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Abstract The redraw process is a method employed for the manufacture
of glass sheets required for e.g. special optical filters, bendable displays, or
wearable devices. During this process, a glass block is fed into a heater zone
and drawn off to reduce its thickness. Fluctuations in the feed speed, the
draw speed or the ambient temperature can all lead to irregularities in the
final thickness profile. We present a linearized theory that allows the response
to any given fluctuation to be computed, and obtain a simplified model in
the high-frequency limit. The resulting framework allows for fast and efficient
parameter sweeps that determine the most dangerous frequencies to be avoided
and provide an important complementary tool for experimentalists working in
the redraw process.

Keywords Glass manufacture - Redraw process - Asymptotic analysis -
Linearized theory

1 Introduction

Specialty glasses, such as glasses with a very high refractive index, are usually
prone to devitrification. Hence, common sheet glass forming processes such
as float, or overflow fusion, are not suited for these glasses. The glass redraw
process is an attractive option to manufacture thin sheets of specialty glasses,
which are becoming more and more attractive for special optical filters, bend-
able displays or wearable devices [3, 9]. In the redraw process, a prefabricated
slab of glass is fed into a heating zone, where it melts. A thin glass sheet is
then drawn out of the end of the heating zone at a higher speed, as illustrated
in Figure[I] The larger the draw ratio between the draw and feed speeds, the
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Fig. 1: Schematic of the glass redraw process.

thinner the final product. The importance of the redraw process and drawing
processes in general has motivated research on a variety of sub-problems such
as the role of heat transfer in the drawing process [6} 23], thickness
variation in drawn/redrawn sheets , and stability of the drawn
process.

Redraw is a batch process, but each batch runs for a long time so that it
effectively operates in steady state, as is essential for the manufacture of glass
sheets with uniform thickness. Above a certain draw ratio, a stretched viscous
sheet or fibre becomes unstable to infinitesimal perturbations, a phenomenon
known as draw resonance . Studies on draw resonance have
included investigating temperature effects , investigating viscoelas-
tic effects [22], and attempts to explain the physical cause of the phenomenon
through kinematic wave theory . Even below the critical draw ratio, small
fluctuations in the feed speed, draw speed, and air temperature within the
furnace can lead to thickness variations in the final product, whose amplitude

depends on the frequency of the disturbance. If the most problematic dis-
turbance modes are identified then they can be avoided by employing control
systems, so that non-uniformities in the final product are reduced to an ac-
ceptable level.

Full computational fluid dynamics (CFD) simulations may be conducted to
identify the response to different disturbances in the redraw process. However,
extremely fine resolution is required to obtain reliable results, and it is time
consuming to compute solutions across a wide range of parameter values and
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Fig. 2: Schematic of the redraw process. The Z-axis is a line of symmetry.

frequencies. Instead, we exploit the fact that in redraw the sheet thickness
is small in comparison to its length, and consequently the glass undergoes
extensional flow, with its lengthwise velocity approximately uniform across
its thickness. This allows us to describe the system using a reduced quasi-one-
dimensional model |10} |12} 24]. We thus propose and implement asymptotically
reduced mathematical models and fast numerical schemes to predict the re-
sponse to different disturbance modes over the entire spectrum of frequency
perturbations.

In §2] we outline our mathematical model, and we determine the steady-
state solution in §3] We perform a linear-stability analysis in §4 and determine
how the response to different disturbances depends on process parameters in
In §6] we focus on high-frequency perturbations. Finally, in §7] we draw
conclusions from the results that we have presented and the strategy for im-
plementation in the glass industry.

2 Mathematical model

We consider a glass preform of thickness 2hin that enters a heating zone of
length L at speed Ui, and is drawn from the end of the heating zone at
speed Ugyt, as illustrated in Figure |2l Throughout this paper, dimensional
quantities will be indicated by the presence of a ‘hat’. We denote the distance
along the heating zone by & € [0,[:}, the temperature of the furnace wall
by Tf(fc), and the air temperature in the heating zone by Ta(i) When the
rate of heat transfer between the atmosphere and the glass (as measured by
the Biot number) is sufficiently large, significant cross-sectional variations in
temperature may occur |20]. However, as mentioned in the Introduction, when
the sheet is sufficiently thin, the velocity @ in the Z-direction is approximately
uniform across the thickness of the sheet, and similarly the temperature T
is approximately uniform across the thickness. Therefore the half-thickness of
the glass, h(Z,1), the speed of the glass @(#,?), and the temperature of the
glass T'(&, 1) are to be determined in the heating zone.
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We express our system in dimensionless form by employing the scalings

t=Lx, t=-—t Tp&)="T:Ts(x), Tu(@)="TsTa(z),

Uin (1)

W@, t) = hin h(x,t),  @(2,1) = Unu(a,t), T(it)=TsT(z,t),
where the lack of a ‘hat’ indicates a dimensionless quantity. Here, T, is a
characteristic temperature of the glass.

We identify a small aspect ratio § = hin / L and exploit the asymptotic limit
0 — 0 to obtain a reduced description of the problem: the Trouton model. A
full derivation may be found in |10} [14]; here we just present the resulting
leading-order equations, valid to order §2. We note in passing that variations
in the velocity field could be considered by extending to higher-order terms in
a similar manner as considered by [16]. Conservation of mass, momentum and
heat energy in the glass leads respectively to the equations

hi + (uh), = (2a)
Aphu, = F(t ) (2b)
h(Ti +uly) = —a [(T* = T}) +b(T - To)] (2¢)

where, p = u(T') is the dimensionless viscosity of glass and F' is the dimen-
sionless tension in the sheet (to be determined as part of the solution). The
dimensionless parameters
Loe, T3
a4=+—7, b= ——=
hinppUin 66,13

; (2d)

are respectively the radiative Stanton number and ratio of the Stanton num-
ber to the radiative Stanton number; p, ¢, and €, are the density, specific
heat capacity and specific emissivity of the glass, ¢ is the Stefan—Boltzmann
constant, and 1y, is the heat-transfer coefficient. The Stanton number and the
radiative Stanton number measure the rates of heat transfer to the glass via
the air and via radiation from the furnace walls, respectively, relative to the
thermal capacity of the glass.

At the top of the heater zone, the glass is fed in with unit dimensionless
speed and half-thickness, and we assume the temperature is equal to that of
the furnace wall at the inlet, so

u(0,t) =1, h(0,t) =1, T(0,t) =T(0). (2e)
At the bottom of the heater zone, the glass is drawn at a fixed speed
u(1,t) = D, (2f)

where D = Uy / Ui, is the draw ratio.
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Symbol  Typical Value Symbol  Typical Value
D 25 0o 0.70
a 3.7 01 0.30
b 0.022 0 0.25
v 3.9 k 0.063
Te 0.66 T, 0.75

Table 1: Typical industrially relevant dimensionless parameter values |[1].

To close the model, we must impose a constitutive relation for the glass
viscosity and also specify the furnace wall and air temperatures. In this paper
we take the following representative functional forms:

ut) =ew (v (727 - 127 ) ) (3

Ty(x) = 0y + 61 exp <_(w—k2mo)2) , (3b)

To(x) = T, Ty () (3¢)

where v, T, 0y, 61, xo, k, and T, are empirically determined constants. A set
of industrially relevant dimensionless parameter values is displayed in Table
For this parameter set, the air temperature in the furnace is below that of the
furnace wall. Therefore, since the input glass temperature is taken to be
equal to the temperature of the furnace wall, the glass will initially cool upon
entrance into the furnace. Additionally, the furnace air temperature is below
T., so if the heat exchange with the air relative to the heat exchange with the
furnace wall (controlled by the parameter b) is too large the glass will reach
the temperature 7, and our viscosity model breaks down. We choose to
limit our study to values of b where this does not occur to demonstrate our
results but note that can be modified if required to describe the viscosity
behaviour at temperatures below T..

3 Steady-state solution

We first seek a steady-state solution to , of the form
w(et) = ueq(@), h(@,) = heql@), T(x,t) = Tegla), F(t) = Fuq.
From and , we obtain
Ueqlteq = 1. (4)

Combining and gives a decoupled problem for the temperature of the
sheet, namely

Tly=—a[(Ta, = TF) +b(Teq — Tu)],  Teq(0) = T((0), (5a)
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which we solve numerically. Given T,q from , we use , , and
to find

where
I(x) = / 0 (Tog(3)) ™" da (5¢)

The steady solution given by is plotted in Figure |3| for the parameters
listed in Table [ We observe in Figure [3|a) that the glass is first heated and
and then cooled by heat transfer with the furnace, with the maximum glass
temperature occurring near x =~ 0.3. Given the smallness of b, heat transfer is
dominated by radiation. With a = 3.7, the glass temperature somewhat lags
behind the furnace temperature, and we would expect these to become closer
if the value of a were increased. The air temperature 7T, is lower than the
temperature of the glass when it enters the heating zone. Therefore, the glass
temperature initially slightly decreases due to cooling by the air. This small
effect is undetectable in Figure (a), but gives rise to the initial increase in the
viscosity in Figure b). However, the viscosity soon starts to decrease rapidly,
and the minimum viscosity occurs at the location of the maximum glass tem-
perature. As a result, the stretching and associated thickness variations of the
glass are also localized to a neighbourhood of the maximum temperature, as
shown in Figure 3fc) and (d).

4 Small-amplitude perturbations

We now turn our attention to the effect of perturbations to the feed speed,
draw speed and air temperature on the steady-state solution by setting

u(0,t) = 1 + €fin exp(iwt), (6a)
u(1,t) = D(1 4 € four exp(iwt)), (6b)
To(z,t) = T (Ty () + efr(z) exp(iwt)), (6¢)

where € < 1 and w > 0 is the frequency of the perturbation. Here, we consider
a representative Gaussian temperature perturbation of the form

fr(@) = Aexp (—(‘”“)) | 7)

202



Response to Disturbances in Glass Redraw 7

(a) I I I r r r
: : |— T(=)
--- Ty(z)

02 04 06 08 1
z x

Fig. 3: Steady-state solution to for the parameters in Table

where 4. is the location of the maximum perturbation to the air temperature,
while A and o control the amplitude and extent of the perturbation.

Based on our assumption that the perturbations are small, we seek a solu-
tion of the form

u(@,t) = tieq () (1 + edi(z) exp(iwt)), (8a)
h(z,t) = heq(z) (1 + eh(z) exp(iwt)) , (8h)
T(z,t) = Teq(z) (1 + et(z) exp(iwt)) (8¢)

F(t) = Fuq (1 +eF exp(iwt)) , (8d)

for some 1, iL, t, and F to be determined. We insert this ansatz into and
linearize with respect to € to obtain

B+ 4 iwheqh =0, (9a)
- = Veqy -~ =~

U/_|_hequ/eq (u—Fh—wt—F) :0, (gb)
Teqt' + Tlt + Tloy(h + @) + a[ATe, + bTog)t + iwheqToqt — abTufr =0, (9c)

with boundary conditions:

@(0) = fwm,  R0)=0, {0)=0,  @(l)= four. (9d)
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In the absence of any imposed perturbations, fiy = fout = fr = 0, and the
resulting eigenvalue problem @D admits non-trivial solutions for {ﬁ, u, f} only
if the (complex) frequency w takes one of a discrete set of values. The instability
known as draw resonance occurs through a Hopf bifurcation as Im|[w] passes
through zero (see, e.g., [20]). Here instead we impose an oscillatory disturbance
either through the inhomogeneous boundary conditions or through the
temperature perturbation fr(z), as defined in , and assess the size of the
resulting oscillation in thickness. We quantify the response of the system to
the imposed perturbation by defining a relative response amplitude

R [relative variation in final thickness| (10)
o [relative change in @) ’

where ¢ represents one of u(0,t), u(1,t) or fol T, (z,t) dz. By linearity, we can
consider each perturbation in isolation and, without loss of generality, set

1
fina foutv /(; fT(x) dzr € {071}

so that }
R = [h(1)]. (11)

We discretize @D using second-order backwards differences, using the steady-
state solutions , to obtain a linear system of equations which we solve for
a given frequency w and perturbation fin, fout Or fr.

5 Results

We now present numerical solutions to the perturbation equations @D and
quantify the effect on the final product using the relative response R defined
in . We begin by studying the isothermal case (§5.1) and the specific in-
dustrially relevant case where the parameters are taken to be those in Table
(. We then perform more in-depth parameter sweeps to characterize the
response R for feed speed (§5.4), draw speed (§5.5) and temperature distur-
bances (§5.6)).

5.1 Isothermal case

The linear stability of the isothermal problem is analysed in [17]. It is found
that the response amplitude R is the same for either feed or draw speed
variations, and in either case is given by

Bi (15 ) - Bi (i)

exp (%) — exp (Dﬁ)%) + (1 — Dl’;)%) [Ei (%) —Ei (Df()%)} ’
(12)

R:
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Fig. 4: Amplitude of thickness response R, as predicted by the linearized model
@[) with the parameter values listed in Table[l} (a) feed- or draw-speed distur-
bance in an isothermal sheet (a = 0); (b) feed-speed disturbance for redraw
through a typical furnace; (¢) draw-speed disturbance for redraw through a
typical furnace.

where Ei denotes the exponential integral function. The denominator of the
expression is zero at the critical values (w, D) = (14.011,20.218) corre-
sponding to the onset of draw resonance.

Figure a) shows how the response amplitude given by varies with
fluctuation frequency w with fixed draw ratio D = 25. Since we are above the
critical draw ratio, the steady state is linearly unstable. The system exhibits
resonance, with a greatly amplified thickness variation close to the critical
frequency w =~ 14.011 associated with draw resonance. There is a sequence of
subsequent peaks corresponding to damped resonant modes close to the other
zeros w of the denominator of with Im[w] > 0, but the response ultimately
decays as the perturbation frequency tends to infinity.

5.2 Industrially relevant regime

We observe dramatically different behaviour for the temperature-dependent
system. Here the responses to feed- and draw-speed perturbations are different,
and are plotted in figures Figure b) and (c), respectively. The response R is
significantly smaller than in the isothermal case, with the largest response as
w — 0 and a second, local, maximum at w = 130 for a disturbance to the feed
speed, and w =~ 288 for a disturbance to the draw speed. Beyond this second
peak, R appears to decrease with increasing w, and we terminate our search
at w = 500.

In Figure [} we study the response due to disturbances in the surrounding
air temperature. We perform two investigations: (a) varying the frequency,
while fixing the disturbance location zj,. = 0.45, and (b) varying the location
of the disturbance, while fixing the frequency w = 200. In all cases we set
the spread of the temperature perturbation to o2 = 0.001. We observe that
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Fig. 5: Amplitude of thickness response R, as predicted by the linearized model
(9) for the temperature-dependent system with fi, = four = 0 and fr(z) in
the form of @ with 02 = 0.001. All other parameters are as listed in Table
(a) Response dependence on frequency; (b) response dependence on location.

the peak response occurs at a frequency of w =~ 210, with a large band of
surrounding frequencies that excite a similar magnitude response. Therefore,
it is likely that frequencies between 150 < w < 300 would need to be con-
trolled to keep the thickness fluctuations below an acceptable level. At very
low frequencies, the system can adjust to a quasi-steady state where the glass
simplify deforms at a different part of the heating zone, whose location varies
parametrically with time. At high frequencies, the glass effectively observes a
time-averaged temperature field, resulting in a steady thickness response. An
intermediate regime exists between these two regimes, which gives rise to the
observed resonant peak.

There is a clear worst location for the temperature disturbance to occur
at T1oc = 0.47 (Figure ) Referring back to the steady state (Figure [3)), we
observe that this corresponds to location of the most rapid variations in the
velocity of the glass. A temperature disturbance at this location results in
large changes in the viscosity of the glass, which in turn affects the velocity
and thickness profiles.

5.3 Model Validation

It is worth questioning whether the linearized theory accurately predicts the
behaviour of the full nonlinear system, especially when the steady state is
known to be unstable and large-amplitude responses are predicted, as in Fig-
ure (b) To validate our model we compare the results of our linear solver with
those from a full numerical simulation. The full numerical simulation was per-
formed using ANSYS Polyflow [2]|, within which the full Navier—Stokes equa-
tions coupled with an energy equation were implemented in 2D. On the free
surface the standard zero normal stress, zero tangential stress, and kinematic
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Fig. 6: Comparison of relative reponse amplitude R (defined in eqn. ) pre-
dicted by the full Stokes equations with ¢ = 0.01 (solid) and by the linearized
model () (dashed) for (a) feed/draw-speed disturbances in the isothermal
case (a = 0), (b) feed-speed disturbances in the temperature-dependent case
(c) draw speed disturbances in the temperature-dependent case. The param-
eter values in Table [I| are used with the exception of b = 0.

conditions were applied as well as radiative and Newton-cooling conditions.
The velocities at the inlet and outlet were set to be uniform and directed
purely normal to the boundary of the computational domain and took the
same user-defined value through the thickness of the glass. Additionally, the
temperature at the inlet was prescribed (as in our reduced model) while the
outlet condition was set to be given by a zero conductive heat flux.

We use the computational model to study the same three model scenarios
as shown in Figure [d] setting a finite small disturbance amplitude e = 0.01 for
the nonlinear simulations. In Figure@ we show the response to (a) a feed-speed
disturbance in the isothermal case (a = 0); (b) a feed-speed disturbance with
temperature effects included; and (c¢) a draw-speed disturbance with tempera-
ture effects included. We use the parameter values listed in Table[I] except for
b, which we set to be zero for simplicity when solving the full nonlinear model.
We only compare for relatively low frequencies in the isothermal case because
to resolve high frequencies requires an extremely high number of spatial points.

The simplified linearized model is found to approximate the value of R pre-
dicted by the full nonlinear simulation extremely well for both isothermal and
temperature-dependent glass sheets. The results of our model validation pro-
vide confidence in the accuracy of the linear model in predicting the response
of the full system, including the location and behaviour in the neighbourhood
of large peaks in R. We next use our linear model to investigate in detail
the global effect on the relative response amplitude R of disturbances in the
feed-speed,draw-speed and temperature.
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Fig. 7: Heatmap plots showing the dependence of the relative response am-
plitude R on the disturbance frequency w and the system parameters (a) a,
(b) b, (¢) D and (d) v, when subject to feed-speed disturbances. In each case,
all parameters besides the one being varied are given by the values in Table
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Fig. 8: Heatmap plots showing the dependence of the relative response ampli-
tude R for small values of (a) a, and (b) v. In both cases, all other parameters
are given by the values in Table [I}

5.4 Feed-speed disturbances

Parameter sweeps for the case of feed-speed disturbances are plotted in Fig-
ure [7} where red regions correspond to large responses. We observe that the
response R is largest at low frequencies. Since these low-frequency disturbances
occur over long time scales their effects can be controlled relatively easily. The
exceptions to this trend occur at extreme values of the process parameters. For
example, as D — 1, the changes in steady-state velocity and thickness dur-
ing redraw are small, and the effect of perturbations is minimal (Figure )
The detailed behaviour at small values of a and v is plotted in Figure [§| We
observe, that as a — 0 and/or v — 0, we approach the isothermal case of a
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uniform-viscosity sheet, where the response is as shown in Figure a), with a
large peak close to w ~ 14 and a second peak at w = 40.

In Figure [7f(a), as temperature dependence is strengthened by increasing
a, we observe a decrease in response R at low frequencies (w < 100) but a
rise in R at higher frequencies (w 2 100). This behaviour has the effect of
spreading the response more evenly across frequencies and removing resonant
peaks. If R is reduced to an acceptable value by this spreading then increasing
the temperature dependence of the glass will aid in the production of more
uniform glass sheets. However, if R is large over too broad a range of w, then
increasing the temperature dependence of the glass will make it harder to
control the thickness variations in the final product because many frequencies
are being excited.

The response to perturbations appears particularly insensitive to variations
in b, although it is important to note that the range over which b is varied is
smaller than the other parameters (Figure [7b). (The problem becomes more
computationally challenging to solve for larger values of b.)

Beyond small values of v we observe that the change in R as the frequency
w is increased is non-monotonic: R is first close to 1, decreasing as approaches
w approaches w & 90 before increasing again (Figure ) It is possible to
counteract the effect of low-frequency disturbances since they occur over a long
time scale, but Figure d) illustrates that high-frequency disturbances may
also be a concern; this parameter sweep does not rule out the possibility that
the R might increase further at even larger frequencies. A similar, although
less extreme, phenomenon can be seen in the w > 100 range as D and b are
increased and for intermediate values of a. An asymptotic analysis to examine
the behaviour at very high frequencies, where the numerical approach becomes
prohibitively expensive, is carried out in §6}

5.5 Draw-speed disturbances

In the isothermal case, draw-speed disturbances and feed-speed disturbances
are equivalent. However, for a temperature-dependent scenario we observe in
Figure [0 very different behaviour from the feed-speed perturbation response
plotted in Figure[7] The most apparent difference is the apparently monotonic
decrease in the response R with increasing w for all parameter ranges con-
sidered in our sweep for draw-speed perturbations. Meanwhile, the range of
low frequencies producing a large response (coloured red in Figure E[) increases
with increasing a, b, D or v. The wide band of excitable frequencies means
that thickness variations cannot be controlled by targeting particular frequen-
cies as they could in the feed-speed-perturbation case. The relative response
amplitude R for draw-speed disturbances is also typically higher than that for
feed-speed disturbances.

The size of the response R is insensitive to the value of b for the range of b
considered (Figure @3), and is also relatively insensitive to variations in both
a and D except at very small values of those parameters (Figure [Jh,c).
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Fig. 9: Heatmap plots showing the dependence of the relative response ampli-
tude R on the frequency w and the system parameters (a) a, (b) b, (¢) D and
(d) v, when subject to draw-speed disturbances.

5.6 Temperature disturbances

Finally, in Figure we show the results of a parameter sweep for the case
of disturbances to the furnace air temperature, with fixed location x),. = 0.3
and spread o2 = 0.001. If either a or v is zero, then the glass viscosity is
not affected by the air temperature, and so the thickness variation caused
by a temperature fluctuation must be zero. Nevertheless, Figure a) shows
that there is a region of large responses R for small values of ¢ and moderate
w. Varying b, we observe in Figure b) a sharp transition from very small
thickness variations when b < 0.02 to very large thickness variations when
b 2 0.05. For the particular industrial regime described by Table |1} we have
b = 0.022 and the thickness variations remain relatively small for all w.

Figure c) shows that increasing the draw ratio D leads to larger R, since
the final thickness decreases with increasing D. As in §5.2] at low frequencies
the system is in a pseudo-steady state, while at high frequencies the system
instead sees an effectively steady time-averaged temperature distribution. It
is therefore only in an intermediate band of frequencies that the temperature
disturbance produces a large value of the response R. While the range of
potentially dangerous frequencies range is quite large, we can still identify a
peak resonant frequency of w = 100 to avoid across most draw ratios.

For varying v, we also observe that the response is small at low frequencies,
for the same reason as above (Figure ) However, at high frequencies the
response is not significantly damped when v is relatively large. Increasing
v dramatically increases the sensitivity of the viscosity to the temperature,
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Fig. 10: Heatmap plots showing the dependence of the relative response am-
plitude R on the frequency w and the system parameters (a) a, (b) b, (¢c) D
and (d) v when subject to temperature disturbances of the form with
Lloc = 0.3.

so that even small deviations from a time-averaged temperature profile can
contribute significantly to the viscosity of the glass and therefore to the final
thickness variations.

6 Asymptotic analysis for high frequency perturbations
6.1 Outline

Our linearized model allows us to perform computationally cheap parameter
sweeps to illustrate the system response to a wide range of perturbations. How-
ever, the numerical scheme becomes challenging to solve at large values of the
perturbation frequency w. In this section we exploit the high-frequency limit
to make further analytical progress and bypass the complications encountered
in the numerics for the linearized model used so far. By obtaining the limiting
behaviour of the response as w — 0o, we can extend the results shown in Fig-
ures [7HI0] and make sure that no further dangerous peaks can occur for higher
values of w.

We find that the full solution in the large-w limit is composed of a linear
combination of a particular solution and a homogeneous solution. The first
corresponds to a linear asymptotic expansion in the small parameter 1/w,
which is analysed in §6.2] and the second corresponds to a WKBJ expansion,
which is analysed in §6.3] By fitting the full solution to the boundary condi-
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tions, a leading-order approximation to the response is derived in §6.4H6.5] and
compared with our numerics in §6.6

6.2 Particular solution
We begin by seeking a solution composed of a linear expansion in the small
parameter 1/w:
(x) ~ dio(x) +iw g (z) + .. ., (
h(z) ~ iw ™ hy () + w2y (x) + . . ., (
t(z) ~iw () + w2y (2) + .. ., (
FrFy+iw "Fy+.... (
We substitute this expansion into f to find, at leading order in w1,
a( — heqh1 = 0, (
i + hequihy (o — Fo) = 0, (
0T}y — heqt1Teq — abTy fr = 0. (
Using teqheq = 1, we solve to get

Uy = FO + Oéoheq, (15&)
- h!
hl = Oy eq, (15b)
heq
/
. v (= — U
7, = Tez (Foueq + ao) — abT, TOZ fr, (15¢)

where «q is a constant of integration. Both 1:"0 and g are to be determined
later on by the application of the boundary conditions.
6.3 Homogeneous solution

We seek a homogeneous solution to @ (with the inhomogeneities F and fr
set to zero) of WKBJ form:

a(z) = U(x) exp(iwh(x)), (16a)
() = H(z) expliwp(z)), (16b)
t(z) = T(z) exp(iwy(z)), (16¢)
and make expansions of the form
Ulz) ~ w2Us(x) + iw 3Us(z) + ..., (17a)
H(z) ~iw  Hy(z) +w 2Ho(z) + ..., (17b)

T(z) ~iw T () + w 2T (x) + ... (17¢)
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! we obtain the eikonal equation

P = —heq. (18)

At next order, we obtain the system of ODEs

At leading order in w™

H} + Uy’ =0, (19a)
- T - -
he ué (Hl — I/eqT1> + UQw/ =0, (19b)
e (Teq - TC)2
Ty (40T, + abTeq + TLy) + HiT. + TegT] = 0. (19¢)

Equation |b gives Us in terms of Hy, Ty, and the steady-state solution.
Substitution of (19bf) into (19a)) and rearrangement of (19| gives

- - T -
H = heg | H1 — &T 2
1 Ueqlleq ( 1 (Teq — TC)Q 1) ( Oa’)
T T
T eq 17 3 eq T
T = T, Hy — <ab +4aTy, + Teq) T, (20b)

which is a system of ODEs for H; and Tj.

6.4 Boundary conditions

The full solution is given by the sum of the particular and homogeneous ex-
pansions as

alw) ~ o (x) + i i (2) + w2 (@2(x) + Da(@) expliwn(@)) + ..., (21a)
hi(@) ~ iw ™! (711(3:) + () exp(iwz/)(m))) Yo (21b)
i(x) = iw! (£1<x) 4Ty () exp(im/J(x))) Yo (21¢)

F=Fy+iw F+.... (21d)

We take ¥(0) = 0, without loss of generality, so that the leading-order
boundary conditions are

120(0) = fina ﬂO(l) = fout- (22)
Applying together with 7 we obtain

(fin - fout)D

_ Dfout_fin
D—-1 ’ '

F,
0 D—1

Qo =

At first order in w™! the boundary conditions are
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6.5 Asymptotic response amplitude

The leading-order asymptotic approximation for the relative response ampli-
tude is given by

R =w Hhi(1) 4+ Hy (1) exp (iwep(1)) |. (25)

Here, (1) and H,(1) are constants (independent of w), so the amplitude of
the response scales with w™!, while oscillating as a function of w according to
the exponential term in .

By substituting from and into , we find

(1) = Feq(fin — fout) (26a)

4D = Dp(Teq (1))’

and
P(1) = —/0 heq(x) dz, (26b)

where F.q and heq(z) are given in (f]). It therefore only remains to evaluate
H,(1), by solving the linear system of ODEs subject to the boundary
conditions , which may be written out explicitly in the form

7 o Fqu(fin_fout)

HO= 50 - DuE )

abTafT(())
Ty(0)

(27a)

T1(0) = ab (1 = T,) fin — (27b)

For any given set of parameter values, we only have to solve two initial-value
problems for the system , subject to the two sets of boundary conditions

1, 7Y (0) =0, (28a)
H?(0) =0, 72(0) = 1. (28b)
The relevant contribution to the response is then given by

o FeqDH{"(1)
Hi(1) = fin (4(D — D)u(Ty(0)

- FuDHV(1) ) abT, H? (1)
fo (4(D—1)M(Tf(0))) fT(O)( o ) *

) +ab(1 — Ta)Hl(Q)(l)>

By considering in turn the terms proportional fi,,, fout and fr, we can sep-
arate out the response to feed-speed, draw-speed and temperature fluctuations
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as follows:
Foq
4(D - 1)N<Teq(1))

FoqDH{V (1) =\ 7r(2) i (1
_<4<D—1>M(Tf<o>) +ab(l = To)H (1) | e

-1

feed speed: R ~w

)

(30a)
F, 1 DHM (1))
draw speed: R ~w™* 4 - 1 e . (30b)
W01 |Ta®) | u(T50)
b,
temperature: R ~ w ™! abTufr(0) ’Hl(m(l)‘ . (30c)
7y(0)

The leading-order response to temperature fluctuations, given by ,
depends only on the inlet temperature perturbation f7(0). When o is small,
fr(0) is effectively zero, apart from cases where 1, & 0 (for example, fr(0) <
10~ '8 when ¢2 = 0.001 and zjoc = 0.3). For order 1 values of o, we can
therefore neglect f7(0) in (30d), in which case thermal fluctuations have an
insignificant influence on the response at this order in w. It is then necessary
to proceed to higher order in w in the asymptotic expansions to find a non-
trivial approximation for the response to thermal fluctuations. By continuing
the procedure outlined above up to order w~2, for situations where fr(0)
and fr(1) are negligibly small, we find that the asymptotic thermal response
amplitude is given by

7 (1) iwp(1)

1

R~ o2 F1ke D___Hi'(Qe : (30d)
T aTa))  u(1;0)
where the first correction to the tension is given by
. abFqu/Ta ! fr(z)dz 31
YTAD -1 Sy hegla)?u(T. Tog(2) — T.)2 (31a)
( ) Jo eq(x) :“( eq 33))( eq(x) c)

When o is small, fr is approximately a delta-function and we can further
approximate

F a/bFquTa
1~ .
4(D - 1)heq($loc)2u(Teq(xloc))(Teq(xloc) - Tc)2

We observe that, in the high-frequency limit, the most dangerous location
for fluctuations in the air temperature is close to the inlet, such that fr(0) is
maximised. For fluctuations in the interior of the heating zone, the influence
on the thickness of the drawn sheet is much weaker, decaying like w2 instead
of w™'. Moreover, we can see that the maximum response to internal thermal
fluctuations occurs when . is close to the minimum value of the denominator

in equation (31b)).

(31b)
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Fig. 11: Comparison of high-frequency asymptotic solution given by with
numerical solution of (9) for » = 0.01 and D = 2: (a) feed speed disturbances;
(b) draw speed disturbances; (c) temperature disturbance with xj,c = 0.1,
0? = 0.01; (d) temperature disturbance with z1,. = 0.45, 0 = 0.001. All
other parameter values are as in Table

6.6 Results

In Figure we compare the response amplitude R predicted by the asymp-
totic approximations (30)) with that predicted by numerical solution of @D for
four cases of interest: (a) feed-speed perturbations, (b) draw-speed perturba-
tions, (c) perturbations to the air temperature close to the inlet, and (d) per-
turbations to the interior air temperature. The predictions of the asymptotic
analysis match closely with the numerical results for a sufficiently high fre-
quency, w. As predicted by , the response to feed- or draw-speed fluctua-
tions decays linearly with w™! with superimposed oscillations of approximately
constant period. In Figure|l1|c), we impose a thermal fluctuation that is close
to the inlet and relatively spread out, with zj,c = 0.1 and 02 = 0.01, resulting
in a non-negligible value of fr(0) ~ 2.876. Consequently, we observe that the
response amplitude decays like w™!, with negligible oscillations for large w, in
agreement with . In Figure (d) we revert to a sharply peaked thermal
fluctuation in the interior of the heating zone, with zi,c = 0.45 and ¢ = 0.001,
so that fr(0) < 10742, In this case, we observe that the response to thermal
fluctuations decays significantly more rapidly, like w™2.

For the purposes of ensuring disturbances to the final thickness profile re-
main below a certain magnitude, the practitioner may employ @D to determine
dangerous low and mid-range frequencies, but can halt the numerical search
at sufficiently large values of w and rely on thereafter. The asymptotic
approximations require numerical integration of the ODE system , but
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this solution is very much simpler than for the full linearized problem @ The
frequency has been scaled out of , so the problem does not become stiff
when w is large, and requires a less refined numerical grid to ensure accuracy
and convergence. Furthermore, for a chosen set of parameter values, the prob-
lem need only be solved twice, using the canonical boundary conditions
, to obtain the leading-order response R for any (large) value of w.

7 Conclusions

We present a mathematical model to predict the response of a glass sheet
undergoing redraw to fluctuations that arise during the manufacturing process.
Specifically, we consider three sources of fluctuations that are common in the
redraw process: the feed speed of the glass; the draw speed of the glass; and the
ambient temperature profile of the surrounding air. These fluctuations arise
from imperfections in the manufacturing equipment or to irregularities in the
surroundings.

The response to a fluctuation may be determined by simulating the full
redraw process numerically, but this is computationally challenging and time-
consuming. We derive a reduced model that exploits the fact that the per-
turbations are typically small. This provides a simplified linear model that
is significantly simpler to solve, reducing computational times from days to
minutes. The reduced model enables us to perform comprehensive parameter
sweeps to identify the operating regimes that are most susceptible to instabil-
ities. We consider the system response to four key parameters of interest: the
draw ratio, the radiative Stanton number, the ratio of the Stanton number to
the radiative Stanton number, and the strength of dependence of viscosity on
temperature variations.

For high frequencies our linearized theory becomes more difficult to solve
numerically. However, we are able to exploit the high-frequency limit to obtain
a further reduced model. The resulting theory, comprising a combination of
linearized and WKBJ solutions, is shown to predict the full system behaviour
well and avoids the numerical complications encountered for the full linearized
model. The asymptotic theory also provides estimates for the most dangerous
locations of thermal fluctuations in the heating zone.

The resonant modes that we have observed in this work are reminiscent
of those found in the so-called draw resonance. One proposed explanation for
this phenomenon involves comparing the time scales involved in the different
processes; with further investigation it may be possible to extend such ideas
to provide additional physical intuition for our situation.

The model framework laid out here has been demonstrated to be robust
and to predict the response to perturbations well. The parameter sweeps that
we present here can be conducted for any given physical scenario. The model is
simple to implement and we hope will provide an essential tool for the analysis
of fluctuations in the redraw process.
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