (Yin and Jaluria, 2000). In this case, heat transfer across the
fibre is balanced by the convective transport and, from (11d) we see
that T (0) depends on both r and z. However, it is convenient to change
variables into a coordinate frame that adapts to the radius of the fibre,
via

x(r, z) =
r

R(0)(z)
, ζ = P z. (29)

This transforms the system (11d) and (12e) into

∂T (0)

∂ζ
=

1

x

∂

∂x

(

x
∂T (0)

∂x
(1 + 4γT (0)3)

)

, (30a)

with

−∂T (0)

∂x
(1 + 4γT (0)3) = α∗R(0)

(

T (0)4 − T 4
f

)

+ β∗R(0)
(

T (0) − Ta

)

,

(30b)

on x = 1, where we have set α = α∗/ǫ and β = β∗/ǫ, as this provides
the richest limit in which surface radiation and conduction balance
convection.

In general, we must solve (30) numerically together with (17).
We discretize the differential equations using second-order centred dif-
ferences for the spatial derivatives, and integrate in time using the
MATLAB differentio-algebraic equation solver ode15s, treating (17b)
as an algebraic constraint at each time-step. Once the solution is found
for an initial guess for F , the process is repeated iteratively until
boundary condition (13h) is satisfied at the end of the domain.

4.2.2. Industrially relevant regime

Based on the parameter values given in table I, we take α∗ = 16,
β∗ = 5, γ = 5, and consider the effect of the Péclet number, which
is directly proportional to the preform width W0 and thus the draw
ratio, indeed Péclet numbers as high as O(103) are possible in high-
speed fibre drawing. We present numerical results for the temperature
and free-surface profiles for P = 1, 10 in figure 9 (for ease of comparison
we have used z rather than the rescaled variable ζ). As expected, we
see that the temperature now varies across the radius of the fibre,
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Figure 9. (a) Variation in leading-order temperature with axial position for radial
coordinate x = {0, 0.2, 0.4, 0.6, 0.8, 1} in the case (a) P = 1 and (c) P = 10; the
furnace temperature is also shown (dashed). Figures (b) and (d) show the corre-
sponding fibre radii. In all cases α = 16/ǫ, β = 5/ǫ, γ = 5, w1 = 3× 104, Ta = 3

4
Tf ,

and T0 = Te, while in (a),(c) we also show the case of α(z) using (22a) (dot-dashed).

being hottest at the edge and coolest in the middle. Furthermore, this
variation is much more pronounced at the larger Péclet number, as
suggested from the rescaling (29).

Although we are able to solve the full numerical system numer-
ically, we note that in the limit of strong radiation (as suggested by
our parameter values) and/or strong cooling, equations (30a)–(30b) de-
couple leading to a simplified system. For example, setting α = α̂/ǫ2

and β = β̂/ǫ2 where α̂ and β̂ are O(1), the leading-order boundary
condition (30b) simplifies to T (0) = T (ζ) on x = 1 where T is again

given by (23) with α∗, β∗ replaced by α̂, β̂ respectively.

4.2.3. The effect of bulk radiation

We now consider the role of bulk radiation, which for Pe = O(1/ǫ2)
comes in at leading order when γ = O(1), as assumed thus far. From
(30) we see that if γ ≫ 1, bulk radiation dominates so that the temper-
ature is approximately constant across the fibre. On the other hand, if
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we now set γ = 0, that is, zero bulk radiation, the model reduces to

∂T (0)

∂ζ
=

1

x

∂

∂x

(

x
∂T (0)

∂x

)

in 0 < x < 1, (31a)

T (0) = T (ζ) at x = 1, (31b)

T (0) bounded at x = 0, (31c)

T (0) = T (0) at ζ = 0, (31d)

and in this case we are able to solve explicitly for the temperature. We
let T (0)(x, ζ) = T (ζ) + T̂ (x, ζ) and pose the ansatz that

T̂ (x, ζ) =
∞
∑

m=1

fm(ζ)J0(λmx), (32)

where J0 is the lowest-order Bessel function and λm are the roots of
J0. We find that fm satisfies

f ′

m + λ2
mfm = − 2T ′

λmJ1(λm)
, (33)

where J1 is the first-order Bessel function and and the solution for fm

is given by

fm = − 2e−λ2
mζ

λmJ1(λm)

∫ ζ

0
T ′(s)e−λ2

msds, (34)

and so the solution for T (0) is

T (0)(x, ζ) = T (ζ) +
∞
∑

m=1

−2J0(λmx)e−λ2
mζ

λmJ1(λm)

∫ ζ

0
T ′(s)e−λ2

msds. (35)

We plot (35) including ten terms in the summation in figure 10(a)
showing very good agreement with numerical results everywhere except
near the origin, where the modulus of the terms in the expansion start
becoming very large leading to numerical errors. Once we have found
the temperature, we may now calculate µ̄ and use (17) to find w, R, and
F . The corresponding fibre radius is shown in figure 10(b). In addition
to giving a simple explicit solution, (35) also provides a validation for
the full two-dimensional numerics.

We compare our solution for zero bulk radiation to one with non-
zero bulk radiation, but all other parameters kept constant, in figure
10(c)–(d). As expected, with zero bulk radiation we find a greater vari-
ation in temperature across the fibre, which leads to a greater radially
averaged glass viscosity so that a greater force is required to pull the
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Figure 10. (a) Variation in leading-order temperature with axial position for
x = {0, 0.2, 0.4, 0.6, 0.8, 1} in the case P = 1, α̂ = 1, β̂ = γ = 0. The solid lines
correspond the numerical solution of (31a) while the dashed lines correspond to
the exact solution (35) taking ten terms in the expansion. The corresponding fibre
radius is shown in (b). Figures (c)–(d) are the same as (a)–(b) except γ = 5.

fibre through the furnace. Increasing γ aids the heat transfer through
the filament cross-section and hence smooths the temperature profile
out.

5. Discussion

In this paper we have derived and analysed an extensional flow model
to describe the evolution of an axially evolving optical fibre, in which
we track the radius of the fibre, the speed of the fibre and the temper-
ature. We incorporated energy transfer due to conduction, convection,
bulk and surface radiation, and through convective cooling from the
air, assuming that the fibre is optically thick. We also included the
dependence of the viscosity on temperature.

The model was first solved numerically in the limit where the
temperature didn’t vary across the fibre. Using a change of variables,
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the solutions were presented in evolving in “time” and exhibited a
boundary layer near the end of the evolution. The structure of this solu-
tion was determined in the original coordinate system using asymptotic
analysis. The domain decomposed into an initial region where the tem-
perature is set by a balance between surface radiation and convective
cooling, in which the velocity and fibre radius vary significantly, and
then a later region where the radius and velocity are effectively constant
and the evolution of the temperature also involves bulk convection.

Other interesting parameter limits of the model were explored
using asymptotics and numerics. In an industrially relevant limit, the
temperature varies along and across the fibre, but the qualitative fea-
tures are the same as in the radially invariant case. The model can be
used to assess the relative importance of surface cooling, surface radia-
tion, bulk radiation and standard heat transfer on the evolution of the
fibre. In particular, including bulk radiation smooths the temperature
profile across the fibre, as shown in figure 10.

Our analysis has always assumed a known pulling speed, with the
required force calculated as part of the solution. As expected, this force
increases monotonically with the pulling speed, and also increases as
the glass viscosity decreases, for example when the Péclet number is
particularly high as investigated in § 4.2.2. In fact, we note that there al-

ways exists a force F that allows us to solve our one or two-dimensional
model, although it may be unfeasibly high for practical purposes. This
is in contrast to the more elaborate two and three-dimensional models
of Jaluria and co-workers, who are unable to find a steady solution if
the glass temperature is too low, suggesting that the fibre solidifies and
breaks.

Throughout this paper we have restricted ourselves to consider-
ing only steady profiles, yet it has long been known that even for
isothermal fibre draw ratio the problem becomes unstable once the draw
ratio exceeds a critical value wcrit ≈ 20 (Hyun, 1978). This oscillatory
instability is known as draw resonance, and is both of mathematical in-
terest (Renardy, 2006) and great practical importance. A number of au-
thors have thus investigated both the linear (Geyling and Homsy, 1980,
Myers, 1989) and non-linear (Forest and Zhou, 2001) stability of non-
isothermal fibre drawing. While it would be possible to follow the same
methodology for our model, we note that Scheid et al. (2010) have
recently performed an in-depth study on the effect of cooling on fibre
drawing, noting that it is governed by the Stanton number St = β/ǫPe.
Provided this is not much greater than unity, as found from our param-
eter estimates, cooling has a stabilizing effect on fibre drawing, which
would aid the process.
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Nevertheless, there are a number of limitations to our model, even
for the steady case. The first, as discussed in §2.1, is our assumption of
an optically thick fibre, which is likely to break down once the fibre is
at its thinnest. Unfortunately, determining the energy transfer for an
optically thin fibre would involve tracing rays within the fibre; methods
to do so have been discussed by, for example, Lee and Jaluria (1997),
Lentes and Siedow (1999), and more recently Frank and Klar (2011).
Secondly, we should solve for the temperature field outside the fibre,
taking into account that the convective transfer to the fibre will be
affected by the speed of the fibre and that the presence of the air will
affect the (external) radiative transfer.

However, the above extensions would necessarily involve compu-
tationally intense problems, negating the entire philosophy behind our
work, that is to derive realistic yet simple models for fibre drawing
that may be solved quickly. In light of this, useful extensions to our
models that could still be readily solved would be the inclusion of
multiple layers, as discussed by Cheng and Jaluria (2007), Suman and
Tandon (2010), and of viscous dissipation. This latter effect was anal-
ysed by (Wylie and Huang, 2007) for a simplified case, who found that
dissipative effects were important once the fibre had thinned, and a
one-dimensional analysis required the inclusion of inertial effects. Sim-
ilarly, Lee and Jaluria (1997) argued that viscous dissipation made
two-dimensional effects important, and so it would be expedient to
include this effect in future extensions of our work.

Appendix

A. Phase plane analysis at constant furnace temperature

As noted in the main text, the system (18a,b) is amenable to a phase
plane analysis in the case where the furnace temperature Tf is assumed
constant (for consistency with the assumption of §2.1.4 the ambient
temperature Ta is then also constant). Dropping all leading-order (0)

superscripts to simplify notation, it proves convenient to consider the
phase plane in (w, µ)-space. With T (µ) given by inverting the relation
(14) the autonomous system (18a,b) then becomes

dw

dz
=

Fw

3µ
, (36)

dµ

dz
=

64µ

Pe∗T (µ)2
√

w

(

α(T (µ)4 − T 4
f ) + β(T (µ) − Ta)

)

, (37)
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Figure 11. Phase plane for ambient temperature below glass cooling temperature.
If the draw ratio is sufficiently high the fibre viscosity may increase again before it
exits the furnace.

with T (µ) = (1 + log(µ)/32)−1. The phase plane for this system is the
solution trajectories of the ODE

dw

dµ
=

Pe∗FT (µ)2w3/2

192µ2
(

α(T (µ)4 − T 4
f ) + β(T (µ) − Ta)

) . (38)

As in the main text, we can consider either constant α, β, or α(w),
β(w) as in, for example, equations (22). Here we give just a couple of
representative example phase planes for the case in which α and β are
functions of w. A key factor influencing the qualitative features of the
phase diagram is whether the ambient temperature Ta is greater than or
less than the glass softening temperature. Figure 11 shows a phase plane
for α = α0(1−exp(−10/

√
w)), β = β0w

2/3, and with α0 = 160, β0 = 1,
Tf = 1.57, Ta = 0.75 (lower than the glass softening temperature,
which normalizes to 1), and Pe∗F = 3840. The solid curves are the
phase trajectories, while the dashed curve is the nullcline on which
α(T (µ)4−T 4

f )+β(T (µ)−Ta) = 0. Only a limited range of the µ-axis is
shown for simplicity, but it is clear what the evolution would be for such
a fibre. The fibre enters at a small value of w, the input velocity. At this
stage its viscosity is extremely large. As the fibre enters further into
the furnace it gains axial velocity and its viscosity drops precipitously,
before levelling off. Depending on the draw ratio (ratio of exit velocity
to input velocity) the viscosity may reach a minimum value (phase path
crossing a nullcline) and then increase again before the fibre exits the
furnace. In the case where the ambient temperature Ta is higher than
the softening temperature the evolution is less dramatic. An example is
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Figure 12. Phase plane for ambient temperature above glass softening temperature.
The fibre viscosity decreases monotonically as it passes through the furnace for all
draw ratios.

shown in Figure 12, with all parameters as before except Ta = 1.18 > 1.
In this case, on entering the furnace the viscosity again drops rapidly
on entering the furnace, but then stays at a low value until exit.

Bearing in mind the comments of Section 4.1.2 about the unreal-
istic nature of the proposed functional dependence of β, we also show a
phase plane for the case of constant β, β = 50 (figure 13). In this case
the phase plane shows no qualitative difference between the cases where
the ambient temperature is above or below the softening temperature,
so we show only the case considered throughout most of the paper,
where Ta = 3Tf/4 = 1.18 > 1 (all other parameters are as above). The
fibre viscosity now decreases monotonically as the fibre passes through
the furnace, for all draw ratios.
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Figure 13. Phase plane for ambient temperature above glass softening temperature,
and parameter β taken to be constant. The fibre viscosity decreases monotonically
as it passes through the furnace for all draw ratios.

authors note that this publication was based on work supported in part
by Award No KUK-C1-013-04, made by King Abdullah University of
Science and Technology (KAUST).

References

Carslaw, H. S. and J. C. Jaeger: 1959, ‘Conduction of heat in solids’. Oxford:

Clarendon Press, 1959, 2nd ed.

Cheng, C. and Y. Jaluria: 2007, ‘Modeling of radiation heat transfer in the drawing
of an optical fiber with multilayer structure’. ASME J. Heat Transfer 129,
342–352.

Cummings, L. J. and P. D. Howell: 1999, ‘On the evolution of non-axisymmetric
viscous fibres with surface tension, inertia and gravity’. J. Fluid Mech. 389(1),
361–389.

Filippov, A.: 2011. Private communication.
Fitt, A. D., K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson: 2002,

‘The mathematical modelling of capillary drawing for holey fibre manufacture’.
J. Eng. Math. 43(2), 201–227.

Forest, G. M. and H. Zhou: 2001, ‘Unsteady analyses of thermal glass fibre drawing
processes’. Eur. J. Appl. Maths 12, 479–496.

Frank, M. and A. Klar: 2011, ‘Radiative Heat Transfer and Applications for Glass
Production Processes’. In: Mathematical Models in the Manufacturing of Glass,
Lecture Notes in Mathematics. Springer, pp. 57–134.

Geyling, F. T. and G. M. Homsy: 1980, ‘Extensional instabilities of the glass fibre
drawing process’. Glass Technol. 21, 95–102.

Huang, H., R. M. Miura, and J. J. Wylie: 2008, ‘Optical Fiber Drawing and Dopant
Transport’. SIAM J. Appl. Math. 69(2), 330–347.

corning11.tex; 22/09/2012; 10:57; p.27



28 M. Taroni et al.

Hyun, J.: 1978, ‘Theory of draw resonance: Part I. Newtonian fluids’. AIChE Journal

24(3), 418–422.
Lee, S. H. K. and Y. Jaluria: 1997, ‘Simulation of the transport processes in the

neck-down region of a furnace drawn optical fiber’. Int. J. Heat Mass Transfer

40(4), 843–856.
Lentes, F. T. and N. Siedow: 1999, ‘Three-dimensional radiative heat transfer in

glass cooling processes’. Glastech. Ber. Glass Sci. Technol. 72, 188–196.
Myers, M. R.: 1989, ‘A Model for Unsteady Analysis of Preform Drawing’. AIChE

J. 35(4), 592–602.
Paek, U. C. and R. B. Runk: 1978, ‘Physical behavior of the neck-down region during

furnace drawing of silica fibers’. J. Appl. Phys. 49(8), 4417–4422.
Papamichael, H. and I. N. Miaoulis: 1991, ‘Thermal behavior of optical fibers during

the cooling stage of the drawing process’. J. Mater. Res. 6(1), 159–167.
Renardy, M.: 2006, ‘Draw resonance revisited’. SIAM J. Appl. Math. 66(4), 1261–

1269.
Roy Choudhury, S. and Y. Jaluria: 1998, ‘Thermal transport due to material and

gas flow in a furnace for drawing an optical fiber’. J. Mater. Res. 13(2), 494–503.
Roy Choudhury, S., Y. Jaluria, and S. H.-K. Lee: 1999, ‘A computational method

for generating the free-surface neck-down profile for glass flow in optical fiber
drawing’. Numer. Heat Transfer Part A 35, 1–24.

Scheid, B., S. Quiligotti, B. Tranh, R. Gy, and H. A. Stone: 2010, ‘On the
(de)stabilization of draw resonance due to cooling’. J. Fluid Mech. 636, 155–176.

Suman, B. and S. Kumar: 2009, ‘Draw ratio enhancement in nonisothermal melt
spinning’. A. I. Ch. E. J. 55(3), 581–593.

Suman, B. and P. Tandon: 2010, ‘Fluid flow stability analysis of multilayer fiber
drawing’. Chem. Eng. Sci 65, 5537–5549.

Wylie, J. J. and H. Huang: 2007, ‘Extensional flows with viscous heating’. J. Fluid

Mech. 571, 359–370.
Wylie, J. J., H. Huang, and R. M. Miura: 2007, ‘Thermal instability in drawing

viscous threads’. J. Fluid Mech. 570, 1–16.
Yin, Z. and Y. Jaluria: 1997, ‘Zonal Method to Model Radiative Transport in an

Optical Fiber Drawing Furnace’. ASME J. Heat Transfer 119(3), 597–603.
Yin, Z. and Y. Jaluria: 2000, ‘Neck Down and Thermally Induced Defects in High-

Speed Optical Fiber Drawing’. ASME J. Heat Transfer 122, 351–362.

corning11.tex; 22/09/2012; 10:57; p.28


