
Noname manuscript No.
(will be inserted by the editor)

A model for the lifetime of a reactive filter

Kristian Kiradjiev · Christopher Breward ·
Ian Griffiths

Received: date / Accepted: date

Abstract In many industrial applications, reactive filters, which remove toxic
substances using chemical reactions, prove very efficient and versatile. One such
example is the removal of sulphur dioxide from flue gas by converting it into
liquid sulphuric acid. In this paper, we extend a model developed in [18] for the
operation of a reactive filter to consider the long-time behaviour and determine
how the filter becomes clogged with liquid and becomes inefficient. We explore
how the parameters that govern the operation of the filter affect its efficiency and
discuss optimal filtration strategies. We also consider a distinguished asymptotic
limit in terms of the key dimensionless parameters and obtain an explicit solution
that compares well with the numerical solution to the full problem. Finally, we
compare the results of our model with those from a simplified model for a reactive
filter considered in [3].
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1 Introduction

Many industrial processes generate harmful chemical by-products, which must be
adequately processed before being released into the atmosphere or a waste-water
stream. One important example is the generation of sulphur dioxide during the
processing of raw materials such as crude oil and coal [27, 32] or ores [7], which
is then released into the atmosphere in flue (exhaust) gas. Sulphur dioxide in the
atmosphere reacts to form sulphuric acid, which is well-known for its role in acid
rain as well as being linked to respiratory illnesses [4, 32]. Many of the technologies
that are currently in place to process this sulphur dioxide and prevent its release
into the atmosphere, such as gas scrubbing [6, 11, 26], are costly, time consuming
and produce a large amount of waste.

W. L. Gore and Associates, Inc. have designed the Gore Mercury Control Sys-
tem (GMCS) filter, which converts gaseous sulphur dioxide into liquid sulphuric
acid, which may be drained off and used for other purposes. The filter consists of
microscopic catalytic carbon pellets that are held together by a polymer-composite
network of fibres to form flexible sheets [19]. These sheets are then folded in a
concertina-like fashion; the gaseous sulphur dioxide is passed through the triangu-
lar gaps and diffuses into the sheets where it reacts on the surface of the catalytic
pellets, with oxygen and water vapour from the surroundings, to form liquid sul-
phuric acid. These concertina sheets are embedded in stackable modules and a
schematic of the filtering device and the filtration process is shown in figure 1.

Fig. 1 Three modules of the filter device and a schematic of the filtration process (from [19]).

The conversion of sulphur dioxide to sulphuric acid takes place via a series of
intermediate reactions (see, for example, [10, 24]). However, these can be sum-
marised by a single effective chemical reaction:

2 SO2(?) + 2H2O(?) +O2(?)
carbon catalyst−−−−−−−−−−→

k
2H2SO4(l). (1)

Here, k is the overall reaction rate, taking into account all intermediate steps, and
(?) denotes gaseous state (g) initially, before a liquid layer has formed around the
catalytic pellet, and aqueous solution (aq) afterwards.

The sulphuric acid that is produced in the GMCS device acts as a natural
cleanser of the filter by removing contaminant particles such as dust, and can be
used for other purposes once drained off [19]. However, one drawback of the GMCS
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is that, if the liquid sulphuric acid does not drain away fast enough, it builds up
in the void space between the catalytic pellets and the fibre network. If left for
too long, the sulphuric acid will completely clog the filter, resulting in a dramatic
drop in the processing rate of sulphur dioxide. To understand how to mitigate
these clogging effects, we aim to build a mathematical model that describes the
device behaviour. The model should describe the diffusive transport of sulphur
dioxide within the void space of the filter and the subsequent accumulation of
sulphuric acid on the pellets as a result of the catalytic reaction. This model may
then be used to predict how the removal efficiency of the filter evolves with time
as a result of the sulphuric acid build-up, and ultimately provide guidance on the
optimal operating strategy that maximises the device efficiency.

A range of mathematical models exist in the literature to describe conven-
tional methods for sulphur dioxide removal, including gas scrubbing [6, 11, 14, 23]
and absorption [5, 28]. However, reactive-pellet chemical filters that involve a
phase change of the contaminant, such as the GMCS device, are less well studied.
Mochida et al. [24] study the removal of sulphur dioxide using activated carbon
fibres to produce sulphuric acid. They develop a power-law model to describe the
steady-state concentration of sulphur dioxide at the outlet of the device. They
find that this concentration is proportional to the weight of the catalyst and to a
specific power of the starting concentrations of sulphur dioxide, oxygen, and water
vapour. In addition, they assert that the rate-limiting step of the reaction is the
dissociation of the sulphuric acid that is produced into an aqueous solution around
the carbon. Similar findings appear in Gaur et al. [8], where they develop a detailed
kinetic model and describe the evolution of the gas concentration. They observe
that increasing the inlet sulphur dioxide concentration or decreasing the oxygen
and water-vapour concentrations increases the outlet concentration. However, in
neither of these models is the evolution of the liquid sulphuric acid explicitly mod-
elled.

A simple model for the behaviour of a reactive filter, in which the catalyst
lines a series of parallel channels, is presented in Breward and Kiradjiev [3]. Here,
we derive the equations governing the evolution of sulphur dioxide and oxygen in
the gas and in the layer of sulphuric acid that forms on the surfaces, as well as
the thickness of the acid layer in the channels, and couple this with the flow of
gas through the filter. Under typical operating conditions, we find that the oxygen
concentration within the device is constant. We postulate that, once the entrance
to a channel has been filled with liquid sulphuric acid, no further transport of
sulphur dioxide can take place in that channel. In doing so, we find that a travelling
front propagates through the device, behind which all the channel entrances are
saturated. We use the model to make predictions on the lifetime of the device,
defined as the time it takes for the front to reach the exit of the device, and how
the lifetime depends on the operating parameters.

A more complicated model for a reactive filter, in which the catalytic pellets
are assumed spherical, is presented in Kiradjiev et al. [18]. In this paper, we de-
velop a homogenised model for a reactive filter in which we capture the microscale
chemistry in a pair of coupled macroscale equations that describe the evolution
of the sulphur dioxide concentration and the gas volume fraction in the filter.
The model takes into account the complex microstructure of the porous medium
through systematically derived effective quantities, such as the effective diffusivity,
which are obtained by solving a corresponding cell problem. Oxygen and water
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vapour are assumed to have constant concentration due to their abundance under
normal operating conditions. The key deficiency of this model is that it is valid
only until the liquid layers in two neighbouring cells of the domain microstructure
first coalesce; after this point, the topology within the unit cell changes. Our aim
in this paper is to extend the model derived in [18] beyond the point of first coa-
lescence by using the idea, introduced in [3], that once a continuous layer of liquid
forms somewhere along the filter channel, there is no more uptake of sulphur diox-
ide at that location, and thus a clogging front travels through the filter channel
until the filter stops working. This will enable us to examine the behaviour of the
filter until it completely clogs with liquid, and to compare the behaviour with that
predicted by the simple model in [3].

The outline of this paper is as follows. In Section 2, we will present an extended
version of the mathematical model from [18] and derive an effective diffusivity that
holds until the point when there is no single continuous gaseous pathway in the
unit cell around a catalytic pellet. In Section 3, we will present the dimensionless
model and, based on the values of the key dimensionless parameters, arrive at a
reduced model for the filter. In Section 4, we will present numerical solutions to the
model and vary the parameters that govern the performance of the filter. We will
present an asymptotic limit of the model in Section 6 and obtain a Volterra integral
equation for the position of the clogging front. In Section 7, we will explicitly
compare the results from our model with those in [3]. We will draw conclusions in
Section 8.

2 Mathematical Model

We begin by stating the homogenised device-scale model, derived in [18], describing
the operation of a flue-gas filter. In this model, flue gas flows along a filter channel
of length L and thickness 2d at a constant speed U and diffuses into a porous filter
sheet of thickness H, width W , adjacent to the channel, where sulphur dioxide
is catalytically converted into liquid sulphuric acid. A schematic diagram of the
filter is shown in figure 2, where we also introduce our Cartesian coordinate system,
within which X̂ measures distance into the filter sheet, Ŷ measures distance across
the sheet, and Ẑ measures distance along the sheet.

filter sheet

H

filter channelsymmetry line X̂ = −d

d

L

inlet Ẑ = 0

outlet Ẑ = L

X̂
Ŷ

Ẑ

W

ωg

ωl
Γi

ω

R

liquid sulphuric acid

sulphur dioxide gas x̂

ẑ

catalytic
pellet

ŷ

flue gas,
speed U

Fig. 2 Schematic of a rectangular filter channel.
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We track the concentration of sulphur dioxide in the filter channel and in the
filter sheet, denoted by Ŝ and ŝ, respectively, and the gas fraction, or porosity, in
the filter sheet, denoted by V, where, for clarity, we use hats to denote dimensional
variables. As explained in [15], we assume a uniform flow in the filter channel and
negligible diffusion in the Ẑ-direction, since the associated Reynolds and Péclet
numbers are large. We assume further that there are no variations in the Ŷ -
direction, and we work in the distinguished limit where the diffusive transport
of sulphur dioxide on the macroscale balances the production of sulphur dioxide
due to the chemical reaction. In this limit, the concentration of sulphur dioxide
does not vary across the sulphuric acid layer. Our two-dimensional model reads

d

(
∂Ŝ

∂t̂
+ U

∂Ŝ

∂Ẑ

)
=

[
D̂
∂ŝ

∂X̂

]
X̂=0

, (2)

0 =
∂

∂X̂

(
D̂
∂ŝ

∂X̂

)
+

∂

∂Ẑ

(
D̂
∂ŝ

∂Ẑ

)
− 2Kŝ2, (3)

∂V
∂t̂

= −2VmKŝ2Θ(V − Vcrit), (4)

where (2) is a cross-sectionally averaged equation for the sulphur dioxide concen-
tration in the filter channels in which advection along the filter channel balances
diffusion into the filter sheet, while (3) is derived by homogenising the transport
equation for the sulphur dioxide concentration around the microstructure in the
porous filter sheets, assuming that the surface reaction (1) follows the law of mass
action, and that H2O and O2 are present in abundance and so their concentra-
tion is constant. Equation (4) is the macroscale equation describing the change of
porosity due to the production of liquid sulphuric acid on the surface of the pellets.
Here, D̂(V) is the effective diffusivity, which incorporates the effect of porosity in
(2) and (3) and we will present later, Vm is the molar volume of sulphuric acid, K is
the effective reaction rate, which depends on the microscale properties and is given
by K = 4πkR2/β2

s l
3, where k is the rate of the chemical reaction, R is the radius of

the pellets, βs is Henry’s law constant for sulphur dioxide, and l is the inter-pellet
distance, Θ is the Heaviside unit step function, and Vcrit is a critical gas fraction,
below which there is no continuous path for the gas to flow through. We discuss
the specific form of Vcrit later in this section. We will extend the model presented
in [18] by following the approach in [3] and holding the gas fraction constant as
soon as it reaches the critical value Vcrit at a given Ẑ location on the surface of
the filter sheet. At this point we stop solving (2) at this particular Ẑ location and
set Ŝ = S0, the inlet concentration of sulphur dioxide. We note that we anticipate
that this will introduce a propagating front located at Ẑ = Ĝ(t̂), behind which the
sulphur dioxide and the gas fraction at the surface of the channel are constant.

The associated boundary and initial conditions (see [18] for details) are

ŝ = Ŝ at X̂ = 0, (5)
∂ŝ

∂X̂
= 0 at X̂ = H, (6)

ŝ = Ŝ = S0 at Ẑ = 0, (7)

ŝ = Ŝ at Ẑ = L, (8)

Ŝ = 0, V = V0 at t̂ = 0, (9)
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where (5) represents continuity of sulphur dioxide concentration across the surface
of the filter sheet, noting that ŝ and Ŝ represent intrinsic concentrations, i.e., per
unit volume of available space, (6) represents no flux of sulphur dioxide through
the back of the filter sheet, the concentration at the inlet of the filter is given by
(7), and, through (8), we assume that the sulphur dioxide concentration at the
outlet is the same in the channel and in the sheet, which is due to the gas diffusing
laterally as it leaves the channel and spreads over the end of the filter sheet. We
also assume that, initially, there is no sulphur dioxide nor liquid sulphuric acid
present in the device, as given by (9), and we introduce an initial gas fraction, V0,
which is related to the microscale parameters by

V0 = 1− 4

3
π(R/l)3, (10)

which follows from computing the volume of gas in a cubic cell of length l with
a catalytic pellet in the centre, as shown in figure 2. We summarise the physical
parameters and their typical values in Table 1. Using these values gives V0 ≈ 0.98.

Parameter Definition Value Units
βs Henry’s law constant for sulphur dioxide 4× 10−2 –
Ds Diffusivity of sulphur dioxide in gas 10−5 m2 s−1

Dsl Diffusivity of sulphur dioxide in 2× 10−9 m2 s−1

liquid sulphuric acid
Vm Molar volume of sulphuric acid 5× 10−5 m3 mol−1

2d Thickness of filter channel 10−2 m
k Rate of chemical reaction 6× 10−5 m4 mol−1 s−1

l Inter-pellet distance 3× 10−5 m
H Thickness of filter sheet 10−3 m
L Length of filter channel 1 m
R Radius of pellets 5× 10−6 m
S0 Inlet concentration of sulphur dioxide in the

filter channel
10−2 molm−3

U Speed of gas flow in filter channel 3× 10−1 ms−1

W Width of filter sheet 10−2 m

Table 1 Parameter values (taken from [1, 9, 12, 13, 19, 20, 22, 25, 29, 31, 33]). Note that k is
an effective rate, and its value is determined indirectly from experimental data, as described
in [15].

We note that this model has been derived by formally homogenising a mi-
croscale model where the liquid sulphuric acid layer grows uniformly around spher-
ical catalytic pellets that are assumed to be arranged in a periodic array. This
assumption is an idealisation of the structure of the porous sheets, but we expect
no qualitative difference in the results, and only minor quantitative discrepancy,
since the periodic arrangement represents the average structure of the filter sheets.
More specifically, our microscale model involves an advection-diffusion equation for
the transport of sulphur dioxide in the gas and through the sulphuric acid layer
coupled with an equation describing the growth of the layer due to the reaction on
the surface of the pellets. The overall dynamics of the system are governed by four
dimensionless parameters: the dimensionless reaction rate, the ratio of the sulphur
dioxide diffusivities (in the liquid and gas), the solubility of sulphur dioxide in the



A model for the lifetime of a reactive filter 7

liquid, and the ratio of the microscale length to macroscale length (there are two
further dimensionless parameters, the product of the sulphur dioxide concentra-
tion and the molar volume of sulphuric acid, and the size of the pellets relative to
the spacing between them. The upscaled model (2)–(4) is derived in the physically
relevant parameter limit in which the reaction rate and the ratio of the diffusivity
ratio to solubility are both small and of similar magnitude. In this limit, we find
that the leading-order sulphur dioxide concentrations in the gas and in the liquid
are the same and independent of the local microscale spatial variables. As part of
the homogenisation, we derive two effective quantities, namely, the effective diffu-
sivity and the effective sink term in (3), proportional to the square of the sulphur
dioxide concentration which capture the essence of the microscale processes and
which will be used in the macroscale model. We note that the form of D̂ presented
in [18] and found by solving the corresponding cell problem is only valid until two
neighbouring liquid layers coalesce, which first happens near the channel inlet. At
this point, V = 1− π/6, which corresponds to the volume of the space between a
unit cube and an inscribed sphere of unit diameter (see figure 3(a)).

After the first clogging occurs, there will still be continuous gaseous pathways
from the channel into the sheet, unlike in a two-dimensional scenario, where coa-
lescence of two neighbouring layers will block diffusion of sulphur dioxide through
the gas into deeper areas of the filter. Thus, we calculate the effective diffusivity
of sulphur dioxide beyond the point when V = 1 − π/6 by numerically solving
a cell problem on the microscale geometry represented by a unit cube ω (with
boundary ∂ω) around a spherical catalytic pellet, as shown in figure 2. The gas is
located in the region ωg, and the gas–liquid interface is located at Γi. Denoting
the microscale concentration of sulphur dioxide in the gas (normalised by the inlet
concentration S0) by sg, we find that this is related to the normalised macroscale
concentration s = ŝ/S0 by sg ∼ s + εΦ · ∇s, where Φ = (Φ1, Φ2, Φ3), the cell
function, satisfies the dimensionless cell problem given by (see details in [18])

∇2
xΦ = 0 in ωg, (11)

(a) (b)

Fig. 3 Schematic of a sphere in a cube when (a) V = 1− π/6 and (b) V = Vcrit = 1− (5/4−
2
√
2/3)π.
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where x = (x, y, z) are coordinates in the cell problem, related to (x̂, ŷ, ẑ) in figure
2 by (x̂, ŷ, ẑ) = l(x, y, z). This is subject to

(∇xΦj + ej) · er = 0 on Γi for j = 1, 2, 3, (12)
Φ is periodic on ∂ω\Γi, (13)

where ej are the unit vectors in the x, y, z directions, respectively, er is the unit
normal vector to the gas–liquid interface (see [18] for details), and Γi is defined by

Γi =

{
Σr for 0 < r < 1/2,

Σr ∩ ω for 1/2 ≤ r ≤ 1/
√
2,

(14)

where Σr = {x2 + y2 + z2 = r2|x, y, z ∈ R}. Here, unlike in [18], we assume that,
after the liquid spherical layer touches the sides of the unit cubic cell, the evolution
of the gas–liquid interface Γi follows that of a capped sphere until the continuous
gas phase is broken up into eight isolated gas pockets, as shown in figure 3(b). We
can readily calculate the gas fraction at this point to be

Vcrit = 1− (5/4− 2
√
2/3)π ≈ 0.03. (15)

With this assumption we neglect any local surface-tension effects that would min-
imise the total gas–liquid surface area around neighbouring pellets.

The effective diffusivity tensor is given by

D̂ij = Ds

(
Vδij +

∫∫∫
ωg

∂Φj

∂xi
dV

)
, (16)

where Ds is the molecular diffusivity of sulphur dioxide in the gas. We note that,
due to isotropy, there is no preferred direction in calculating the effective diffusivity,
and thus it is proportional to the identity matrix, i.e., D̂ = D̂I. We solve (11)–(13)
using COMSOL Multiphysics for each potential location of Γi and then use the
solution to calculate D̂.

In figure 4, we show how the effective diffusivity, normalised by its maximum
value D̂ = Ds attained when V = 1, varies as a function of the gas fraction. This
agrees with the results derived in [2] and [30], for example. We denote the point of
first clogging when V = 1 − π/6 by a dashed line and observe that this coincides
with a qualitative change in the behaviour of the diffusivity, marked by a slight
change in the concavity of the profile. This can be explained by the change in
topology of the domain, which limits diffusion of the gas around the sphere. We
also note that the effective diffusivity becomes zero when V = Vcrit, as previously
discussed.

We will now non-dimensionalise the model and identify the key dimensionless
parameters.

3 Dimensionless model

We non-dimensionalise (2)–(9) using

X̂ = HX, (Ẑ, Ĝ) = L(Z,G), t̂ = (β2
s l

3/8πkR2S2
0Vm)t,

Ŝ = S0S, D̂ = DsD,
(17)
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V

D̂
/
D

s

Fig. 4 Graph of the normalised effective diffusivity, D̂/Ds, given by (16), as a function of the
gas fraction, V. The dashed line denotes the point when V = 1 − π/6, and the change in the
behaviour at this point can also be seen in the inset panel.

where we have chosen the timescale associated with liquid growth, by balancing
the terms in (4), assuming that this is the relevant timescale for the long-term
operation of the filter. The dimensionless equations become

τ
∂S

∂t
+
∂S

∂Z
= β

(
D
∂s

∂X

) ∣∣∣∣∣
X=0

, (18)

0 =
∂

∂X

(
D
∂s

∂X

)
+ δ2

∂

∂Z

(
D
∂s

∂Z

)
− κs2, (19)

∂V
∂t

= −s2Θ(V − Vcrit), (20)

subject to

s = S at X = 0, (21)
∂s

∂X
= 0 at X = 1, (22)

s = S = 1 at Z = 0, (23)
s = S at Z = 1, (24)
S = 0 at t = 0, (25)

V = V0 at t = 0, (26)

where we have the following five dimensionless parameters

β =
DsL

dHU
≈ 6.7, δ =

H

L
= 10−3, κ =

8πkH2R2S0

β2
s l3Ds

≈ 0.88,

τ =
8πkLR2S2

0Vm
β2
s l3U

≈ 3.2× 10−6.

(27)
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Here, β represents the ratio of the diffusive flux of sulphur dioxide entering the filter
sheet to the advective flux of sulphur dioxide passing through the filter channel
and indicates how easy it is for sulphur dioxide to enter the sheet, δ is the aspect
ratio of the filter sheet, κ measures the relative strength of the reaction to diffusion
across the thickness of the filter sheet, and τ is the ratio of the advective timescale
to the timescale associated with liquid growth.

Before we proceed, based on the parameter values in (27), since δ � 1 and
τ � 1, from now onwards we will neglect the first term in (18) and the second
term in (19). This means that S will evolve quasi-statically and diffusion in the Z
direction is negligible1, which is due to the slenderness of the device (δ � 1). We
note that taking the quasi-static limit means that we lose the start-up problem
where the concentration rapidly rises from zero as the sulphur dioxide fills up the
channel for the first time. For completeness, the reduced dimensionless model is

∂S

∂Z
= β

(
D
∂s

∂X

) ∣∣∣∣∣
X=0

, (28)

0 =
∂

∂X

(
D
∂s

∂X

)
− κs2, (29)

∂V
∂t

= −s2Θ(V − Vcrit), (30)

subject to

s = S at X = 0, (31)
∂s

∂X
= 0 at X = 1, (32)

s = S = 1 at Z = 0, (33)
s = S at Z = 1, (34)

V = V0 at t = 0. (35)

In Section 7, we will compare this model to a similar one derived in [3]. The
key difference between these two models is the presence of a non-linear effective
diffusivity in (28)–(29), which systematically captures the effect of the microstruc-
ture on the transport of sulphur dioxide and liquid sulphuric acid within the filter
sheet.

For future convenience, we also define the clogging time, tclog, to be the time
at which V first equals Vcrit (which happens at Z = 0) and the complete clogging
time, Tclog, to be the time at which V equals Vcrit at Z = 1 (or, equally, when
G = 1).

Before we solve the problem numerically, we calculate the clogging time ex-
plicitly, noting that it depends only on the behaviour of the filter at the inlet
X = Z = 0, where s = S = 1. Evaluating (30) at this point, we obtain

∂V
∂t

= −1, (36)

which we solve with (35) to find

V = V0 − t. (37)

1 Of course, this might generate a boundary layer at either the entrance or exit of the device.
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Thus, tclog is found by equating (37) to Vcrit, and therefore

tclog = V0 − Vcrit ≈ 0.95. (38)

Redimensionalising (38) and substituting for Vcrit, the dimensional clogging time
t̂clog is given by

t̂clog =
(V0 − 1 + (5/4− 2

√
2/3)π)β2

s l
3

8πkR2S2
0Vm

≈ 2.5 days. (39)

We note that the clogging time depends on the reaction rate, the properties of
the filter sheet, such as the radius of the pellets and inter-pellet distance, and the
inlet concentration of sulphur dioxide. In particular, for less contaminated flue gas,
where S0 = 5×10−3 molm−3, t̂clog ≈ 63 days. We also note that the clogging time
does not depend on the gas speed nor the dimensions of the filter, as previously
noted.

4 Numerical Results

We solve (28)–(35) numerically in MATLAB using an explicit Euler scheme and
Newton iterations with 800 grid points in both directions2. In figure 5(a), we show
a spatial profile of the sulphur dioxide concentration, S, along the channel for
different times using the parameters from (27). We see that, as time increases, a
propagating front forms, behind which S = 1. In figure 5(b), we show the corre-
sponding plot for the gas fraction V at the surface of the channel. We see that the
gas fraction decreases to its minimum value, Vcrit, first at the inlet of the filter,
and then until the sheet is clogged along the whole channel. In figure 5(c), we show
a temporal profile of the sulphur dioxide concentration at the outlet of the device.
Before t = tclog, the outlet concentration changes very little. After t = tclog, it
starts to increase more rapidly until it reaches S = 1 at t = Tclog. This is often
referred to as the “breakthrough curve” for S and is commonly used to assess the
performance of a filter (see, for example, [21]). In figure 5(d), we show a spatial
profile of the gas fraction at the outlet of the channel, V|Z=1, as a function of
depth into the filter, since this shows us the extent to which the available filter
has been used. We see that, while the porosity decreases rapidly near the channel
surface, it changes very little deeper into the sheets, suggesting that these portions
of the filter are not fully used. In figure 5(e), we show the temporal profile of the
position of the front G(t) behind which S = 1 and V = Vcrit. As predicted in
(38), tclog ≈ 0.95. For t > tclog, the filter progressively clogs along the channel,
decreasing its efficiency until the filter is completely clogged at Tclog = 5, approx-
imately five times longer than the clogging time. For the operating parameters
we have used, this corresponds to T̂clog ≈ 13days, whereas, for less contaminated
flue gas, where S0 = 5 × 10−3 molm−3, t̂clog ≈ 325 days. We note that the prop-
agation speed of the front is almost linear but slightly convex (G′′(t) > 0). This
is because, as the filter clogs, the part that is still operational is decreasing in
size, which speeds up the clogging in a positive-feedback mechanism. We further
elaborate on this, and provide mathematical insight, in Section 6, where we obtain
a relevant explicit asymptotic solution.

2 We note that, in our simulations, the numerical results have converged by 800 grid points.
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Fig. 5 Graphs of the numerical solution to (28)–(35) for (a) the spatial profile of S along the
channel for t = 0, 1, 2, 3, 4, 5 (complete clogging time), (b) the spatial profile of V at X = 0
along the channel for the same times, (c) the temporal profile of S at the outlet Z = 1, (d) the
spatial profile of V at Z = 1 across the filter sheet for the same times, and (e) the temporal
profile of the front G(t), where the dashed lines correspond to tclog and Tclog, respectively. In
all plots, β = 6.7, κ = 0.88,V0 = 0.98.

Following the approach in [3], we now vary the parameters of the model by
doubling or halving their values to determine their effect on the behaviour of the
device. We recall from (17) that the timescale of the problem is given by

timescale =
β2
s l

3

8πkR2S2
0Vm

, (40)
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which changes, in particular, with k, l, and S0. Thus, in order to explore the
behaviour of the solution as these (dimensional) parameters vary, we choose to
plot all the results on a fixed time axis

t̃ = t̂/t0, (41)

where t0 = 2.65 days, which comes from evaluating (40) using the parameters from
Table 1 (thus, t = t̃ in figure 5). This way, we are able to compare all solutions on
a common time axis that does not change regardless of which parameters we vary.
We note that, after rescaling time with (40), (30) becomes

∂V
∂t̃

= −αs2Θ(V − Vcrit), (42)

where α = 8πkt0R
2S2

0Vm/(β
2
s l

3) is the ratio of t0 to the liquid growth timescale
for the particular set of parameters under consideration; α = 1 in the “standard”
parameter case. In all figures that follow, we plot the outlet concentration S(1, t̃)
and the position of the front G(t̃) as functions of time to measure the performance
of the device. In particular, our measures for efficiency will be the value of the outlet
concentration and the complete clogging time of the filter. To aid ourselves in the
comparisons, we will also assume that we are given a pre-set outlet concentration
threshold, say, 10−3 molm−3, that should not be exceeded due to external control
requirements, which is often the case when filtering flue gas.

In figure 6, we vary the dimensionless parameter β. This can be thought of as
changing the half-width, d, of the filter channels, the speed, U , of the gas, or the
length, L, of the filter channels, since these dimensional parameters appear only in
the definition of β. As we increase β, the filter efficiency improves, since the outlet
concentration decreases, and the complete clogging time increases, extending the
lifetime of the filter. This reflects the fact that decreasing the width of the filter
channels or the speed of the gas reduces the flux of sulphur dioxide through the
filter, while increasing the length of the filter channel increases the residence time,
and hence the interaction between the sulphur dioxide and the filter material.
However, we note that, even though decreasing the channel width seems beneficial,
in practice, the shear on the channel walls increases and results in the need for a
higher pressure drop in order to maintain the same speed. Similarly, decreasing the
speed too much will slow down the industrial process, while increasing the length of
the filter channel will require more material. Thus, normally, there will be pre-set
minimum channel width and gas speed, and a maximum length of the filter channel.
Thus, fixing two of these, we appeal to our convention of a given pre-set outlet
concentration threshold, and we use our results to calculate the maximum gas
speed, the maximum channel width, or the minimum channel length (depending
on which ones we fix) in order not to exceed this threshold in the initial stage of the
device operation. For example, if we fix the channel width and length, we find that
the gas speed should not exceed 0.2m s−1 in order to keep the outlet concentration
below 10% of the inlet concentration, i.e., 10−3 molm−3, during the initial stage
of operation before the clogging front is formed. We see that the clogging time
does not change when we vary β (see (39)). This is because it depends only on
how fast the reaction proceeds at Z = 0 where S = 1. We also note that, if we
attribute variations in β to variations in L, we need to appropriately scale the
solution for G in figure 6(b) to reflect the change in the length of the channel,
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whereas figure 6(a) will remain the same. We show the corresponding plots of
the position of the clogging front when varying L in figure 7. The resulting curves
overlap each other, which is expected, since varying the length of the filter channel
does not affect the dynamics of the front but only the time it takes to reach the
outlet of the channel.

t̃

(a)

@
@
@
@
@R

S
| Z

=
1

Increasing β

t̃

(b)

@
@
@
@@R

G
Increasing β

Fig. 6 Graphs of (a) the temporal profile of S at the outlet Z = 1, and (b) the temporal
profile of the front G varying β = 3.35, 6.7, 13.4. Here, κ = 0.88,V0 = 0.98.

t̃

G

Fig. 7 Graph of the temporal profile of the front G varying L by changing β =3.35 (solid
green), 6.7 (dashed red), 13.4 (dotted black). The two asterisks denote the point of clogging
for each of the two first two curves, respectively. Here, κ = 0.88,V0 = 0.98.

Since κ depends linearly on k and S0, whereas α depends linearly on k and
quadratically on S0, we next explore varying κ and α in two different ways in or-
der to mimic altering k and S0. In figure 8, we present solutions in which we have
doubled or halved κ and α from their standard values in order to mimic varying
the reaction rate k. We see that decreasing κ increases the outlet concentration
of sulphur dioxide for early time and decreases the outlet concentration for later
times. We observe similar behaviour in [3], which arises due to the change in the
rate of clogging with time: initially, decreasing the reaction rate results in less
sulphur dioxide extracted at the outlet of the filter, i.e., an increase in the outlet
concentration. However, the lower rate of removal reduces the rate of liquid pro-
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duction, and hence clogging, which eventually decreases the outlet concentration.
We also note that decreasing κ always increases the complete clogging time, since
the reaction rate is decreased. The clogging time also changes in this case (cf.
(39)), since we are altering the reaction rate. We also see that, as we decrease the
reaction rate, the convexity of G(t) increases, which agrees with the observation
in [3].

t̃

(a)

HH
HHjS

| Z
=
1

Decreasing k

t̃

(b)

@
@
@
@
@R

G

Decreasing k

Fig. 8 Graphs of (a) the temporal profile of S at the outlet Z = 1, and (b) the temporal
profile of the front G varying (κ, α) = (0.44, 0.5), (0.88, 1), (1.76, 2). Here, β = 6.7,V0 = 0.98.

In figure 9, we present solutions in which we have doubled or halved κ while
multiplying α by 0.25 or 4, in order to explore the effect of changing the inlet
sulphur dioxide concentration, S0, on the performance of the device. We note that
we have scaled the solutions for S in figure 9(a) so that we can more clearly see
the effect of altering S0. Decreasing the sulphur dioxide concentration decreases
the outlet concentration and increases the lifetime of the filter as expected. We
note that halving the sulphur dioxide concentration quadruples the clogging time,
in agreement with (39), whereas the complete clogging time is almost tripled. This
suggests that the lifetime of the filter is sensitive to changes in the inlet concentra-
tion of sulphur dioxide, as also found in [3]. In addition, the speed of propagation
of the front decreases, as the concentration of sulphur dioxide is decreased, as
expected.

In figure 10, we simultaneously vary κ, V0, and α in order to explore changing
the inter-pellet distance l and thus the effect of varying how densely the catalytic
pellets are packed within the filter sheet. We see that increasing l increases the
outlet concentration for early times but decreases the outlet concentration for
later times, which is reminiscent of the behaviour we observed in figure 8 when we
decrease κ. This is because increasing l decreases the number of catalytic pellets in
the filter sheet, and thus reduces the available area for reaction. This has the effect
of decreasing the overall reaction rate, which can also be achieved by decreasing
κ. We also note that increasing l increases the clogging time and the complete
clogging time, since the pellets now are further apart. In particular, doubling the
inter-pellet distance increases the clogging time almost eight times (cf. (39)) and
triples the complete clogging time.

In figure 11, we simultaneously vary β and κ to show how varying the sheet
thickness H alters the behaviour of the filter. Decreasing H decreases the outlet
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Fig. 9 Graphs of (a) the temporal profile of S at the outlet Z = 1, and (b) the temporal
profile of the front G varying S0 by taking (κ, α) = (0.44, 0.25), (0.88, 1), (1.76, 4). Here, β =
6.7,V0 = 0.98.
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HHH
HHHj

G

Increasing l

Fig. 10 Graphs of (a) the temporal profile of S at the outlet Z = 1, and (b) the temporal profile
of the front G varying l by taking (κ,V0, α) = (0.11, 0.998, 0.125), (0.88, 0.98, 1), (7.04, 0.84, 8).
Here, β = 6.7.

sulphur dioxide concentration and increases the complete clogging time, but the
changes become smaller as H is continuously decreased. This suggests that there is
a saturation type of behaviour, where, beyond a certain point, decreasing H does
not have an effect on the system behaviour, as seen in [3]. In order to explore this
further, in figure 12, we show a plot of the complete clogging time as a function of
κ, keeping κβ2 constant so that this corresponds to varying H only. We see that
beyond κ ≈ 14, i.e., H ≈ 4mm, there is a negligible change (less than 0.1%) in
the clogging time, and, therefore, there is no benefit from making the filter sheet
thicker than this value. We note that we observe the same behaviour in [3], with
a prediction there of H = 2.2mm.

5 Optimal relationship between the gas speed and the inlet
concentration of sulphur dioxide

Finally, having observed a large variation in the results when altering the inlet
sulphur dioxide concentration in figure 9, it would be convenient to have a simple
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Fig. 11 Graphs of (a) the temporal profile of S at the outlet Z = 1, and (b) the temporal
profile of the front G varying H by taking (β, κ) = (13.4, 0.22), (6.7, 0.88), (3.35, 3.52). Here,
V0 = 0.98.
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Fig. 12 Graph of the complete clogging time as a function of κ (keeping κβ2 constant which
corresponds to varying H). Here, V0 = 0.98.

prediction for how the gas speed can be chosen in response to changing the inlet
concentration, so that the complete clogging time is the same. In order to do this,
we make use of the previous observation that filter sheets thicker than 4mm exhibit
the same behaviour. This means that, if we are given a sheet of this thickness, or
larger, for mathematical convenience we may assume that the sheet is infinite
in thickness without altering the resulting behaviour of the filter. We then scale
X = βX̃ to eliminate β from (28). In order to be able to compare results on the
same timescale, however, we again choose the timescale given by t0 in Section 4
and defined by (17). Similarly, since we want to vary the inlet concentration, we
need to rescale s appropriately, as in figure 9. Denoting the new inlet concentration
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by S?, we write (s, S) = (S0/S
?)(s̃, S̃). The governing equations become

∂S̃

∂Z
=

(
D
∂s̃

∂X̃

) ∣∣∣∣∣
X̃=0

, (43)

0 =
∂

∂X̃

(
D
∂s̃

∂X̃

)
− Bs̃2, (44)

∂V
∂t̃

= −s̃2Θ(V − Vcrit), (45)

with corresponding boundary and initial conditions (31)–(35). We see that the
solution depends on the single parameter

B =
8πkDsL

2R2S2
0

β2
sd2l3S?U2

. (46)

Thus, assuming the filter sheet is thick enough, if we increase the inlet concentra-
tion by a factor of n, we need to decrease the gas speed by a factor of

√
n so that

B remains the same, and thus we maintain the same efficiency and lifetime of the
device.

6 The limit β � 1 and κ � 1

To gain further insight into the behaviour of the system, we examine the limit
of thin filter channels (or slow gas flow) and thin filter sheets (or small reaction
rate), i.e., when β � 1 and κ� 1. Specifically, we consider the distinguished limit
β →∞ and κ→ 0 with βκ = λ = O(1). In this case, after expanding S, s, and V
in powers of κ, in the form

f ∼ f (0) + κf (1) + κ2f (2) + · · · as κ→ 0, (47)

we obtain an explicit solution for the leading-order contributions of S and V until
t = tclog, following the approach in [3]. Since κ � 1, the leading-order version of
(29) (dropping the superscripts) is

0 =
∂

∂X

(
D
∂s

∂X

)
. (48)

We integrate (48) and apply (32) to find

s = s(Z, t). (49)

We note that this also satisfies the leading-order version of (28), where β � 1.
The first-order versions of (28) and (29) are

∂S

∂Z
= λ

(
D
∂s(1)

∂X

) ∣∣∣∣∣
X=0

, (50)

0 =
∂

∂X

(
D
∂s(1)

∂X

)
− s2. (51)
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Multiplying (51) through by λ, integrating the result with respect to X from 0 to
1, and using (31), (32), and (50), we obtain a single ordinary differential equation
for S, namely

0 = − ∂S
∂Z
− λS2, (52)

which we solve alongside (30),

∂V
∂t

= −S2Θ(V − Vcrit), (53)

together with

S = 1 at Z = 0, (54)

V = V0 at t = 0. (55)

The solution reads

S =
1

1 + λZ
, V = V0 − t

(1 + λZ)2
, t < tclog. (56a, b)

We note that, using (56b), we recover the expression for tclog, given by (38) by
setting V = Vcrit and Z = 0.

For t ≥ tclog, there is a moving front at Z = G(t), behind which we have

S = 1, V = Vcrit, t ≥ tclog, Z ≤ G(t). (57)

Ahead of the front, we solve (52) and (53), together with the conditions

S = 1 at Z = G(t), (58)

V = V0 − tclog

(1 + λZ)2
at t = tclog, (59)

where (59) follows from (56). We find that the solution for t ≥ tclog and Z ≥ G(t)
is

S =
1

1 + λ(Z −G(t))
, V = V0 − tclog

(1 + λZ)2
−
∫ t

tclog

1

(1 + λ(Z −G(t′)))2
dt′.

(60)
In order to find G(t), we evaluate the expression for V in (60) at Z = G(t),

rearrange and use (57) and (38) to obtain the following non-linear Volterra integral
equation of the second kind for G(t):∫ t

tclog

1

(1 + λ(G(t)−G(t′)))2
dt′ =

(
V0 − 1 + (5/4− 2

√
2/3)π

)(
1− 1

(1 + λG(t))2

)
.

(61)
The advantage of (61) is that we have an implicit expression defining the front,

which we can manipulate to obtain further insight about the front profile, and in
particular its convexity. Differentiating (61) with respect to t (using Leibniz’ rule),
we obtain

1−
∫ t

tclog

2λG′(t)

(1 + λ(G(t)−G(t′)))3
dt′ =

2λtclogG
′(t)

(1 + λG(t))3
, (62)
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where we have used the definition of tclog (38). Since G(tclog) = 0, evaluating (62)
at t = tclog, we find that

G′(tclog) =
1

2λtclog
. (63)

Differentiating (62) with respect to t again and rearranging the resulting identity,
we obtain

G′′(t)

(∫ t

tclog

1

(1 + λ(G(t)−G(t′)))3
dt′ +

tclog

(1 + λG(t))3

)
=

G′(t)

(∫ t

tclog

3λG′(t)

(1 + λ(G(t)−G(t′)))4
dt′ +

3λtclogG
′(t)

(1 + λG(t))4
− 1

)
.

(64)

Evaluating (64) at t = tclog, using (63), and rearranging, we obtain

G′′(tclog) =
1

4λt2clog
> 0. (65)

This shows that, at least initially, the profile of the front is convex, which supports
our observations in Section 4.

In figure 13, we show a comparison between the numerical solution to (28)–(35)
for S, V, and G and the asymptotic solution, given by (56), (57), (60), and (61).
We see that there is excellent agreement in all plots, but we note that we had
to use a very large value for our asymptotic parameter β, namely, β = 103. We
find that the clogging and complete clogging times for this regime are tclog = 0.95
and Tclog = 2.45, respectively. In figure 13(d), we see that the speed of the front
Z = G(t) increases slightly with time. The profile nonetheless is close to linear,
which is reminiscent of the findings in [3], where linear profiles are observed for
large reaction rates and slight deviations appear when the reaction rate becomes
small.

We also use the solution to (61) to explore how the complete clogging time,
obtained by finding when G = 1, depends on the remaining parameters of the
system in the limit β → ∞ and κ → 0 with βκ = λ = O(1). In figure 14(a),
we show how the complete clogging time depends on λ on a log–log scale. This
can be thought of as changing the reaction rate, k, which is the most uncertain
parameter in the model. For an easier physical interpretation, we rescale dimen-
sionless time t with λ (i.e., t = λT , or in terms of the original dimensional time,
t̂ = (HL/dUS0Vm)T ) so that, when varying this parameter through k, the time
axis will remain unscaled, since k does not appear in the definition of this new
timescale. We see that, as λ → 0, Tclog → ∞, as expected, and Tclog monotoni-
cally decreases with λ. We also note that the decrease becomes very gradual after
about λ = 2, which suggests that the reaction rate does not dramatically affect
the complete clogging time beyond that point. In figure 14(b), we show how the
complete clogging time depends on the inter-pellet distance l by varying the initial
gas fraction V0 and λ simultaneously (keeping (1−V0)/λ constant). We note that
V0 ≥ 1− π/6 ≈ 0.47, which corresponds to the case when neighbouring catalytic
pellets touch each other. Again, since we have rescaled time with λ, varying l does
not have an effect on the timescale, since it does not appear in the definition of the
new timescale. We see that, as the inter-pellet distance increases (i.e., the initial
gas fraction increases), the complete clogging time increases, as expected, since
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Fig. 13 Graphs of the numerical solution (solid black) to (28)–(35) and the asymptotic solu-
tion (dashed red), given by (56), (57), (60), and (61), for (a) the spatial profile of S along the
channel for t = 0, 1.5, 2, 2.45 (complete clogging time), (b) the spatial profile of V at X = 0
along the channel for t = 0, 0.5, 1, 1.5, 2, 2.45, (c) the temporal profile of S at the outlet Z = 1,
and (d) the temporal profile of the front G(t). In all plots, β = 103, λ = 1,V0 = 0.98. We note
that there are fewer times depicted on figure 13(a) than on figure 13(b), since the solution for
S is static until t = tclog, as evident from (56) and figure 13(c).

the pellets are farther apart. We observe an approximately slow linear increase in
the clogging time until about V0 = 0.95, and a rapid increase afterwards.

In both figure 14(a) and (b), we see approximately linear profiles (in the log–
log scale) for λ � 1 and 1 − V0 � 1, respectively, which is indicative of power-
law dependence of the complete clogging time on these parameters. In order to
explore this further, we take the limit λ → 0 in (61) (remembering to rescale t
with λ so that we do not alter the timescale when changing k and l, as previously
mentioned), expand both sides to first order in λ, and differentiate the result to
obtain a differential equation for G(t), namely,

G′(t) =
1

2λt
. (66)

Applying G = 0 at t = tclog/λ (after rescaling time), we obtain

G(t) =
1

2λ
log (λt/tclog). (67)
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Since, by definition, G = 1 at t = Tclog, we find that

Tclog ∼
tclog exp (2λ)

λ
∼ tclog

λ
as λ→ 0. (68a, b)

In figure 14(a), we show the asymptotic result (68) with and without the expo-
nential correction, and we see excellent agreement with the numerical solution.

Returning to the limit 1−V0 � 1, we recall that, when varying the inter-pellet
distance l, we do so by keeping (1−V0)/λ = 0.02 constant (using the parameters
from figure 13). Thus, the limit of small 1− V0 corresponds to small λ, which we
have already considered. Therefore, to obtain the corresponding asymptotic plots
for small 1−V0 in figure 14(b), we plot (68) in terms of 1−V0 rather than λ, noting
that there is an additional V0 inside the definition of tclog (38). In particular,

Tclog ∼
0.02(V0 − Vcrit) exp (100(1− V0))

1− V0
∼ 0.02(1− Vcrit)

1− V0
as 1− V0 → 0.

(69a, b)
Again, we see excellent agreement between the asymptotic results and the numer-
ical solution.

λ

(a)

T
c
lo
g

1− V0

(b)

T
c
lo
g

Fig. 14 Log–log plots of the complete clogging time, Tclog, as a function of (a) λ with V0 =

0.98, and (b) 1−V0 keeping (1−V0)/λ constant which corresponds to varying l. The red dashed
lines denote the asymptotic approximations (68)(b) and (69)(b), respectively, and the green
dotted lines denote the asymptotic approximations with the exponential correction (68)(a)
and (69)(a), respectively.

7 Comparison with the simple model from [3]

We now explicitly compare the results of our model with our simple model pre-
sented in [3]. This model applies to a rectangular geometry, where, instead of
catalytic pellets, the filter sheet consists of parallel catalyst channels, as shown in
figure 1. Thus, as the reaction proceeds, a liquid layer of sulphuric acid forms along
the walls of each of the catalyst channels. When the liquid completely blocks an
entrance to a particular channel, the filter is assumed to stop working (i.e., there
is no more uptake of sulphur dioxide) at that location. For ease of comparison, we



A model for the lifetime of a reactive filter 23
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Fig. 15 Schematic of a filter with rectangular geometry.

present the equations from [3] after relabelling the variables and parameters in the
equivalent form to (28)–(35). In particular, the dimensionless parameters β and κ
are identical to their counterparts in [3], where we note that the grouping 4πR2/l3,
which appears in the definition of κ, represents the ratio of catalyst surface area
to available volume, and the corresponding quantity in the simplified model from
[3] is equal to 1/W , where W is half of the height of the catalyst channels. To aid
the comparison, we introduce the gas thickness, hg instead of the liquid thickness,
h, and we have rescaled time to remove any numerical pre-factors in (72). Finally,
in order to compare the two models, we need to take a particular distinguished
limit of the model from [3] that corresponds to our model (28)–(35). This is a sim-
plified sublimit of the model presented in [3] in which the concentration of sulphur
dioxide does not change across the sulphuric acid layers; it is derived by taking
R → 0,B2 →∞ with RB2 = O(1), and B3 → 0 in the original nomenclature. We
obtain

∂S

∂Z
= χ0β

(
hg

∂s

∂X

) ∣∣∣∣∣
X=0

, (70)

0 =
∂

∂X

(
hg

∂s

∂X

)
− κs2, (71)

∂hg
∂t

= −s2Θ(hg), (72)

subject to

s = S at X = 0, (73)
∂s

∂X
= 0 at X = 1, (74)

s = S = 1 at Z = 0, (75)
s = S at Z = 1, (76)
hg = 1 at t = 0, (77)
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where β and κ are as defined in (27), hg denotes the thickness of the gas phase
above the liquid layer of sulphuric acid and can be identified with V from our
model, and χ0 is the initial gas fraction in the filter, which, in the rectangular
geometry shown in figure 15, corresponds to the ratio of the height of a catalyst
channel to the distance between the bottom of the catalyst channel and the top of
the adjacent catalyst sheet layer. For the purposes of our comparison, we identify
χ0 with V0. We again note that the main difference between our model and the
simplified version of the model from [3] is that the “effective diffusivity” in the
simplified model is linear with the gas fraction, hg. We also observe that, in one of
the limits considered in [3], where sulphur dioxide concentration is allowed to vary
across the microscopic liquid layers in the catalyst channels, a linear profile of the
clogging front with time is recovered in contrast to the convex shape we obtained
here.

In figure 16, we show plots of the temporal profiles of the outlet sulphur diox-
ide concentration and the position of the clogging front comparing our model
and the simplified version of the model from [3]. We see that both models give ap-
proximately identical behaviour until the clogging time. The qualitative behaviour
afterwards is the same for both models, but there is a small quantitative difference
in the complete clogging time, where the model from [3] predicts a 10% increase in
the complete clogging time for the operating parameters we have used. This can
be explained by the fact that the model (70)–(77) uses an effective diffusivity that
is linear with the gas fraction and thus larger in magnitude than the convex diffu-
sivity depending on V for our model shown in figure 4. This, however, shows that
a simplified model for the catalytic filter is appropriate to capture the qualitative
behaviour of the device and be reasonably close to the quantitative predictions
from the more rigorous homogenised model presented in this paper.
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Fig. 16 Graphs of (a) the temporal profile of S at the outlet Z = 1, and (b) the temporal
profile of the front G obtained from solving our model (solid black) and the model from [3]
(dashed black). Here, β = 6.7, κ = 0.88,V0 = 0.98.

8 Conclusions

In this paper, we presented a model for a reactive filter that removes sulphur
dioxide from flue gas through a chemical reaction producing liquid sulphuric acid.
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We used the homogenised model derived in [18] and solved it until the filter be-
comes completely clogged with liquid. To achieve this, we obtained the effective
diffusivity of sulphur dioxide in the porous filter sheet as a function of the gas
fraction, until there is no single continuous gaseous pathway from the channel into
the sheet. We found that the gas fraction in the filter sheet at this point is ap-
proximately 3%. After that, a continuous layer of liquid forms in the filter sheet
at the channel surface, and the transport of sulphur dioxide is greatly reduced,
since its diffusivity in the liquid is much smaller than the diffusivity in the gas,
and the filter becomes inefficient. We defined the clogging time of the filter to be
the first time when clogging occurs (which happens in the filter sheet at the inlet)
and introduced a propagating clogging front along the filter channel, behind which
the sulphur dioxide concentration is given by its inlet value, and the gas fraction
corresponds to complete clogging. We measured the efficiency of the device by con-
sidering the outlet concentration of sulphur dioxide and the lifetime of the filter,
i.e., the complete clogging time (that is, the time at which the whole surface of
the filter sheet is completely saturated with liquid sulphuric acid).

We then solved the full problem numerically and observed that, under normal
operating conditions, the time until complete clogging of the filter was almost four
times longer than the time to first clogging. Looking at the gas fraction across the
thickness of the filter sheet, we found that it decreased very little near the back of
the filter, which suggested that the filter clogged only near the channel surface. We
also found that the clogging front speed increased a little with time, which agrees
with the results in [3], where a simple model for a reactive filter is presented.

We varied key dimensionless and dimensional parameters and explored their
effect on the device performance. We compared the results and the efficiency of the
filter in different parameter regimes by looking at both the outlet concentration
of sulphur dioxide and the complete clogging time. We found that, as expected,
decreasing the channel width or the speed of the gas decreases the outlet concen-
tration and increases the complete clogging time. However, in practice, this would
mean increasing the pressure drop across the filter, or slowing the process alto-
gether, which might be costly to a company. Thus, we assume a given threshold
outlet concentration that cannot be exceeded due to external requirements, and
then use our results, fixing the channel width, for example, to find the maximum
flow speed of the gas in order to achieve this in the initial stage of operation (or,
equally, fixing the speed, we can find the maximum channel width of the filter).
For example, using the normal operating parameters, but varying the speed, we
find that the gas can flow at a maximum speed of approximately 0.2m s−1 in
order not to exceed an outlet concentration of 10% of the inlet value. We also
varied the length of the filter and observed that this increased the efficiency of
the filter, as expected, by decreasing the outlet concentration and increasing the
complete clogging time of the device. We found that decreasing the reaction rate
increased the outlet concentration to begin with but then decreased it for later
times, and increased the complete clogging time, as expected. We also observed
that the smaller the reaction rate, the higher the convexity of the graph of the
position of the clogging front with time was, indicating faster clogging closer to the
time of complete clogging. We found that the behaviour of the filter is sensitive to
the changes in the inlet sulphur dioxide concentration. In particular, halving the
outlet concentration resulted in an almost tripled complete clogging time. This sug-
gests that it would be beneficial to have filters tailored and optimised for specific
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concentration ranges, rather than using the same filter for varying inlet concentra-
tions. We also found that increasing the inter-pellet distance increased the outlet
concentration to begin with but then decreased it in the late stage of the device
operation, and substantially increased the complete clogging time. In particular,
doubling the inter-pellet distance increased the complete clogging time by a factor
of eight and increased the outlet concentration initially by almost three times.
This means that placing the catalytic pellets farther apart will increase the time
of the filter operation but at a higher outlet concentration, which is maintained for
a longer time compared to the case of small inter-pellet distance. We also varied
the thickness of the filter sheet and found that increasing the thickness beyond
4mm had no effect on the behaviour of the filter. We obtained similar results in
[3] for a simpler filter design made of catalytic channels rather than pellets. We
also explored the relationship between the gas speed and the inlet sulphur dioxide
concentration while keeping the behaviour of the filter the same as a way of control
that can be applied when using various inlet concentrations of sulphur dioxide. For
a sufficiently thick filter sheet (such as 4mm as above), this relationship can be
found by considering a single dimensionless number in the governing equations,
which revealed that increasing the inlet concentration by a given factor, n, may
be balanced by decreasing the gas speed by

√
n.

We were able to obtain an asymptotic reduction of the model assuming that
the filter channels were thin (or the gas speed was slow) and the filter sheets
were thin (or the reaction rate was small). We derived an explicit solution for
the sulphur dioxide concentration in the filter channel, which was static until the
clogging time, and the gas fraction in the filter sheet. A travelling-front solution
was found after the clogging time, in which the position of the clogging front was
given by numerically solving a Volterra integral equation. We also explored the
effect of changing the reaction rate and the inter-pellet distance on the complete
clogging time and found that increasing the reaction rate or decreasing the inter-
pellet distance decreased the complete clogging time, where the decrease became
very slow as the parameters were continuously changed.

We also compared the results of our model to those of a simplified version of
the model presented in [3], which represents the filter as an array of rectangular
catalyst channels rather than pellets. In the relevant limit, the main difference be-
tween the two models was the functional form of the effective diffusivity, which was
linear in the simplified model and a convex non-linear function in the homogenised
model. Both models agreed on the initial behaviour of the filter, and the simplified
model predicted a 10% increase in the complete clogging time of the filter.

There are multiple ways our model can be refined. When finding the effective
diffusivity, we assumed that, once two neighbouring liquid layers touched, capped
spheres of liquid formed around the pellets until the continuous gaseous pathway
for sulphur dioxide was broken up. In practice, as soon as such layers touch, there
will be an immediate change in the topology of the liquid phase that would result
in a more complicated convex shape that minimises the surface energy. Thus, a
more careful examination of this phenomenon will be useful in evaluating the pre-
cise effective diffusivity, even though we anticipate little quantitative or qualitative
changes in the diffusivity profile due to these local effects. In addition, when intro-
ducing the clogging front, we ignored the diffusion of sulphur dioxide through the
macroscopic liquid layer that forms along the surface of the filter sheet, since its
rate is very slow compared to that in the gas. In a more detailed model, we could
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capture this effect by explicitly tracking the diffusion of sulphur dioxide through
that layer. We showed a comparison between our results and the results from [3]
by considering the model from [3] in the limit studied here. An alternative com-
parison would be to consider our homogenised model in the limit of [3], in which
the sulphur dioxide concentration varies across the liquid layers. In our model, we
assumed a one-step chemical reaction, but in reality there are multiple interme-
diate steps. Incorporating these in the chemical kinetics will improve the model’s
predictive power and will allow for a more accurate measurement of the chemical
rates, which will be known for each reaction. Another useful modification to our
model will be adding the effect of liquid drainage from the filter, which affects the
rate at which liquid is accumulated in the filter sheet. A starting point to achieve
this would be to consider a filter composed of hydrophilic fibres and pellets, which
will facilitate transport within the filter (see, for example, [16]). Finally, sulphuric
acid is hygroscopic, i.e., it absorbs moisture form the surroundings. Modelling
this effect (see, for example, [17]) is important, as absorption of water is another
clogging mechanism that will affect the performance of the filter.

Our models provide useful insight into behaviour of reactive filters and into
optimising their performance, enabling the reduction of sulphur dioxide released
into the atmosphere.
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