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Glass sheet redraw through a long heater zone
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Thin glass sheets may be manufactured using a two-part process in which a sheet is first cast and then
subsequently reheated and drawn to a required thickness. The dimensions of the heater zone used for
the latter redraw process determine the relative change in the width and thickness of the sheet. When a
product with the same cross-sectional aspect ratio as the original sheet is desired, the heater zone through
which the sheet is drawn must be long compared with the sheet width. However, deviations from the
original aspect ratio due to the finite length of the heater zone can be significant, and the final product is
typically thick at the edge compared to the centre. We present a model for redraw of a thin glass sheet
and consider the limit in which the heater zone is long compared with the sheet width. We show that
the deviations in aspect ratio and thickness depend linearly on the ratio of sheet width to heater zone
length and arise due to boundary layers at the sheet ends where the fluid flow adjusts to satisfy imposed
boundary conditions. The behaviour inside the boundary layers can be reduced to a canonical problem
that is independent of process parameters, and we thus calculate the final thickness and width of the
redrawn sheet.
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1. Introduction

Thin glass sheets are becoming increasingly prevalent in everyday technology, with current applications
including substrates in thin-film batteries and thumbprint sensors in smartphones, and with futuris-
tic devices such as bendable televisions and tablets on the horizon (Horvatitsch, 2016; Burke, 2016).
Drawing is a technique widely used in the manufacture of these thin glass sheets, as well as that of
glass fibres. The most common drawing techniques involve the extrusion of hot molten glass which is
stretched as it cools. However, this method requires glass to be formed at appropriate viscosities, and
so may be unsuitable when using specialist glasses, which are prone to devitrification or which contain
components that will evaporate or react with the atmosphere. This method is also inefficient if only
a small quantity of product is required. In such situations, an alternative two-step approach to draw-
ing can be used. A sheet much thicker than the target thickness, known as a preform, is first cast in a
mould or by the float-glass process (Howell, 1994), and later fed vertically into a furnace where it is
reheated and stretched by the application of a tensile force at a fixed distance downstream. As the glass
stretches, it thins and contracts laterally. A schematic of this redrawing process is shown in figure 1.
In an ideal scenario, this process would produce long (∼10–100m), very thin (∼100µm) glass sheets
of close to uniform thickness, or more generally with a particular desired thickness profile. However,
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FIG. 1: Schematic of the glass redraw process.

sheets produced in this fashion typically have non-uniform thickness, with the sheet edges thicker than
the bulk (see, for example, Filippov & Zheng, 2010). This non-uniformity is undesirable because it
hinders further processing of the sheet as well as causing deterioration in the desired optical properties
of the product.

Redraw is an example of an extensional flow problem, in which the longitudinal and transverse
velocities do not vary significantly across the sheet thickness. Studies of extensional flow date back to
the experimental work of Trouton (1906), who developed an empirical formula for the stretching of a
fibre subject to a tensile force. The Trouton model, which governs the velocity and radius of a fibre under
tension, has since been derived, generalized and analysed by various authors. Solutions for steady-state
isothermal drawing of a fibre are obtained by Matovich & Pearson (1969), who consider the effects of
viscosity, inertia, surface tension and gravity. Studies typically focus on the leading-order behaviour
in the limit of a thin sheet or slender fibre, although Schultz & Davis (1982) propose an asymptotic
expansion in powers of ε2, where ε is the ratio of fibre radius to its length. Beyond leading order, the
boundary conditions at the top and bottom of the fibre cannot be applied directly to the bulk solution,
so the authors instead apply a cross-averaged version and thus calculate the proposed O(ε2) correction
terms.

A model for the viscous flow of a three-dimensional sheet characterized by its small aspect ratio of
thickness to other lengthscales is derived by Howell (1994, 1996), and used by Filippov & Zheng (2010)
and O’Kiely et al. (2015) to study the redraw process. Filippov & Zheng (2010) calculate numerical
solutions for the thickness and stress profile in the sheet, and observe that sheet thickness increases
towards the edge, and that the thickness profile depends on the temperature profile. O’Kiely et al.
(2015) investigate the scenario in which the heater zone is short compared with the sheet width and find
that, in this asymptotic limit, the sheet has uniform thickness except in a boundary layer, near the sheet
edge, whose extent scales with the heater zone length. The advantage of this regime is that thickness
non-uniformities are confined to the neighbourhood of the sheet edge and can thus be removed, while the
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reduction in sheet width is minimised. The authors thus determine the final thickness profile resulting
from an initially flat preform, and also solve the inverse problem to find the initial thickness profile
required to redraw a product with uniform thickness. Drawn sheets with thick edges have also been
studied in the related problem of casting of polymer films. For example, Dobroth & Erwin (1986)
propose formulas for the bulk and edge thickness in terms of the ratio of the draw to the feed speed,
and d’Halewyu et al. (1990) and Silagy et al. (1999) use a thin-sheet model to predict numerically the
thickness profile of a cast polymer film.

In contrast to the short-heater-zone limit considered previously (O’Kiely et al., 2015), in this paper
we investigate the limit in which the heater zone is long compared with the sheet width. Howell (1994)
shows that, in the absence of surface tension, and in the limit of a long rectangular sheet, each cross-
section preserves its aspect ratio as it convects along, so this setup is used in processes where it is
desirable to preserve the aspect ratio and cross-sectional shape of the preform. However, in reality it
is not economical to construct extremely long heater zones, and the finite length of the heater zone
means that the cross-sectional profile of the sheet is not preserved exactly. Indeed, a rectangular pre-
form redraws to a product that is thick at the edges and thin in the centre (see figure 2), and both the
width of the product and the thickness variation increase as the ratio of width to heater zone length
increases. Furthermore, surface tension acts to pull in the sheet edges, decreasing the final width and
increasing the final thickness, and the sharp corners in the preform become rounded (see figure 3). To
determine how long a heater zone is required to yield final products acceptably close to rectangular, a
clear understanding of the dependence of the final cross-section of the glass sheet on process parameters
is required.
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FIG. 2: Final thickness profile of glass after redraw, with a ratio of preform half-width to heater zone
length equal to 0.01 (red), 0.05 (orange), 0.1 (yellow), 0.2 (green), 0.35 (blue) and 0.5 (violet). These are
numerical solutions to the three-dimensional Stokes equations calculated in Polyflow (details in §6.2).

In §2 we present a model for redraw of a thin viscous sheet. We consider the limit where the heater
zone is long compared to the preform width in §3. At leading order in the small aspect ratio of half-
width to heater length, we recover the result of Howell (1994) that the sheet cross-section is preserved
at leading order in the absence of surface tension, and we calculate the change in thickness and width
due to surface tension. In §4 we proceed to next order in the asymptotic expansion to determine the



4 of 22 D. O’KIELY, C. J. W. BREWARD, I. M. GRIFFITHS, P. D. HOWELL & U. LANGE

−0.2 −0.1 0 0.1 0.2

−0.2

0

0.2

final width
initial width

fin
al

th
ic

kn
es

s
in

iti
al

th
ic

kn
es

s

including
surface
tension

including surface tension

FIG. 3: Final thickness profile of glass after redraw, with a ratio preform half-width to heater zone length
equal to 0.01, with and without surface tension, calculated using Polyflow (details in §6.2).

first correction to the leading-order solution, quantifying the deviations from the preform shape when
the heater zone has finite length. Matching between the bulk and boundary layers at the sheet ends
motivates an expansion in powers of the ratio of heater zone length to preform half-width, δ , as opposed
to the δ 2 expansion employed in Schultz & Davis (1982). We thus show that corrections to the leading-
order behaviour are larger than previously predicted, and that simply averaging the boundary conditions
at the sheet ends and applying them to the bulk is not appropriate beyond leading order. In §5 we study
the behaviour in the boundary layers at either end of the sheet and determine the matching conditions
for the bulk problem. The solution of an elliptic boundary-value problem provides the appropriate
effective boundary conditions needed to close the bulk problem. In §6, we use the computed solution
to investigate the dependence of the redrawn sheet properties on process parameters. We compare our
predictions with numerical solutions to the full three-dimensional problem, and also address the inverse
problem: what preform shape redraws to a rectangular final product?

2. Mathematical model

We use Cartesian coordinates xxx = (x,y,z), with the x-axis aligned with the direction of drawing, the y-
axis spanning the width of the sheet as it enters the heater zone, and z in the transverse direction as shown
in figure 4. We consider a planar sheet of glass undergoing redraw. In industrial processes of interest, the
Reynolds number is small, and we neglect gravity by assuming that the Stokes number St = ρgL2/µU
is small, where ρ and µ are the gravity and viscosity of the sheet, g = 9.81ms−2 and L and U are
characteristic length and viscosity scales respectively. The glass viscosity may vary significantly along
the heater zone, but we consider here the case of uniform viscosity and focus on the fundamental scalings
underlying the final sheet shape. In principle the sheet motion is governed by the Stokes equations, but
we will exploit the slender geometry of the sheet to simplify the problem. We define two aspect ratios

ε =
preform thickness

preform width
, (2.1a)



GLASS SHEET REDRAW THROUGH A LONG HEATER ZONE 5 of 22

δ =
preform half-width

length of heater zone
. (2.1b)

In manufacture of glass sheets, the sheet thickness is invariably much smaller than either the length or
the width, and it follows that ε � 1. We will further focus on scenarios where the heater zone is long
compared to the sheet width, and therefore we assume that ε � δ � 1.
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FIG. 4: Three-dimensional glass sheet with width 2b(x) and thickness 2h(x,y) undergoing redraw in the
x-direction.

In the limit ε→ 0, the dimensionless in-plane velocity uuu=(u,v), half-thickness h and half-width b of
the sheet are governed by the thin-sheet equations (Howell, 1994). The leading-order in-plane velocities
are uniform across the sheet, i.e.,

u = u(x,y), v = v(x,y). (2.2)

To leading order (in ε), the dimensionless net conservation of mass and momentum are given by

(uh)x +(vh)y = 0, (2.3a)

δ
2 (4hux +2hvy)x +

(
huy +δ

2hvx
)

y = 0, (2.3b)(
huy +δ

2hvx
)

x +(2hux +4hvy)y = 0 (2.3c)

in the domain (x,y) ∈ [0,1]× [−b(x),b(x)], where we have scaled x with the heater zone length and y
with the initial sheet half-width, we have scaled u and v with the inlet speed U and δU respectively, and
we have scaled h with the average initial thickness. The sheet shape and speed are known at the top of
the heater zone, and the speed at the bottom of the zone is controlled by draw rollers, so we impose the
boundary conditions

u = b = 1, h = 1+δηin(y), v = 0 on x = 0, (2.4a)

u = D, v = 0 on x = 1. (2.4b)

In (2.4a), ηin represents a small perturbation to the initial preform shape, with the most common situa-
tion of a uniform preform corresponding to ηin ≡ 0. We will show in §6.3 how ηin may be adjusted to
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control the final thickness profile of the sheet produced at x = 1. We assume that ηin(y) is symmetric
about y = 0. Without loss of generality, we can then choose the scaling for h such that∫ 1

0
ηin(y)dy = 0. (2.5)

We shall see below that applying the end conditions (2.4) is not straightforward in the limit δ → 0,
when the bulk velocity cannot fully satisfy the boundary conditions. The velocity adjusts rapidly in
boundary layers at either end of the sheet from the profile imposed by the feed and draw rollers to
the bulk profile. At leading order, we may simply impose the feed speed u(0,y) = 1 and draw speed
u(1,y) = D and disregard the transverse velocity conditions. However, the boundary-layer behaviour
must be properly resolved for accurate determination of higher-order corrections; we return to this in §5.

We expect the sheet to be symmetric about y = 0, i.e.,

v = uy = 0 on y = 0. (2.6)

Net conservation of mass and momentum at the edge of the sheet lead to the boundary conditions

v = ub′(x), on y = b(x), (2.7a)(
4hux +2hvy +Γ δ−1huy +δhvx
δ−1huy +δhvx 2hux +4hvy +Γ

)(
−δb′(x)

1

)
= 000 on y = b(x), (2.7b)

where
Γ =

1
εδ Ca

=
heater length

preform half-width
γ

µU
(2.8)

measures the importance of surface tension relative to viscous effects, with

Ca =
µU
γ

(2.9)

the capillary number, µ the viscosity, U the feed speed and γ the surface-tension coefficient. We will
investigate the regime in which Γ = O(1) as δ → 0 so that surface tension plays a role at leading order.

3. Leading-order behaviour

We examine the behaviour for a very long heater zone by considering the limit δ → 0 and expanding
variables in powers of δ . Evaluating the x-momentum equation (2.3b) at leading order and integrating
using the stress condition (2.7b) at the free edge, we find that the leading-order velocity varies only
along the length of the sheet, i.e.,

u0 = u0(x), (3.1)

and the flow is extensional. Evaluating the y-momentum equation (2.3c) at leading order and integrating
using the free-boundary condition (2.7b) we find

2h0u0x +4h0v0y =−Γ , (3.2)

which represents a net lateral stress balance. Integrating the mass conservation equation (2.3a) across
the sheet width and using no-flux condition (2.7a) and inlet conditions (2.4a) yields

u0

∫ b0

0
h0 dy = 1, (3.3)
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implying a constant net flux along the sheet. Integrating force balance (2.3b) across the sheet width
and using no-stress condition (2.7b) yields a cross-averaged longitudinal force balance, which may be
simplified using (3.2) to give

d
dx

(∫ b0

0
3h0u0x dy+

Γ b0

2

)
= 0. (3.4)

The term in brackets is the net axial tension in the sheet, including viscous and capillary contributions.
We note that the Trouton ratio in this regime is 3; this is to be expected since in the limit of a long
heater zone the sheet is quasi one-dimensional. We obtain a third equation for u0, h0, b0 by applying the
no-flux condition (2.7a) at leading order to obtain

u0b0x +
1
2

u0xb0 +
Γ

4

∫ b0

0

1
h0

dy = 0. (3.5)

Since we assume that the initial thickness profile is approximately uniform, i.e., h(0,y) = 1+O(δ ),
it can be shown (see, for example, Howell, 1994) that h0 = h0(x), so that the leading-order governing
equations (3.3)–(3.5) reduce to

u0b0h0 = 1, (3.6a)

d
dx

(
3
u0

du0

dx
+

Γ b0

2

)
= 0, (3.6b)

1
b0

db0

dx
+

1
2u0

du0

dx
=−Γ

4
b0, (3.6c)

with boundary conditions
u0(0) = h0(0) = b0(0) = 1, u0(1) = D. (3.7)

This leading-order problem has solution

u0(x) =
3κ

Γ +3κ−Γ e−κx/2 eκx, (3.8a)

h0(x) =

(
Γ +3κ−Γ e−κx/2

3κ

)2

e−κx/2 =
e3κx/2

u0(x)2 , (3.8b)

b0(x) =
3κ

Γ +3κ−Γ e−κx/2 e−κx/2 = u0(x)e−3κx/2, (3.8c)

where κ satisfies the transcendental equation

Γ =
3κ (eκ −D)

D(1− e−κ/2)
. (3.9)

We note that κ > log(D) and κ → log(D) as Γ → 0.
The thickness and width profiles of a sheet redrawn with D = 20 are shown in figure 5 for Γ = 0

and Γ = 5. We observe that surface tension promotes necking-in of the sheet, so that the thickness is
larger and the width smaller compared to their values in the absence of surface tension. Using (3.8), we
observe that the final thickness and width of the cross-section compared to their values in the absence
of surface tension can be quantified by

h0(1)
D−1/2 =

(
b0(1)
D−1/2

)−1

= e3(κ−log(D))/2. (3.10)
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FIG. 5: Leading-order thickness h0(x) and width b0(x) (given by (3.8)) at draw ratio D = 20 with Γ = 5,
compared with Γ = 0 case (dotted line).

The ratio h0(1)/D−1/2 is plotted in figure 6 as a function of the surface tension parameter Γ for a range
of values of the draw ratio D. In the limit of negligible surface tension, with Γ → 0 and κ → log(D), we
see that both h0(1) and b0(1) scale with D−1/2 and the aspect ratio of the sheet is preserved, as expected.
Increasing surface tension leads to lateral contraction of the sheet, accompanied by a transverse thick-
ening by the same factor (namely the right-hand side of equation (3.10)).

4. Correction terms

We have seen that the leading-order sheet thickness is independent of y. To describe non-trivial thickness
variations and thus quantify the phenomenon of edge thicknening, we now calculate corrections to
the leading-order behaviour by proceeding to O(δ ) in our asymptotic expansion. We return to the x-
momentum equation (2.3b), integrating and applying (2.7b) to obtain u1 = u1(x), so that the flow is
extensional up to O(δ ). Evaluating the y-momentum equation (2.3c) at O(δ ) and integrating, we obtain

2h0v1y +2h1v0y =−h0u1x−h1u0x, (4.1)

so that substituting in (3.2) and solving for v1 yields

v1 =−
y
2

u1x +
Γ

4
1
h2

0

∫ y

0
h1 dy. (4.2)

Integrating the mass equation (2.3a) across the sheet width and evaluating at O(δ ) yields

u0

∫ b0

0
h1 dy =−h0b0u1−u0h0b1. (4.3)

We again integrate the x-momentum (2.3b) equation across the sheet width, and use (4.3) to eliminate
h1 to obtain

d2

dx2

(
3

u1

u0

)
=−Γ

2
db1

dx
. (4.4)
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FIG. 6: Final thickness as a function of the surface tension parameter Γ , compared to the value in the
absence of surface tension, for D = 2 (blue), D = 10 (red) and D = 100 (green). The final width and
thickness are related by (3.10).

Meanwhile, the no-flux boundary condition (2.7a) together with (4.2)–(4.3) and leading-order solu-
tions (3.8) yields

d
dx

(
b1

b0
+

u1

2u0

)
+

Γ

4
b1 = 0. (4.5)

The mass equation (2.3a) also yields

1
2

u0x

u0
h1 +h1x−

(
1
2

u0x

u0
+

Γ

4
1

u0h0

)
yh1y =−

1
2

u1x

u0
h0−

u1

u0
h0x. (4.6)

We can learn more about the thickness correction h1 by introducing the scaled y-variable ξ = y/b0(x).
If h1 is now expressed as a function of x and ξ , the mass equation (4.6) is transformed to

∂

∂x
(h1
√

u0) =−
√

u1

u1

d
dx

(h0
√

u1) . (4.7)

The right-hand side is a function of x only, and we deduce that h1 is of the form

h1

(
x,

y
b0

)
= A(x)+

1√
u0(x)

g
(

y
b0(x)

)
, (4.8)

where g is an arbitrary integration function. To specify the the decomposition (4.8) uniquely, we set

∫ 1

0
h1(x,ξ )dξ = A(x),

∫ 1

0
g(ξ )dξ = 0. (4.9)
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The governing equations (4.3)–(4.5) can then be solved for

u1(x)
u0(x)

= 2u1(0)+A(0)−2κd1x+Γ d1α(x)− e−κxu0(x) [u1(0)+A(0)] , (4.10a)

b1(x)
b0(x)

= κd1x+Γ d1α(x)− e−κxu0(x) [u1(0)+A(0)] , (4.10b)

A(x)
h0(x)

=−2u1(0)−A(0)+κd1x−2Γ d1α(x)+2e−κxu0(x) [u1(0)+A(0)] , (4.10c)

where

α(x) =

(
2
(
e−κx/2−1

)
+κxe−κx/2

Γ +3κ−Γ e−κx/2

)
. (4.11)

The constants d1, A(0) and u1(0), together with the function g(ξ ), must be determined by applying
appropriate boundary conditions on h1, u1 and b1 (given by (4.8) and (4.10)). However, these correction
terms do not satisfy all of the boundary conditions given in (2.4); there are boundary layers at either end
of the sheet where the solution adjusts from its bulk behaviour to that at the boundaries.

5. Boundary-layer behaviour

5.1 Top boundary layer

We first consider the boundary layer at the top of the sheet x= 0 by rescaling (x,y) = (δ x̂, ŷ). By expand-
ing the outer solution obtained in §§3–4 in term of inner variables, we obtain the matching conditions

u∼ 1+δ

[
u1(0)+

(
κ− Γ

6

)
x̂
]
+ · · · , (5.1a)

v∼−
(

κ +
Γ

3

)
ŷ
2
+ · · · , (5.1b)

h∼ 1+δ

[
A(0)+g(ŷ)−

(
κ

2
− Γ

3

)
x̂
]
+ · · · , (5.1c)

b∼ 1−δ

[
u1(0)+A(0)+

(
κ

2
+

Γ

6

)
x̂
]
+ · · · , (5.1d)

to be applied as x̂→∞. This specified far-field behaviour prompts us to seek inner solutions in the form

u = 1+δ

[(
κ− Γ

6

)
x̂+
(

κ +
Γ

3

)
û1(x̂, ŷ)

]
+O

(
δ

2) , (5.2a)

v =
(

κ +
Γ

3

)[
− ŷ

2
+ v̂0(x̂, ŷ)

]
+O(δ ), (5.2b)

h = 1+δ

[
ηin(ŷ)−

(
κ

2
− Γ

3

)
x̂+
(

κ +
Γ

3

)
ĥ1(x̂, ŷ)

]
+O

(
δ

2) , (5.2c)

b̂ = 1+δ

[
−
(

κ

2
+

Γ

6

)
x̂+
(

κ +
Γ

3

)
b̂1(x̂)

]
+O

(
δ

2) . (5.2d)
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Substituting the ansatz (5.2) into (2.3) we find the leading-order governing equations in the boundary
layer:

(4û1x̂ +2v̂0ŷ)x̂ +(û1ŷ + v̂0x̂)ŷ = 0, (5.3a)

(û1ŷ + v̂0x̂)x̂ +(2û1x̂ +4v̂0ŷ)ŷ = 0, (5.3b)

û1x̂ + ĥ1x̂ + v̂0ŷ = 0. (5.3c)

The symmetry conditions (2.6) become

v̂0 = û1ŷ = 0 on ŷ = 0, (5.4)

and the free boundary conditions (2.7) (now at ŷ = 1) are transformed to

û1y + v̂0x̂ = 0, 2û1x̂ +4v̂0ŷ = 0 on ŷ = 1, (5.5a)
v̂0 = b1x̂ on ŷ = 1, (5.5b)

while the feed conditions (2.4a) become

û1 = 0, v̂0 =
ŷ
2

on x̂ = 0, (5.6a)

ĥ1 = b̂1 = 0 on x̂ = 0. (5.6b)

To satisfy the matching conditions (5.1), we require the normalised variables to have the far-field
behaviour

û1→ c1, v̂0 ∼ 0 as x̂→ ∞, (5.7a)

ĥ1→ f (ŷ)− c1− c2, b̂1→ c2 as x̂→ ∞, (5.7b)

for some constants c1, c2 and some function f .
The recipe for solving the boundary-layer problem is as follows. The velocity components û1 and v̂0

satisfy the linear elliptic system (5.3a)–(5.3b) on the fixed domain [0,∞)× [0,1], together with boundary
conditions (5.5a), (5.6a) and (5.7a). We solve the system numerically using finite-element software
FEniCS; since the problem is parameter free it only needs to be solved once. A convergence check
shows that the solution may be determined to three decimal places with a 1000× 400 mesh and the
domain truncated at x̂ = 5. The resulting boundary-layer solutions for û1 and v̂0 are plotted in figure 7(a)
and (b), and the integration constant c1 is also evaluated as part of the solution, namely

c1 =−0.064. (5.8)

Having solved for û1 and v̂0, we can subsequently determine the thickness and width perturbations,
ĥ1 and b̂1, by integrating the mass conservation equation (5.3c) and kinematic boundary condition (5.5b)
with respect to x̂:

ĥ1(x̂, ŷ) =−û1(x̂, ŷ)−
∫ x̂

0
v̂0ŷ(s, ŷ)ds, (5.9a)

b̂1(x̂) =
∫ x̂

0
v̂0(s,1)ds =−

∫ 1

0

(
û1(x̂, ŷ)+ ĥ1(x̂, ŷ)

)
dŷ. (5.9b)
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The resulting solutions plotted in figure 7(c) and (d) reveal some interesting behaviour. For small
values of x̂, the sheet initially thins most rapidly at the edges, so the maximum thickness occurs on
the symmetry line ŷ = 0, before evolving towards a far-field profile with the anticipated thick edges.
Meanwhile, the width perturbation b̂1(x̂) over-shoots somewhat before converging to a constant far-
field value: behaviour reminiscent of die swell (see, for example, Silliman & Scriven, 1980).

By comparing the numerical solutions with the anticipated far-field behaviour (5.7b), we determine
the remaining integration constant

c2 =
∫

∞

0
v̂0(x̂,1)dx̂ = 0.129, (5.10)

along with the function

f (ŷ) = c2−
∫

∞

0
v̂0ŷ(x̂, ŷ)dx̂, (5.11)

which is plotted in figure 8.
Finally, by applying the matching conditions (5.1), we can evaluate the integration constants needed

for the first-order outer solution, namely

u1(0) =
(

κ +
Γ

3

)
c1, (5.12a)

A(0) =−
(

κ +
Γ

3

)
(c1 + c2) , (5.12b)

g(y) = ηin(y)+
(

κ +
Γ

3

)
f (y). (5.12c)

In particular, we see how the function g governing the thickness variations in the outer solution is given
by a combination of the input thickness perturbation ηin and the numerically determined function f . To
determine the remaining constant d1, we must now match with the boundary layer at the bottom of the
sheet x = 1.

5.2 Bottom boundary layer

We express the thickness and width at the bottom of the sheet in the form

h(1,y) = D−2e3κ/2 +δηout(y)+O(δ 2), b(1) = De−3κ/2 +δβout +O(δ 2). (5.13)

Unlike the top of the sheet, where the thickness and width are specified, here the perturbations ηout and
βout are to be found as part of the solution.

We scale into the boundary layer at x = 1 by setting x = 1− δb0(1)x̄ and y = b0(1)ȳ, so that
(x̄, ȳ) ∈ [0,∞)× [0,1]. We write the outer solution given by (3.8) and (4.10) in inner variables and
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x̂
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û1

(a)

x̂

ŷ

v̂1
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x̂

ŷ
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(c)
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0
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0.1

0.15

x̂

b̂1

(d)

FIG. 7: Numerical solutions û1(x̂, ŷ), v̂0(x̂, ŷ), ĥ1(x̂, ŷ) and b̂1(x̂) to the boundary-layer problem (5.3)–
(5.7).
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FIG. 8: Numerical solution for the function f given by equation (5.11).

expand to get the matching conditions

u∼ D+δ

[
u1(1)+D3e−3κ

(
Γ

2
−
(

κ +
Γ

3

)
eκ/2

)
x̄
]
, (5.14a)

v∼−D3e−5κ/2
(

κ +
Γ

3

)
ȳ
2
+ · · · , (5.14b)

h∼ D−2e3κ/2 +δ

[
A(1)+D−1/2g(ȳ)+ e−3κ/2

(
−Γ +

(
κ +

Γ

3

)
eκ/2

)
x̄
2

]
, (5.14c)

b∼ De−3κ/2 +δ

[
b1(1)+D3e−4κ

(
κ +

Γ

3

)
x̄
2

]
, (5.14d)

as x̄→ ∞. These far-field conditions suggest the boundary layer scalings

u = D+δD3e−5κ/2
[(

Γ

2
e−κ/2−

(
κ +

Γ

3

))
x̄−
(

κ +
Γ

3

)
ū1(x̄, ȳ)

]
+O(δ 2), (5.15a)

v = D3e−5κ/2
(

κ +
Γ

3

)[
− ȳ

2
+ v̄0(x̄, ȳ)

]
+O(δ ), (5.15b)

h = D−2e3κ/2 +δηout(y)+δe−κ

[(
−Γ e−κ/2 +

(
κ +

Γ

3

))
x̄
2
−
(

κ +
Γ

3

)
h̄1(x̄, ȳ)

]
+O(δ 2),

(5.15c)

b = De−3κ/2 +δβout +δD3e−4κ

(
κ +

Γ

3

)[
x̄
2
− b̄1(x̄, ȳ)

]
+O(δ 2). (5.15d)

We then find that the scaled variables ū1, v̄0, h̄1 and b̄1 satisfy exactly the same partial differential
equations and boundary conditions (5.3)–(5.7) as the corresponding variables û1, v̂0, ĥ1 and b̂1 in the top
boundary layer. We deduce that the barred functions are identical to the hatted functions and therefore
satisfy the same far-field conditions (5.7). In particular, we must have ū1(x̄, ȳ)→ c1 as x̄→ ∞, where c1
is again the numerical constant given by equation (5.8). The matching condition (5.14a) then leads to

u1(1)
D

=−D2e−5κ/2
(

κ +
Γ

3

)
c1, (5.16)
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where, from (4.10a), we have

u1(1)
D

=

(
κ +

Γ

3

)(
c1− c2 +De−κ c2

)
+
(
Γ α(1)−2κ

)
d1. (5.17)

The remaining integration constant d1 is determined by equating the two expressions (5.16) and (5.17).
Similarly, the scaled sheet width must satisfy b̄1(x̄)→ c2 as x̄→ ∞, where c2 is given by equation

(5.10). By substituting the expression (5.15d) for b into the matching condition (5.14d), we obtain

b1(1) = βout−D3e−4κ

(
κ +

Γ

3

)
c2 = D2e−5κ/2

(
κ +

Γ

3

)
c2 +De−3κ/2(

κ +Γ α(1)
)
d1. (5.18)

We therefore determine explicitly how the output sheet width perturbation βout depends on the draw
ratio D and surface tension coefficient Γ , namely

βout =−D3e−3κ

[
A(1)− (c1 + c2)e−κ

(
κ +

Γ

3

)]
, (5.19)

where A(1) is given by (4.10c) and κ satisfies (3.9).
Finally we match the sheet thickness across the bottom boundary layer by substituting the far-field

behaviour (5.7b) into the matching conditions (5.14c) and (5.15c), resulting in

ηout (b0(1)ȳ) = A(1)+D−1/2g(ȳ)+ e−κ

(
κ +

Γ

3

)
[ f (ȳ)− c1− c2] . (5.20)

With g given by (5.12c), we thus obtain the output sheet thickness profile in the form

ηout (b0(1)ȳ) = A(1)− (c1 + c2)e−κ

(
κ +

Γ

3

)
+D−1/2

[
ηin(ȳ)−

(
κ +

Γ

3

)(
1+D1/2e−κ

)
f (ȳ)

]
,

(5.21)
with A(1) again given by (4.10c). Note that the output thickness and width corrections satisfy the
identity

h0(1)βout +b0(1)
∫ 1

0
ηout(ȳ)dȳ≡ 0, (5.22)

as a consequence of net mass conservation.

6. Results

6.1 Dependence on parameters

We now investigate the influence of the draw ratio D and surface tension parameter Γ on the final width
and thickness of the redrawn glass sheet. Although these are in principle determined by the analytical
formulae (5.19) and (5.21), the qualitative trends are somewhat obscured by the fact that these functions
are lengthy and depend the parameter κ , which in turn depends implicitly on D and Γ through the
expression (3.9). For the moment we focus on the drawing of an initially uniform preform, and therefore
set ηin ≡ 0.

In figure 9 we plot the correction to the final width, βout, as a function of the draw ratio D. For small
to moderate values of the surface tension parameter Γ , the width correction βout is positive for all values
of the draw ratio D. However, if Γ exceeds a critical value

Γ
∗ =

6
c2− c1

(
2c2 + c1 +

√
(4c2− c1)(2c2 + c1)

)
≈ 16.46, (6.1)
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(a) Correction to final sheet width.
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FIG. 9: Correction βout to final sheet width, given by (5.19), as a function of draw ratio D for surface
tension parameter Γ = 0.0 (black dashed), 0.1 (orange), 1.0 (red), 5.0 (magenta), 10.0 (violet), 20.0
(blue) and 50.0 (green).

0 5 10 15 20
0

0.5

1

1.5

D

η
ou

t( b 0
(1
)) −

η
ou

t(
0)

increasing Γ

(a) Variation in thickness correction.
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FIG. 10: Difference between edge and centre ouput sheet thickness as a function of draw ratio D for
surface tension parameter Γ = 0.0 (black dashed), 0.1 (orange), 1.0 (red), 5.0 (magenta), 10.0 (violet),
20.0 (blue) and 50.0 (green).
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then the width correction is negative at small draw ratios, so the effect of the finite heater zone is to make
the sheet slightly narrower than expected. In the limit of very high draw ratio, the width correction tends
to zero like βout ∼ (c2 + c1/2)D−1/2 log(D). Therefore βout always takes its maximum value at some
intermediate value of D. The size of the relative width correction βout/b0(1) again may be negative
at small draw ratios if Γ is sufficiently large. However, βout/b0(1) ultimately becomes an increasing
function of D, with βout/b0(1) ∼ (c2 + c1/2) log(D) as D→ ∞, so that the relative effect of the finite
heater zone is larger for larger draw ratios (see figure 9b).

The calculations carried out in §4 demonstrate not only that the aspect ratio of the sheet changes
by an O(δ ) amount due to the finite length of the heater zone, but also that the final thickness profile
becomes non-uniform at this order. To quantify the induced thickness variations across the sheet, in
figure 10a we plot the difference

ηout
(
b0(1)

)
−ηout(0) =

(
f (1)− f (0)

)(
D−1/2 + e−κ

)(
κ +

Γ

3

)
(6.2)

between the edge and centre values of the output sheet thickness versus the draw ratio. The thickness
variation attains a local maximum at some critical draw ratio D when the surface tension parameter
Γ . 4.02, but ultimately decreases for large draw ratios, regardless of the size of Γ . The thickness
variation increases as the surface tension parameter Γ increases, indicating that non-uniformities in
the final sheet thickness are exacerbated by the presence of surface tension, which acts to increase
necking-in of the sheet. However, the relative thickness variation across the sheet width, compared to
the leading-order thickness, increases as the draw ratio D increases (see figure 10b), and is maximised at
a critical value of surface tension parameter Γ (see figure 11), beyond which it decreases as Γ increases.

10−2 10−1 100 101 102
0

0.2

0.4

Γ

[ η
ou

t( b 0
(1
)) −

η
ou

t(
0)
] /h 0

(1
)

increasing D

FIG. 11: Relative variation in ouput sheet thickness as a function of the surface tension parameter Γ ,
with draw ratios D= 2.0 (magenta), 5.0 (violet), 10.0 (blue) and 20.0 (green). Local maxima are marked
with crosses.

We emphasise that, even though the absolute thickness variation is increased by surface tension, the
size of this variation relative to the leading-order thickness actually decreases for sufficiently large Γ ,
because the leading-order thickness is also increased by the presence of surface tension. This suggests a
possible procedure for reducing thickness variations while keeping the heater zone length fixed: instead
of using a preform whose aspect ratio is exactly the desired final aspect ratio, use a preform that is
slightly thinner, and increase the temperature to decrease the viscosity µ and increase the effect of
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surface tension Γ . Surface tension will act to alter the aspect ratio in the leading-order solution (3.8)
as desired, while the relative thickness variations will be smaller than in a sheet drawn without surface
tension.

6.2 Comparison with numerical experiments

We now test the validity of our model by comparing our predictions with numerical solutions to the
three-dimensional Stokes equations with appropriate boundary conditions obtained using the finite-
element package Polyflow (Ansys Inc. Polyflow, 2013). Uniform viscosity was prescribed throughout
the sheet, and solutions were calculated with a fixed thin-sheet parameter ε = 0.05� 1 and a range of
values of the geometrical parameter δ , surface tension parameter Γ and draw ratio D.
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)( 1+

1 √
D

)

(b)

FIG. 12: Scaled difference in thickness and width from leading-order prediction in the absence of surface
tension (Γ = 0). The coloured lines/circles show numerical solutions to the three-dimensional Stokes
equations computed in Polyflow with δ = 0.05, and the black-dashed lines are asymptotic predictions.
(a) Scaled thickness profile for δ = 0.01 (red), 0.05 (orange), 0.1 (yellow), 0.2 (green), 0.35 (blue) and
0.5 (violet) with draw ratio D = 20, and the asymptotic solution in the limit δ → 0 (6.3b). (b) Scaled
width as a function of δ for D = 5 (red), D = 10 (orange), D = 15 (pink), D = 20 (magenta), D = 25
(yellow), D = 30, (brown), D = 35 (lime), D = 40 (olive), D = 45 (green), and D = 50 (blue), and the
asymptotic prediction (6.3a) for the change in width in the limit δ → 0.

We first consider sheets redrawn at draw ratio D = 20 in the absence of surface tension. With Γ = 0,
the expressions (5.19) and (5.21) for the output width and thickness perturbations simplify to

b(1)−D−1/2

δ
∼ βout =

log(D)√
D

(
1+

1√
D

)(
c2 +

c1

2

)
, (6.3a)

h(1,y)−D−1/2

δ
∼ ηout(y) =

log(D)√
D

(
1+

1√
D

)(
−c2−

c1

2
+ f
(
y/b0(1)

))
. (6.3b)

In figure 12a we plot the left-hand side of (6.3b) as computed in Polyflow using small but nonzero values
of δ . The coloured lines are the same data as in figure 2, but the width and thickness of the sheet are
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scaled so that the profiles all collapse onto one curve. A black dashed line shows the thickness correction
(6.3b) predicted by the asymptotic solution. The asymptotic solution captures the thickness variations
extremely well, even for values of δ as large as 0.5 and also for values small enough to be comparable
to the thin-sheet parameter ε .

The change in width as a function of δ is plotted in figure 12b, and compared with numerical
solutions to the three-dimensional Stokes equations for a range of draw ratios D. The data are scaled to
collapse onto one curve for all values of D. The asymptotic prediction (6.3a) is shown as a black dashed
line. The agreement between the asymptotics and full numerical solutions is excellent, and evidently
becomes increasingly accurate as δ → 0, as expected.

In figure 13, we show the final thickness profile of sheets drawn with surface tension parameter
Γ = 1, for two values of the aspect ratio δ = 0.05 and δ = 0.2. The data are scaled with 1/

√
D in

both directions so that the scaled width and average thickness would both be 1 in the absence of surface
tension. The agreement between the full numerical solution and the two-term asymptotic solution (5.13)
is good outside a region of size O(εδ ) at the edge of the sheet, where surface tension smooths out the
sharp corners. This local smoothing is not captured by our model, and gives rise to a small offset in the
predicted width compared to the actual width, which persists over different values of δ .
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FIG. 13: Final thickness profile of sheets drawn at draw ratio D = 20 with (a) δ = 0.05 and (b) δ = 0.2
and surface tension Γ = 1. Numerical solutions to the full three-dimensional problem computed in
Polyflow are shown in red, the black dotted lines show the leading-order asymptotic solution (3.8) in
the limit δ → 0, and the black dashed lines show the two-term asymptotic solution (5.13).

6.3 Inverse problem

Now we return to the inverse problem of modifying the preform shape to control the output thickness
profile. In particular, we would like to choose the input thickness perturbation ηin(y) to ensure that the
final product is uniform, i.e. that ηout(y) is constant. From equation (5.21), we see that this is easily
achieved by setting

ηin(y) =
(

κ +
Γ

3

)(
1+D1/2e−κ

)
f (y), (6.4)

where f is the numerically determined function plotted in figure 8. As shown in O’Kiely (2017), it
is also possible to arrive at the optimal preform shape (6.4) by the method employed for a short heater
zone in O’Kiely et al. (2015), i.e., by introducing a “compressive” draw ratio D∗= 1/D and rescaling the
variables appropriately. Comparing the solutions (5.21) and (6.4) to the forward and inverse problems,
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we see that, from a practical point of view, a straightforward procedure can be followed, which works
for all values of the surface tension parameter Γ . Upon observing some thickness variation in a redrawn
sheet: (i) determine the thickness variation from the mean across the width and (ii) remove the same
profile from the preform, scaled with a factor

√
D and stretched across the preform width.

7. Discussion

In this paper, we analyse the glass redraw process in the limit where the heater zone is long compared to
the width of the preform, and investigate how thickness variations across the width of the final product
are affected by the length of the heater zone. We derive a mathematical model to predict how the
thickness profile and width of the final product depend on the process parameters. We first address
the problem at leading order in the small aspect ratio of width to length, and find that the preform
shape is preserved at leading order in the absence of surface tension, with necking-in of the sheet edges
increasing as the importance of surface tension relative to viscous effects increases.

By matching between the bulk of the sheet and boundary layers at either end of the heater zone where
the solution adjusts rapidly to satisfy the boundary conditions, we determine that the correction terms for
a sheet of finite length are of O(δ ), with δ = preform half-width/heater zone length. Schultz & Davis
(1982) have previously bypassed the solution of the boundary-layer problem for a fibre by applying
an averaged version of the boundary conditions directly to the bulk solution, but this approach fails to
predict the existence of O(δ ) terms, instead giving correction terms of O(δ 2). The O(δ ) corrections can
be determined by solving the two-dimensional boundary-layer problems at the sheet ends numerically.
We find that the governing equations in the two boundary layers are equivalent, and can be rescaled
to be independent of the draw ratio and rescaled capillary number, so that the boundary-layer problem
needs only to be solved once.

We compare our asymptotic results with numerical solutions to the three-dimensional Stokes equa-
tions. In the absence of surface tension, the agreement is excellent and the scalings predicted by the
asymptotics allow all the numerical data to be collapsed onto one curve for any value of δ and the draw
ratio D. When surface tension is included, the agreement between numerics and asymptotics is good
except for small regions near the corners of the sheet, which are smoothed out by surface tension. Our
model relies on a thin-sheet approximation that breaks down in the region at the edge of the sheet where
the smoothing effect occurs, and so smoothing can only be resolved by solving the full Stokes equations
inside this edge region.

We use the two-term asymptotic solution to the long-heater-zone problem to investigate how the
geometric properties of the final product depend on the process parameters. The size of the higher-order
corrections relative to the leading-order solution increases as the draw ratio D increases (except when Γ

is large and the correction changes sign). The width correction is typically positive, except in the limit
where surface tension dominates over drawing, in which case it may be negative. The relative thickness
variation across the sheet width is maximized at a critical value of the surface tension parameter, beyond
which it decreases as the effect of surface tension increases. It may therefore be advantageous to increase
the effect of surface tension (e.g. by increasing the furnace temperature) to decrease thickness variations,
even though the aspect ratio of thickness to width will be altered, since it is more straightforward to alter
the aspect ratio of the preform than it is to modify the initial thickness profile.

We restrict our attention to sheets with uniform viscosity in this paper. For spatially varying viscos-
ity, we still anticipate boundary layers of size O(δ ) near the inlet and outlet where the solution adjusts to
satisfy the boundary conditions, giving rise to corrections of size O(δ ) to the leading-order solution. In
many industrial processes, the viscosity varies principally in the direction of drawing, so that µ = µ(x)
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to a first approximation. In such a case, the viscosity variations may be eliminated from the problem by
transforming to the new axial variable X =

∫
dx/µ(x), and the results of this paper may thus be applied

directly. We have also neglected gravity in our study; this can easily be taken into account by including
an extra term in the momentum equations.

Finally, we address the inverse problem of determining the optimal preform shape that will redraw to
a sheet of uniform thickness. Similarly to the short-heater-zone case (O’Kiely et al., 2015), it is possible
to pose this inverse problem in terms of the forward problem. In the long-heater-zone case studied
here, the inverse problem may be solved in the same computation as the forward problem. Furthermore,
we identify a practical solution which involves simply measuring the thickness variation in a product
redrawn from a rectangular preform, and applying a straightforward scaling to determine the preform
modification required, with no computation necessary.

This paper, together with the numerical simulations of Filippov & Zheng (2010) and the short-
heater-zone analysis carried out in O’Kiely et al. (2015), demonstrates that thick edges are an endemic
problem in the redraw of thin glass sheets. A preform with uniform thickness will always redraw to
a product that is thicker at the edge than in the centre, regardless of the length of the heater zone.
However, our analysis allows the variations in the glass sheet shape to be predicted and controlled with
high accuracy, facilitating further progress in the manufacture of products with particular desired aspect
ratios and thicknesses.
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