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Scaling-up of filtration systems in the pharmaceutical industry to provide the correct filtration capacity is
a complex process. When several filters are used in parallel, the pressure and flow distribution within the
system can be modeled using well-established constitutive laws to a high degree of accuracy, as shown in
this paper. By combining the model with experimental fouling data, it is also possible to accurately
predict the flow and pressure distribution during an entire filtration run. A process is discussed that uses
this model to determine how the capacity of a filtration system can be accurately predicted using a
minimal set of measurements.

� 2016 Published by Elsevier B.V.
1. Introduction

Scaling-up of filtration processes from R&D to production level
in the pharmaceutical industry is a complex undertaking with
strong implications on the profitability of the corresponding drug
development project [1,2]. A key challenge lies in providing the
appropriate filtration capacity for production-level batch sizes
based on laboratory or testing-plant scale measurements [3]. This
can, for example, be achieved by using dimensional analysis to
scale-up filters used in the laboratory-scale process [4] or by using
several filters of standardized size in parallel [5]. When using filters
in parallel, in order to accurately predict the capacity of the entire
system it is crucial to understand how the different filters in the
system affect each other, because the flow and pressure distribu-
tion within the system will not be homogeneous. The individual
operating conditions of a given filter, such as the pressure differ-
ence across it and its resistance due to clogging, depend not only
on conditions imposed from the outside but also on factors such
as the filter’s position within the system and the resistances of
the other filters.

In order to be able to make accurate predictions about a scaled-
up system, it is necessary to predict the pressure distribution
within a given system of parallel filters. This becomes complicated
as the filters clog at different rates during the filtration run due to
the inhomogeneous pressure distribution within the system,
which in turn changes the pressure distribution and vice versa.

In this paper, we derive a mathematical model for calculating
the pressure distribution within a scaled-up system composed of
a set of depth filters connected in parallel, termed a multi-capsule
depth filter. The model is validated using experimental data and
used to predict scale-up behavior.

A general approach when considering filter clogging in scaling-
up a device is to model the individual membrane fouling using
Hermia’s laws [6] as in [3,7], which has the advantage of giving
insights into the underlying fouling mechanisms. However, this
can be a cause for errors if the model’s predictions are not accurate
or add complexity if several mechanisms have to be considered to
model the fouling accurately [8,9]. Here we describe how to com-
bine experimental data from the clogging of a single capsule with
our model to accurately predict the pressure distribution within a
multi-capsule depth filter during an entire filtration run. Our
method has the advantage of not requiring knowledge about the
underlying clogging mechanisms since all relevant information is
provided by the experimental data.
1.1. Multi-capsule depth filtration

By depth filtration we denote the filtration process where the
feed flows into and not along the membrane, commonly described
as a normal flow or dead-end configuration, and the filtrate is
deposited within the entire depth of the filter and not only at the
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surface [10]. In the pharmaceutical industry, depth filtration is typ-
ically used to clarify process streams before a final sterile filtration
[11,12]. In order to process the feed from industrial-sized bioreac-
tors (>2000 L), a depth filter with a sufficiently large surface area is
required, which is in general achieved by using several depth filters
of some standardized size in parallel [13]. Typical depth filters are
housed in disc-shaped capsules, which in turn are then connected
in parallel and stacked on top of each other, principally to reduce
the footprint of the filtration system, though other operational con-
siderations may also play a role. It is such a stack of depth-filter
capsules that we refer to as a multi-capsule depth filter.

The inlet to the multi-capsule depth filter is usually located at
the bottom of the device, while the outlet can be positioned either
at the bottom or the top. If the outlet is located at the bottom, the
feed flows upwards while the filtrate flows downwards, hence it is
called a counter-current configuration. If the outlet is located at the
top, both the filtrate and feed flow upwards and it is called a
co-current configuration.

Given that full-scale experiments on multi-capsule depth filters
are very costly, the dimensions of production-level multi-capsule
depth filters must be calculated using safety margins. By compar-
ing the predictions from our model with experimental data, we
will show how our model can describe the pressure distribution
within a multi-capsule depth filter to determine the used capacity
of a depth filter and thus significantly reduce the required safety
margins. Moreover, we will see that the parameters from our
model can be used to predict the pressure distribution within
multi-capsule depth filters with an arbitrary number of capsules.
We will also show how using clogging data from experiments to
simulate filtration runs leads to high-accuracy predictions.
1 The kinematic viscosity m is m � 10�6 m2=s, the length scale between the filter and
the filter capsule is of order 10�2 m, the velocity is of order 10�3 m=s and the aspec
ratio between for the length is of order 10�2.
2. Mathematical model

We consider schematic set-ups for the co-current and counter-
current configuration with N capsules as in Fig. 1. The inlets and
outlets of the capsules are connected in series, hence at a given
inlet the fluid can either pass through the depth filter or move to
the next capsule. Once the fluid has passed through a filter, it flows
through the connecting pipes to the outlet of the entire device.

The pressure at the inlet is denoted by Pin and at the outlet by
Pout. For capsule i, 1 6 i 6 N, we denote the pressure at the inlet
by Pi;in and at the outlet by Pi;out. The flux through capsule i is
denoted by Qi, and the total flux through the system by Q. We
denote the height difference of capsule i relative to the inlet by hi.

2.1. Constitutive relationships between fluid flow and pressure
differences

We assume that the pressure in the system is composed of a
hydrostatic and hydrodynamic part only. The inlet and outlet
pressures Pi;in and Pi;out can be reduced to their hydrodynamic part
only by setting

ePi;in ¼ Pi;in � qghi and ePi;out ¼ Pi;out � qghi; ð1Þ
where q denotes the density of the liquid and g the gravitational
acceleration. In the following, we need only work with the hydrody-

namic pressures, eP , even if the capsules are stacked on top of each
other or are located at different heights; we will drop the tilde in
order to facilitate reading.

For practical filter operating regimes, the constitutive relation
between the pressure difference, DPi, across and the flow Qi

through the ith filter is approximated well by Darcy’s law

Qi ¼ � kiAi

gLi
DPi; ð2Þ
where Ai denotes the surface area, ki the permeability and Li the
depth of the filter, and g denotes the dynamic viscosity of the liquid.
We will abbreviate (2) by Qi ¼ aiDPi, where ai ¼ �kiAi=gLi is the
Darcy parameter of capsule i.

We assume laminar flow in the connecting pipes between two
capsules as the relevant Reynolds number for the flow is of order
10�1 (using data1), hence, motivated by Poiseuille flow, we use a
constitutive relation of the form

Q ¼ rDP; ð3Þ
where r depends on characteristics of the connecting pipes only. We
will denote the parameter r of the connecting pipes between
capsule i and iþ 1 by ri;in at the inlet and by ri;out at the outlet.
The resistance between the inlet and the first capsule is denoted
by rin and the resistance between the outlet and the connecting
capsule by rout.

From an operational perspective, we require that the fluid
occupies the entire device so that the fluid does not cavitate. Hence
the pressures at the inlet and outlet must equal at least the hydro-
static pressure of the fluid in the device. For both set-ups we
therefore require

Pin P qg �max h1; . . . ;hNf g ð4Þ
and for the counter-current configuration, we also require the same
inequality to hold for Pout.

2.2. Derivation of the system of linear equations describing the
pressure distribution and fluid flow within the multi-capsule depth
filter

Darcy’s law (2) and the Poiseuille relation (3) can be combined
to form a system of linear equations for the inlet and outlet pres-
sures Pi;in and Pi;out, 1 6 i 6 N; knowing these will also allow us
to calculate the flow distribution. The governing equations for
the inlets of the capsules are then given for i ¼ 1; . . . ;N � 1 by

ri;in Pi;in � Piþ1;in
� � ¼ XN

l¼iþ1

Ql ð5Þ

and

rin Pin � P1;in
� � ¼ Q ð6Þ

for the inlet of the device.
Regarding the governing equations for the outlets of the cap-

sules, we must distinguish between co-current and counter-
current configuration. In the co-current configuration we have for
i ¼ 1; . . . ;N � 1

ri;out Pi;out � Piþ1;out
� � ¼ Xi

l¼1

Ql ð7Þ

and

rout PN;out � Poutð Þ ¼ Q ð8Þ
at the outlet. For the counter-current configuration we have for
i ¼ 1; . . . ;N � 1

ri;out Piþ1;out � Pi;out
� � ¼ XN

l¼iþ1

Ql ð9Þ

and

rout P1;out � Poutð Þ ¼ Q ð10Þ
t



Fig. 1. Schematic of a multi-capsule depth filter in co-current (left) and counter-current (right) configuration. Each capsule is represented by a horizontal line, with the
shaded rectangles representing the depth filters. The fluid enters the device at the inlet, marked by Pin, and leaves it at the outlet, marked by Pout.
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at the outlet. Darcy’s law (2) reads as

ai Pi;in � Pi;out
� � ¼ Qi ð11Þ

for i ¼ 1; . . . ;N and we have conservation of flux

XN
i¼1

Qi ¼ Q: ð12Þ

We can use (11) to replace each Qi in the set of Eqs. (5)–(10), to give
2N equations for 2N þ 2 unknowns. Specifying two of the three
parameters Pout, Pin or Q via a combination of Eqs. (11) and (12)
results in a linear system with 2N equations for 2N unknowns for
which a unique solution exists (see Appendix A for details).

2.3. Simulating an entire filtration run

During a filtration run, fouling will change the permeability of
the capsules. Given that the flow distribution is in general non-
uniform within a multi-capsule depth filter, the permeabilities of
the different capsules will decrease at different rates during the fil-
tration run, which in return changes the flow and pressure distri-
bution. To model this evolution over time, we assume that the
permeability ki of capsule i, and thus its Darcy parameter ai, at a
given time t depend only on the throughput Vt

i , that is, the total
volume of fluid processed by capsule i up to time t, and that this
relationship is sufficiently smooth.

To simulate the filtration run, we use an explicit Euler-scheme
with constant (small) timestep Dt. At each time t, we compute
the pressure distribution by solving the linear system described
by Eqs. (5)–(10) with corresponding Darcy constants at

1; . . . ;at
N .

The total throughput VtþDt
i through capsule i at time t þ Dt is then

computed by

VtþDt
i ¼ Vt

i þ Dt at
i Pi;out � Pi;in
� �

: ð13Þ

The Darcy parameter of capsule i at time t þ Dt; atþDt
i , can then be

computed by

atþDt
i ¼ aðVtþDt

i Þ; ð14Þ
where the a–V relationship is given either by some function in
closed form or using experimental data as described in Section 3.2.1.
We repeat the entire process until some final condition, for exam-
ple, Pin � Pout exceeds some threshold value, is satisfied.
3. Validation of the mathematical model

In this section, we validate our theory by comparing the predic-
tions of our mathematical model with measurements taken by
Collins et al. [5]. Here, clean-water flow tests that do not change
the permeability were first conducted to measure the flow and
pressure distribution within a multi-capsule depth filter. Following
this, full filtration runs with dissolved yeast were conducted to
simulate a filtration run with a mammalian cell culture.

3.1. Comparison with clean-water flow tests

In a clean-water flow test, water is supplied at a constant flux as
a feed, thus no clogging occurs and so the flow and pressure distri-
bution are constant (after a short start-up transition). In the first
set of experiments in [5], clean-water flow tests were conducted
with multi-capsule depth filters with five and ten capsules, each
in co-current and counter-current configuration. Regarding the
experiments with five capsules, the authors measured the pressure
at the inlet side of the filters of each capsule and the outlet side of
capsules 1 and 5. For the experiments with ten capsules, the
authors measured the pressure at the inlet side of the filters 1–5,
7, 9, 10 and the outlet side of capsules 1 and 10. The measurements
in each experiment were taken for fluxes of 100, 200 and 300 litres
per square meter per hour (LMH).

These experimental values were used to determine the param-
eters a; rin and rout by assuming the values were the same for each
capsule as described in Appendix B. The results for the co-current
and counter-current configuration with five capsules are shown in
Fig. 2a and the corresponding results for ten capsules are shown in
Fig. 2b. As the measured pressures were all around 1 bar, we plot
the absolute errors in pressure between the measurements and
our predictions. In the figures, the absolute error for the outlet
represents the absolute error between the prediction and the mea-
surement for the outlet of the bottom capsule (co-current configu-
ration) or for the outlet of the top capsule (counter-current
configuration). We do not plot the error for capsule 1 and the outlet
of the system, as their values were used as boundary conditions.



Fig. 2. Validating the model. We plot the average error between the predicted and measured pressure at each capsule based on clean-water flow tests with 100, 200 and
300 LMH.
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The model accurately fits the data with absolute errors being
generally in the range of 10�3–10�2 bar.

3.2. Comparison with an entire filtration run

In the second set of the experiments, two ten-capsule depth fil-
ters, one in co-current and one in counter-current configuration,
were challenged with a mixture of homogenized yeast and whole
yeast at 300 LMH until a threshold pressure was attained, in order
to simulate a filtration run with a mammalian cell culture. In this
instance, we expect the depth filters to clog at different rates due
to the difference in fluxes and thus for their permeabilities to
change at different rates as well, which in turn changes the
pressure distribution within the multi-capsule depth filter.

In order to precisely predict the pressure distribution within the
multi-capsule depth filter during the filtration run, we have to
quantify how the Darcy parameter a changes with throughput V.
We first discuss how to obtain the a–V relationship and then use
this to compare our predictions against the measurements.

3.2.1. Computing change in permeability due to clogging
To obtain experimental data on the change in permeability

due to clogging, a single capsule was challenged with the same
Fig. 3. Measurement and interpolation
mixture of homogenized yeast and whole yeast used for the
filtration run at 300 LMH while the differential pressure DPðVÞ
across the capsule, depending on the throughput V, was recorded,
see Fig. 3a.

As we assume that the permeability k of a capsule only
depends on the throughput V, i.e. k ¼ kðVÞ, we use Darcy’s
law (2) to infer

aðVÞ ¼ Q
DPðVÞ ð15Þ

where aðVÞ ¼ �kðVÞA=gL is the Darcy parameter.
The recorded DP–V data for an experiment at constant flux can

thus be used to determine aðVÞ, the result for the relative Darcy
parameter aðVÞ=að0Þ is shown in Fig. 3b.

As the measurements contain outliers, we apply a smoothing
method where we require consecutive measurements to deviate
by at most ten percent. This smoothing is depicted by the line in
Fig. 3b; the experimental results are depicted by dots. As the mea-
surements were stopped once the threshold differential pressure of
1 bar was surpassed, we extended the function by assuming an
exponential decay law. We can use the resulting a–V relationship
as a function in numerical methods by linearly interpolating
between consecutive measurements.
results for the Darcy parameter.
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3.2.2. Comparison of predictions and measurements
We combined our model with the clogging model described in

Section 3.2.1 and compared our predicted results for the pressures
with those measured at the inlet of the capsules 1–5, 7–10 and at
the outlet of the top and bottom capsule, both for the co-current
and counter-current configuration. In order to assess the quality
of our predictions, we plot for a given throughput the maximum
absolute error, that is, the maximum absolute error between any
of the predicted and measured pressures and the mean error. This
is defined as the mean over all absolute errors between the
predicted and measured pressures and is very similar to the
median error.

The results of the simulation for the counter-current configura-
tion are depicted in Fig. 4. The predicted pressure rises gradually
at the beginning before rising rapidly towards the end. The model
accurately predicts the measured pressures; the spikes in the
error measurements are due to the spikes in the clogging data
(Fig. 3a).

The results for the co-current configuration (Fig. 5) show a
similar gradual rise at the beginning before the rapid rise at the
end; the maximum and mean error for the predictions are better
than those for the counter-current configuration.
Fig. 4. Predicted pressures at the measuring point and the corresponding prediction err

Fig. 5. Predicted pressures at the measuring point and the corresponding prediction err
4. Insights and predictions from the model

In this section, we will show that our model can be used to
obtain insights about the flow distribution within a multi-
capsule depth filter during a filtration run and how the perfor-
mance of such a multi-capsule depth filter can be predicted using
data from only a few experiments.

4.1. Calculating the normalized differential pressure

An important concept for multi-capsule depth filters is the nor-
malized differential pressure (NDP), which is computed by dividing
the pressure difference across a given capsule by the pressure dif-
ference across the first capsule from the bottom. In the case where
the permeability of each capsule is the same, it indicates the vol-
ume of fluid that is processed by each capsule relative to the first
capsule. An NDP close to 1 for all capsules is desirable, signifying
a homogeneous usage of the processing capacity.

To compute the NDP, Collins et al. [5] used a linear interpolation
between the pressure at the bottom and top outlet of the stack in
order to estimate the pressure at the outlet of the other capsules.
Thus their calculated values of the NDP differ from the actual
ors. We display the maximum absolute and the mean error only for greater clarity.

ors. We display the maximum absolute and the mean error only for greater clarity.



Fig. 6. Comparison of the predicted normalized differential pressure (NDP) based
on a linear interpolation and our model for ten capsules in counter-current
configuration.
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NDP we obtain based on our model, as can be seen in Fig. 6. We use
the instance of ten capsules in a counter-current configuration for
illustration, although the results in other configurations are
similar.

Since the pressure differences between the outlets are uniform,
the linear interpolation tends to overestimate the NDP for capsules
further up in the stack.

4.2. Predicting the NDP for a multi-capsule depth filter with an
arbitrary number of capsules

The predicted NDP in our mathematical model depends only on
the parameters for the pressure loss due to friction in the pipe, ri;in,
ri;out, and the Darcy parameters ai of the capsules. If the same cap-
sules are used within the stack, we need only the three parameters
rin, rout and a to predict the pressure distribution within a multi-
capsule depth filter of any given number of capsules. Furthermore,
if we also know the clogging behavior of a single capsule, we can
also predict the performance of a multi-capsule depth filter during
an entire filtration run to with high accuracy.

As a strategy to precisely predict the filtration capacity of a
multi-capsule depth filter, one would conduct clean water flow
tests with a multi-capsule depth filter with two capsules to obtain
the parameters rin, rout and a. To account for the difference in
Fig. 7. Comparison of the predicted normalized differential pressure (NDP) across
the capsules against the measured NDP in the experiments for a ten-capsule co-
current depth filter.
viscosity between the feed used in the experiment and water, the
parameters rin, rout and a would have to be multiplied by the ratio
of the water viscosity and the feed viscosity, lwater=lfeed. Finally,
one can account for modeling the change in permeability due to
clogging as described in Section 3.2.1.

To illustrate the idea of predicting the capacity of a multi-
capsule depth filter based on the parameters rin, rout and a, we used
the values obtained by the measurements for the five-capsule
depth filters to predict the NDP for ten-capsule depth filters. The
results for the co-current configuration are shown in Fig. 7 and
show a very good agreement, the results for the counter-current
configuration are similar but not shown here.
5. Conclusion

In this paper, we derived a system of linear equations describing
the flow and pressure distribution within a multi-capsule depth
filter based on Darcy’s law and the assumption of laminar flow.
The corresponding system is dependent on three parameters,
corresponding to measures of the resistance of the filter and
the resistance in the pipes before and after the filter, which can
be inferred from a clean-water flow test in any given multi-
capsule depth filter and can then be used to predict the flow and
pressure distribution for multi-capsule depth filters with any given
number of capsules in a clean-water flow test. The predictions pre-
sented in this paper are in good accordance with experimental
data.

We then combined this model with fouling data from experi-
ments to derive a numerical method that simulates an entire
filtration run. Again, the predictions were in good accordance with
the experimental data.

The methods outlined in this paper can be applied to a wide
range of scaling-up problems in dead-end filtration systems where
filters are used in parallel but can also be extended to cope with
filters being connected in series. The method of combining
experimental measurements with a model can also be adapted to
any filtration system with multiple connected filters to describe
their performance during an entire filtration run, provided the
key assumption, that the permeability of a given capsule only
depends on its throughput, is satisfied. This method has the advan-
tage of delivering highly accurate results while freeing the
experimentalist of having to approximate the observed clogging
behavior using models.

A patent application concerning the methods described in this
paper has been filed [14].
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Appendix A. Existence and uniqueness of the solution

To prove that the solution to the model for N capsules, intro-
duced in Section 2.2, exists and is unique, it is sufficient to work
with the hydrodynamic part only. Motivated by their physical
meaning, one then continues to assume that all parameters ri;in,
ri;out and ai are non-zero and have the same sign.

To show uniqueness, assume that the model has two solutions

Q a ¼ ðQa
1; . . . ;Q

a
NÞ and Q b ¼ ðQb

1; . . . ;Q
b
NÞ and then show that the

non-zero residual flux Q a � Q b violates the assumption that all
parameters ri;in, ri;out and ai are non-zero and have the same sign.
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To prove existence, note that the dimension of the correspond-
ing matrix of the linear system is 2N þ 2, the dimension of the
image is 2N þ 2, and thus, as the dimension of the kernel is 0.
Existence follows.
Appendix B. Computing the parameters from the experiments

Due to the usage of the same type of capsules, which also cor-
responds to the connecting pipes having the same geometry, we
will work with the assumption that the permeabilities of the mem-
branes are the same. Hence, a1 ¼ � � � ¼ aN , r1;in ¼ � � � ¼ rN�1;in and
r1;out ¼ � � � ¼ rN�1;out. In order to compute the values, we define
the function

Fða; rin; routÞ ¼ ðPin;PoutÞ ðB:1Þ

where Pin, Pout are the solutions to the linear system arising from
Eqs. (5)–(12), as described in Section 2.2, subject to the inlet and
outlet pressures being given. We also define Q as the flux through
the system based on Pin, Pout and a being known. Let M denote
the vector with the measurements.

We then compute the parameters by minimizing the functional

G :¼ kF �Mk2 þ jQ � Q0j2 ðB:2Þ

using techniques from nonlinear least squares approximation. Here,
Q0 denotes some reference flux to uniquely define the solution of
the minimization problem.
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