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Abstract

Membrane filtration is a process of separating particles from fluids. Over
time, particles are trapped within the membrane structure and on the mem-
brane surface, forming a cake. In this paper, we develop a mathematical
model for the transient blocking dynamics in a concertinaed filtration device
composed of angled porous membranes and dead-ends. We examine how the
inclusion of particles affects the flow dynamics, and we uncover potential in-
accuracies in relying on flux–throughput curves to distinguish between caking
and internal blocking dynamics. Moreover, we show that optimal filtration
performance depends strongly depends on both the performance metric and
the membrane configuration. Finally we introduce a method for deriving a
non-uniform permeance that ensures constant initial cake growth.

1 Introduction

Membrane filtration is a vital process used to separate fluid mixtures in many indus-
try sectors including healthcare, water treatment, and food production [Noble and
Stern, 1995; van Reis and Zydney, 2007; Yao et al., 1971]. Filtration devices com-
prise porous membranes through which a mixture of fluid and unwanted particles is
passed. The particles get trapped by the membrane and a filtered fluid is produced.
While efficient instantaneous trapping of unwanted particles makes for a good filter,
this occurs at the cost of blocking the filter over time, which can reduce the total
amount of fluid processed by the device. There are two key blocking mechanisms:
blocking inside the membrane pores (internal blocking) and blocking on the surface
of the membrane (caking).

There are a wide range of filtration devices and in this paper we focus our
attention to direct-flow filtration devices. Such devices consist of stacked porous
membranes with alternating capped ends (see figure 1a). The fluid mixture is passed
into the device through open ends, travels through the porous membrane and out
through the other side through open ends. Typically, in direct-flow devices, the fluid
is fed in parallel to the membrane surface. In this paper, we seek to understand how
filtration performance is affected by an angled-membrane configuration in a direct-
flow device. The motivation for this study arises from an industrial example of such
a direct-flow device designed by Smart Separations Ltd. The steady-state version of
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the model presented herein is derived in earlier work [Pereira et al., 2021]. The goal
of the previous study was to optimise the filtration performance for a particle-free
steady flow. In this paper we build on this previous work to incorporate transient
blocking effects in the optimisation of the performance of a concertinaed filtration
system.

An understanding of the blocking dynamics in filtration is vital in optimising the
design of a filter, and there have been a number of previous studies of examining
such dynamics. Wang et al. [2017] developed a mathematical model of internal
blocking in vertically stacked filtration membranes in a direct-flow device. This
previous study looked at the effect of spacing between the membranes on the total
amount of fluid processed through the device. Further relevant work arises from
studies of blocking in pleated filtration membranes, which are geometrically similar
to a direct-flow device with the key difference being the presence of dead ends
in the latter. King and Please [1996] presented an asymptotic analysis of caking
dynamics relevant for several different parameter regimes applied to a rectangularly
pleated device. Later work by Sanaei et al. [2016] incorporated both caking and
internal-blocking dynamics in a mathematical model of flow through a rectangular
pleated membrane with surrounding porous support material. The work sought to
examine the relative importance of the resistance of the support material to that
of the membrane, and the evolution of the permeability profile through internal
blocking. Recently, Sun et al. [2020] presented a model of internal blocking within
an analogous device of rectangular pleats contained in porous support material. The
authors compared linear, quadratic, and cubic membrane permeability profiles with
the aim of maximising the total amount of fluid processed through the filtration
device.

In this paper we present a mathematical model of caking dynamics in a direct-
flow device with angled membranes. The distinction between the past works of
blocking dynamics in a filtration device and the work presented in this paper is
that we focus our study on the effects of particle inclusion, membrane configura-
tion (namely angle and position), and membrane permeability profile on the caking
dynamics in a concertinaed filtration device.

2 Model development

In this paper, we consider the flow through a single repeated module of the filtration
device shown in figure 1. The geometry of the device is such that the transverse
length X̂ is significantly smaller than the lateral length Ẑ and depth Ŷ (see table 1).
Moreover, variations in the ŷ-axis are assumed to be negligible, and we consider the
two-dimensional domain in (x̂, ẑ)-space (see figure 1b). We will derive the model
using dimensional quantities (denoted by hats) and then scale the model to derive
the associated dimensionless quantities (denoted without hats). The position of the
upstream side of the membrane is specified by x̂ = m̂(ẑ) with

m̂(ẑ) = â+ 1
2

(
Ẑ tan β̂ − ĥ

)
− ẑ tan β̂, (2.1)
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Figure 1: Schematic of the concertinaed filtration device. Figure 1a shows the
full three-dimensional device; reproduced from Smart Separations Ltd [2020] with
permission. Figure 1b depicts the two-dimensional domain of a single filtration
module; the centre of the membrane is (x̂, ẑ) = (â, Ẑ/2) and the centre of the
domain (x̂, ẑ) = (X̂/2, Ẑ/2) is indicated by a cross.

where β̂ is the angle of the membrane with the horizontal axis and ĥ is the mem-
brane thickness (see figure 1b). The membrane length L̂ = Ẑ/ cos β̂ is governed
by the angle β̂. The position of the membrane midpoint (x̂, ẑ) = (â, Ẑ/2) is deter-
mined through the parameter â. The membrane separates the flow domain into two
subdomains described by

Ω̂1 = {x̂ ∈ [0, ŝ(ẑ, t̂)], ẑ ∈ [0, Ẑ]}, (2.2a)

Ω̂2 = {x̂ ∈ [m̂(ẑ) + ĥ, X̂], ẑ ∈ [0, Ẑ]}, (2.2b)

where x̂ = ŝ(ẑ, t̂) is the position of the moving cake front at time t̂.
Driven by a pressure drop (p̂in − p̂out) > 0, where p̂in and p̂out are the inlet and

outlet pressures respectively, the flow enters the domain Ω̂1 at ẑ = 0, travels into
the cake at x = s(z, t), through to the membrane at x̂ = m̂(ẑ), and exits the domain
Ω̂2 at ẑ = Ẑ. The fluid mixture comprises liquid and particles to be filtered.

The steady-state flow studied in our previous paper [Pereira et al., 2021] is re-
versible and the results for β̂ > 0 can generalised to those for β̂ < 0 with the
subdomains Ω̂1 and Ω̂2 switched for symmetric flux. However, in this paper we
consider the transient system with an evolving cake front in which the flow is not
reversible and as such we cannot obtain the results for β̂ < 0 from the β̂ > 0 set-
up. We note, however, that, when β̂ < 0, as |β̂| is increased, the size of the inlet
decreases which has the effect of increased pressure drop in Ω̂1 and thus a reduced
pressure drop across the membrane. This consequently decreases the flux through
the device. In this paper, we seek a filter configuration that maximises the processed
fluid volume and we will therefore restrict our attention to β̂ ≥ 0.
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Parameter Value

Lateral height, Ẑ 50 mm

Filter depth, Ŷ 50 mm

Transverse length, X̂ 3.6 mm

Air viscosity, µ̂ 1.81× 10−5 Pa s

Air density, ρ̂ 1.2 kg m−3

Lateral velocity scale, Ŵ0 50 mm s−1

Table 1: Parameter values for air flow through the filtration device shown in figure 1;
values for Ẑ, Ŷ , X̂, and Ŵ0 provided by Smart Separations Ltd [2020].

2.1 Governing equations

The multiphase flow comprises a continuous fluid phase and discrete particles; the
phase distribution is described through the corresponding volume fractions φf , φp.
We assume the particles to be sufficiently small so as to not disturb the dynamics
of the continuous fluid flow. The flow dynamics of both phases (fluid and particles)
can therefore be described by a single velocity û(x̂, ẑ, t̂) = (û(x̂, ẑ, t̂), ŵ(x̂, ẑ, t̂)) and
pressure p̂(x̂, ẑ, t̂). We assume there to be a constant volume fraction of particles in
Ω̂1:

φp = φp1 in Ω̂1. (2.3)

The fluid volume fraction φf1 = 1− φp1 is therefore also constant. In the subdomain
Ω̂2 we assume that no particles are present:

φp2 = 0, in Ω̂2. (2.4)

Hence, the fluid volume fraction in Ω̂2 is φf2 = 1. While (2.4) assumes perfect
filtration of the particles, we note that it is straightforward to extend this model to
account for imperfect filtering with φp2 6= 0.

The geometry of the system is such that the ratio between the transverse and
lateral domain lengths ε = X̂/Ẑ is small. Indeed, ε is sufficiently small to result in
a small reduced Reynolds number ε2Re = ε2ρ̂Ŵ0Ẑ/µ̂ (see Table 1). The flow in Ω̂1

and Ω̂2 is thus modelled through the Stokes equations:

µ̂∇̂2û− ∇̂p̂ = 0, (2.5a)

∇̂ · û = 0, (2.5b)

where µ̂ is the fluid viscosity, which we assume to be constant. We seek solutions
(û1, ŵ1, p̂1) in Ω̂1 and (û2, ŵ2, p̂2) in Ω̂2.

The boundary conditions at the inlet and outlet are

p̂1 = p̂in at ẑ = 0, x̂ ∈ [0, ŝ(0, t̂) ], (2.6a)

p̂2 = p̂out at ẑ = Ẑ, x̂ ∈ [m̂(Ẑ) + ĥ, X̂]. (2.6b)

4



At the closed ends in both subdomains, at ẑ = Ẑ in Ω̂1 and at ẑ = 0 at Ω̂2, we
prescribe no-flow boundary conditions:

û1 = 0 at ẑ = Ẑ, x̂ ∈ [0, ŝ(Ẑ, t̂)], (2.7a)

û2 = 0 at ẑ = 0, x̂ ∈ [m̂(0) + ĥ, X̂]. (2.7b)

We assume symmetric flow between neighbouring modules, which corresponds to
the following symmetry conditions:

û1 = 0,
∂ŵ1

∂x̂
= 0 at x̂ = 0, (2.8a)

û2 = 0,
∂ŵ2

∂x̂
= 0 at x̂ = X̂. (2.8b)

The porous membrane and cake layers provide resistance to the flow. In general,
the flow resistance R̂ due to a permeable material of thickness ĥ and permeability
k̂ is the reciprocal of the permeance κ̂ = k̂/µ̂ĥ: R̂ = 1/κ̂. In our problem, the total
resistance is the sum of the resistance of the membrane R̂m and that of the cake
layer R̂c:

R̂(ẑ, t̂) = R̂m + R̂c(ẑ, t̂) =
µ̂ĥ

k̂m
+
µ̂(m̂(ẑ)− ŝ(ẑ, t̂))

k̂c
, (2.9)

where (m̂(ẑ)− ŝ(ẑ, t̂)) is the cake thickness, and k̂m and k̂c are the permeabilities of
the membrane and cake layer, respectively. Thus we see that the total permeance is

κ̂(ẑ, t̂) =

[
µ̂ĥ

k̂m
+
µ̂(m̂(ẑ)− ŝ(ẑ, t̂))

k̂c

]−1
. (2.10)

The permeance and pressure difference govern the flow through the porous mem-
brane and cake layers. We impose Darcy flow across the membrane and cake,
which provides the outflow boundary condition in Ω̂1. This boundary condition
is prescribed on x̂ = ŝ(ẑ, t̂), which corresponds initially to the membrane surface,
ŝ(ẑ, 0) = m̂(ẑ), and on the cake front, ŝ(ẑ, t̂), at later times t̂ > 0. The Darcy
boundary condition is therefore given by

û1 · ns = κ̂(ẑ, t̂)
[
p̂1(ŝ, ẑ, t̂)− p̂2(m̂+ ĥ, ẑ, t̂)

]
at x̂ = ŝ(ẑ, t̂), (2.11)

where ns is the unit normal vector to the cake front.
The corresponding boundary condition for the flow velocity into Ω̂2 from the

membrane is given by balancing the flux of fluid through the cake and membrane:

φf1û1(ŝ, ẑ, t̂) = û2(m̂+ ĥ, ẑ, t̂). (2.12)

Finally, to close the system of equations, we prescribe no slip on both sides of the
membrane:

û1 · ts = 0 at x̂ = ŝ(ẑ, t̂), (2.13a)

û2 · tm = 0 at x̂ = m̂(ẑ) + ĥ, (2.13b)
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where ts and tm are, respectively, the unit tangent vectors to the cake front and
membrane. While previous work by Beavers and Joseph [1967] describes the appro-
priate tangential slip-flow boundary condition, subsequent work by Griffiths et al.
[2013] has shown that the inclusion of slip does not significantly affect the flow
dynamics and we therefore neglect slip effects here.

2.2 Caking dynamics

The model equations presented so far describe the flow dynamics in the subdomains
Ω̂1 and Ω̂2. In general there are two key blocking mechanisms in filtration systems:
internal blocking and caking. Typically, small particles are filtered out within the
membrane depth via internal blocking, while large particles that cannot penetrate
into the membrane form a cake layer on the surface. Experimental studies conducted
by Smart Separations Ltd [2020] indicated that, for the particular application of
filtering dust from air, caking is more prominent than internal blocking, and we
therefore focus our study on caking dynamics.

The cake-evolution equation follows from conservation of flux across the moving
cake front:

∂ŝ/∂t̂√
1 + (∂ŝ/∂ẑ)2

= −φp1γcû1(ŝ, ẑ, t̂) · ns (2.14)

where the left-hand side is the normal velocity to the moving cake front (see Ap-
pendix A for derivation). We have introduced the packing coefficient γc = (φpc−φ

p
1)
−1

which relates the actual volume of particles in the fluid to the volume of cake they
produce, where φpc is the volume fraction of particles in the cake layer. Note that
γc > 0 as we have φpc > φp1. As noted, initially there will be no cake present:

ŝ(ẑ, 0) = m̂(ẑ). (2.15)

2.3 Dimensionless model

We introduce the following dimensionless variables:

t̂ = τct, ẑ = Ẑz, x̂ = εẐx, β̂ = εβ, ŝ = X̂s, m̂ = X̂m, â = X̂a,

ĥ = X̂h, û = εŴ0u, ŵ = Ŵ0w, p̂ =
µ̂Ŵ0

ε2Ẑ
p+ p̂out,

κ̂ =
ε3Ẑ

µ̂
κ, κ̂m =

ε3Ẑ

µ̂
κm, k̂c = ε3ẐX̂kc, (2.16)

where τc = Ẑ/γcŴ0 is the caking timescale, derived from the cake-evolution equation
(2.14). Recalling the definition of γc = (φpc−φ

p
1)
−1, we see that changing the volume

fraction of particles in the system correspondingly changes the timescale τc given
above. Moreover, from (2.16) we can write the velocity scaling in terms of the
pressure drop: Ŵ0 = ε2Ẑ(p̂in − p̂out)/µ̂.

Note that the membrane angle has been scaled such that β ∈ [0, 1]. Applying
(2.16) to (2.1) yields the dimensionless leading-order membrane position:

m(z) = a− 1
2
h+ β

(
1
2
− z
)
. (2.17)
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Figure 2: Dimensionless filtration-module domain (x, z) ∈ {[0, 1] × [0, 1]}. The
membrane and cake layers are schematised in red and grey, respectively, with the
evolved cake front denoted by x = s(z, t > 0). The membrane centre is at (x, z) =
(a, 1/2) and is specified by the parameter a. The membrane angle is given by β.

Applying the scalings (2.16) to (2.2) yields the following dimensionless subdomains
(shown in figure 2):

Ω1 = {x ∈ [0, s(z, t)], z ∈ [0, 1]}, (2.18a)

Ω2 = {x ∈ [m(z) + h, 1], z ∈ [0, 1]}. (2.18b)

Scaling the Stokes equations (2.5) using (2.16) and taking the limit ε→ 0 yields
the dimensionless lubrication equations:

∂p

∂x
= 0,

∂2w

∂x2
− ∂p

∂z
= 0,

∂u

∂x
+
∂w

∂z
= 0. (2.19a–c)

The dimensionless inlet and outlet pressures are derived by applying (2.16) to (2.6),
which gives

p1 = 1 at z = 0, x ∈ [0, s(0, t)], (2.20a)

p2 = 0 at z = 1, x ∈ [m(1) + h, 1]. (2.20b)

Applying the scalings (2.16) to the no-flow boundary condition (2.7) results in
the loss of the no-slip information, and we are consequently left with the following
dimensionless no-penetration boundary condition:

w1 = 0 at z = 1, x ∈ [0, s(1, t)], (2.21a)

w2 = 0 at z = 0, x ∈ [m(0) + h, 1]. (2.21b)

To enforce the no-slip condition would require us to rescale into the boundary layer
regions near the end caps at z = 0, 1, but we expect this to have a small effect on
the global flow. The scaled symmetry conditions (2.8) are

u1 = 0,
∂w1

∂x
= 0 at x = 0, (2.22a)

u2 = 0,
∂w2

∂x
= 0 at x = 1. (2.22b)
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The dimensionless Darcy flow (from (2.11)) through the porous membrane and cake
is given by

u1 = κ [p1(c, z, t)− p2(m(z) + h, z, t)] at x = s(z, t), (2.23)

where the dimensionless permeance is

κ =

(
1

κm
+
m− s
kc

)−1
, (2.24)

which we note will evolve over time.
The outflow boundary condition at the membrane (2.12) becomes:

φf1u1(s, z, t) = u2(m+ h, z, t), (2.25)

and the no-slip condition (2.13), exploiting the small angle of the membrane, is

w1 = 0 at x = s(z, t), (2.26a)

w2 = 0 at x = m(z) + h. (2.26b)

Applying (2.16) to the cake-evolution equation (2.14) and taking the limit ε → 0
yields

∂s

∂t
= −φp1u1(s, z, t), (2.27)

The corresponding initial condition for the cake position is

s(z, 0) = m(z). (2.28)

2.4 Model reduction

The full dimensionless system is given by the lubrication equations (2.19) with
boundary conditions (2.20)–(2.26) for each subdomain together with the blocking
dynamics described by (2.27)–(2.28). The momentum equation in the x-direction
(2.19a) gives p1 = p1(z, t) and p2 = p2(z, t).

In the inflow region Ω1, the lubrication equations (2.19b,c) together with the
symmetry boundary condition (2.22a) and the condition ensuring no-slip on the
cake front (2.26a) can be manipulated to give the velocities in terms of the pressure:

u1 = 1
2
x
[
(p′1s

2)′ − 1
3
x2p′′1

]
, (2.29a)

w1 = 1
2
p′1(x

2 − s2), (2.29b)

where ′ denotes partial differentiation with respect to z. Using (2.29a) in the Darcy
flow boundary condition (2.23) we derive the following equation linking the pressures
p1 and p2:

1
3

(
s3p′1

)′
= κ (p1 − p2) . (2.30)

The necessary boundary conditions for p1 are supplied through the inlet pressure
(2.20a) and no-flow condition at the closed end (2.21a):

p1 = 1 at z = 0, (2.31a)

p′1 = 0 at z = 1. (2.31b)
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We can derive the governing equation of motion for the pressure p2 in Ω2 in the same
way. We first use the lubrication equations (2.19b,c) with the symmetry boundary
condition (2.20b) and the no-slip condition on the membrane surface (2.22b) to
derive

u2 = 1
2
(x− 1)

[(
(m(z) + h− 1)2

)′
p′2 − 1

3
(x− 1)2p′′2

]
, (2.32a)

w2 = 1
2

[
(x− 1)2 − (m(z) + h− 1)2

]
p′2. (2.32b)

The conservation-of-fluid-flux condition (2.25) with (2.32a) and the equation for p1
(2.30) yield a second equation linking the pressures p1 and p2:

1
3

[
(m(z) + h− 1)3p′2

]′
= φf1κ (p1 − p2) . (2.33)

The corresponding boundary conditions are derived from the outlet pressure (2.20b)
and no-flow condition at the closed end (2.21b):

p2 = 0 at z = 1, (2.34a)

p′2 = 0 at z = 0. (2.34b)

We can use these workings to rewrite the equations for the cake evolution (2.27)
and (2.28) in terms of p1 and p2:

∂s

∂t
= −φp1κ(p1 − p2), s(z, 0) = m(z). (2.35)

The problem is therefore reduced to solving the modified Reynolds equations
(2.30)–(2.31) for p1 in Ω1 and (2.33)–(2.34) for p2 in Ω2 coupled with the permeance
and cake-evolution equations given by (2.24) and (2.35) respectively. The remaining
parameters in the system are the dimensionless midpoint a, angle β, permeance of
the membrane κm, the cake permeability kc, and the volume fraction of fluid φf1 in
Ω1. In practice the membrane is thin compared with the size of the filter module. We
therefore consider the regular limit in which the dimensionless membrane thickness
h → 0 while the membrane permeance κm remains finite. This then removes the
geometrical effect of membrane thickness while retaining its resistive properties.

The final reduced system of equations is:

1
3

(
s3p′1

)′
= κ(p1 − p2), p1|z=0 = 1, p1|z=1 = 0, (2.36a)

1
3

[
(m(z) + h− 1)3p′2

]′
= φf1κ(p1 − p2), p2|z=1 = 0, p′2|z=0 = 0, (2.36b)

κ =

(
1

κm
+
m− s
kc

)−1
, (2.36c)

∂s

∂t
= −(1− φf1)κ(p1 − p2), s(z, 0) = m(z), (2.36d)

m = a+ β
(
1
2
− z
)
. (2.36e)

The solution to the model (2.36) provides insight into the flow dynamics and
is used to calculate key quantities including the flux of fluid through the filtration-
module domain, which is defined by

Q(t) =

∫ s

0

φf1w1|z=0 dx = −1
3
φf1
(
s3p′1

)
|z=0. (2.37)
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The amount of fluid processed through the device is given by the throughput:

V (t) =

∫ t

0

Q(τ) dτ. (2.38)

In practice, practitioners will use a filtration membrane at a fixed pressure difference
across the module until the flux through the membrane drops such that it is no longer
economical to use the filter. We therefore define the end time T to be the time at
which the in silico experiment is terminated due to the flux dropping below some
critical value Qc. A key quantity of interest in this paper will be V (T ), the total
throughput achieved at the end time.

The key control parameters in the model (2.36) are φf1 , a, β, and κm. In this
paper, we will study the effects of each of these control parameters in optimising
the performance of the filter in turn. In Section 3 we examine how the inclusion
of particles influences the flow dynamics in the filter. In Section 4 we study the
effect of the angle and position of the membrane on caking in relation to optimising
performance. In Section 5 we consider how a spatially varying permeance might be
utilised to optimise filtration performance.

3 The effect of adding particles to the steady-

state system

Previous work by Pereira et al. [2021] presents a full analysis of the particle-free
steady-state flow through a concertinaed filtration membrane. In this section, we
look at the effect of adding particles into the system by considering how the steady-
state flow changes with the volume fraction of particles.

To isolate the effect of particle inclusion (i. e. the effect of changing φf1) we focus
our attention to a transverse membrane positioned in the centre of the domain, by
setting β = 0 and a = 0.5. We further restrict our attention to a steady-state set-
up that corresponds to a scenario where the particles are removed on contact with
the membrane, so that s(z, t) = m(z) and κ = κm. Our reduced parameter space
then comprises the membrane permeance κm and the volume fraction of fluid in the
inflow domain φf1 .

For a membrane of such characteristics operating in this steady state we can
derive explicit analytic solutions to (2.36) for the pressure:

p10 =
1

N

[
a3(1− a)3 + a6 cosh(M) + (1− a)6 cosh(M(z − 1))

+ a3(1− a)3 cosh(Mz)− a3(1− a)3M(z − 1) sinh(M)
]
, (3.1a)

p20 =
1

N

[
a3(1− a)3 + a6 cosh(M)− a3(1− a)3 cosh(M(z − 1))

− a6 cosh(Mz)− a3(1− a)3M(z − 1) sinh(M)
]
, (3.1b)

where

M =

√
3κm
a3

+
3κmφ

f
1

(1− a)3
,

N =
[
(a6 + (1− a)6

]
cosh(M) + a3(1− a)3 [2 +M sinh(M)] . (3.2)
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We consider the total flux (of particles and fluid) in the upstream subdomain Ω1

at t = 0 defined by

Q1 =

∫ a

0

w1|z=0 dx = −1
3

(
m3p′10

)
|z=0. (3.3)

Similarly we can define the amount of fluid processed through the device by calcu-
lating the flux out of the downstream subdomain Ω2:

Q2 =

∫ 1

a

w2|z=1 dx = 1
3

(
(m− 1)3p′20

)
|z=1. (3.4)

From conservation of fluid we have φf1Q1 = Q2.

(a) (b)

Figure 3: Analytical flux in Q1 (3.3) in figure 3a and flux out Q2 (3.4) in figure 3b
plotted as functions of the fluid volume fraction for the case when s(z, t) = m(z)
and the particles are removed on contact with the membrane. Here, β = 0 and
a = 0.5 and κm = 0.5, 1, 1.5, 2.

The analytical result for the steady fluxes as a function of the fluid volume
fraction φf1 is shown in Figure 3. For a given applied pressure, as the volume
fraction of fluid increases, the total flux of particles and fluid in Ω1, Q1, decreases
but the total amount of fluid processed through Ω2, Q2, increases. Thus, the addition
of particles in the system speeds up the flow in the upstream subdomain Ω1, but
decreases the total flux of fluid processed out of the device from Ω2. We discuss this
effect in further detail for a unidirectional flow in Appendix B in order to uncover the
rationale for this observation. Furthermore, we also note that our results show that
increasing the membrane permeance κm correspondingly increases the flux (figure
3), in agreement with physical intuition. This preliminary study shows that, even
before blocking occurs, the initial system of fluid and particles is fundamentally
different to the particle-free case.

In this section, we have studied the effect of introducing particles to a concerti-
naed filter operating in steady state. We now extend our study to explore the effects
of control parameters governing the membrane configuration and their effect on the
dynamic cake evolution in relation to optimal filtration performance.
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4 The effect of membrane configuration

In this section, we assess the effect of angling and shifting the position of the mem-
brane on the dynamic flux and throughput within the device. As we seek to study
the effect of the configuration (namely the parameters a and β), for definiteness
we shall assume a constant inflow fluid volume fraction φf1 = 0.8, and a constant
uniform membrane permeance and cake permeability, κm = kc = 1, throughout this
section.

4.1 The effect of membrane angle in relation to the total
throughput and end time

We first explore the effect of angling the membrane. As such, we fix the remaining
parameters, fix the membrane mid-point to be centred in the domain by setting
a = 0.5, and vary β. We solve the governing system of equations (2.36) numerically
using MATLAB’s bvp4c solver, stepping forward in time until the flux Q (2.37)
drops below the critical value Qc which we take to be Qc = 10−2; this stopping
criterion defines the end time T of the simulation.

The resulting cake-evolution profiles for different membrane angles are shown in
Figure 4. We find that angling the membrane has a significant effect on the cake
evolution. For a straight membrane with β = 0, the cake growth predominantly
occurs at the domain edges, with the growth at the inlet z = 0 occurring faster than
that at z = 1 (figure 4a). The total throughput is V (T ) = 0.29 and is achieved at
T = 6.9. For a slightly angled membrane (β = 0.4), while the cake growth remains
focused at the edges, we also observe growth around the centre of the membrane
(figure 4b). The overall cake evolution occurs more uniformly than that for β = 0.
The end time T = 16.1 is more than double that for β = 0, and the corresponding
total throughput is also increased to V (T ) = 0.80. Increasing the membrane angle
further (β = 0.8) gives a distinct cake-evolution profile with the growth focused
at the centre of the membrane; the corresponding end time T = 37.1 and total
throughput V (T ) = 1.26 are significantly larger than found to be for β = 0 and
β = 0.4 (figure 4c). These results show that angling the membrane results in the
flux remaining above Qc for longer and thus prolonging the lifetime of the filter and
increasing the amount of fluid processed by the filter.

4.2 The effect of membrane angle on the flux–throughput
curve

In practice, a standard tool to analyse the performance of a filter is the visualisation
of the flux (Q) and throughput (V ) relationship over time. The classic interpretation
of these visualisations is that concave curves, i. e. those for which Q′′(V ) < 0, corre-
spond to blocking due to caking, and convex curves, i. e. those for which Q′′(V ) > 0,
represent internal blocking [Griffiths et al., 2014]. We present the flux–throughput
curves for varying membrane angles in figure 5a. For straight to slightly angled
membranes the flux–throughput curve is clearly concave. For larger values of β,
however, the curve becomes convex. We examine this effect more closely by test-
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(a) (b) (c)

Figure 4: Evolution of the cake profile s(z, t) over time found by solving (2.36)
for β = 0, 0.4, 0.8 in figures 4a, 4b, and 4c respectively, with a = 0.5, φf1 = 0.8,
κm = kc = 1, Qc = 10−2. The arrows indicated the direction of growth in time, and
T is the end time at which the flux Q (2.37) drops below Qc. Results shown for
eight time steps equally spaced between [0, T ] for each angle tested.

ing the convexity as a function of the membrane permeance κm and angle β. We
do this by fitting a second-order polynomial to the function Q(V ) to produce the
interpolated flux function Q̃(V ). We then define the convexity measure by

C =
d2Q̃

dV 2
, (4.1)

where C < 0 yields a concave function and C > 0 a convex function. Our results
show that for small values of the membrane permeance the flux–throughput curves
will remain concave for all values of β (figure 5b). For increased values of κm,
however, the curves will be convex for larger values of β. Thus we find that, for
certain sets of system parameters, the flux–throughput curves will be convex for
blocking by caking only. These results show that interpreting the dominant blocking
mechanism by the convexity of the flux–throughput curves can be inaccurate when
the membrane is angled.

4.3 The optimal membrane configuration

We now investigate the effect of additionally shifting the membrane (i.e. varying a),
with the objective of obtaining the optimal membrane configuration according to a
given requirement. We explore the full angle domain β ∈ [0, 1] and position domain
a ∈ [β/2, 1 − β/2]. We seek numerical solutions but note that when either end of
the membrane is close to a corner of the domain, the behaviour is difficult to resolve
numerically. Thus, we slightly reduce our parameter domain to β ∈ [0, 1 − δβ] and
a ∈ [β/2 + δa, 1− (β/2 + δa)] for some small δβ, δa > 0, and extrapolate our results
to the full domains. For the results presented in this section we take δβ = 0.05 and
δa = 0.01.

There are various performance measures associated to filtration optimisation
with the choice of measure depending on the industrial application. We choose
to focus our attention to maximising the total throughput V (T ) and the average
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(a) (b)

Figure 5: Flux–throughput curve resulting from solving the system of equations
(2.36) and calculating the flux Q (2.37) and throughput V (2.38) for a = 0.5,
φf1 = 0.8, κm = 1, Qc = 10−2, and β = 0, 0.2, 0.4, 0.6, 0.8 in figure 5a. Convexity C
(4.1) of the flux–throughput curves indicated through sgn(C) in the (κm, β) domain
in figure 5b.

flux Q(T ) = V (T )/T . Note that since the instantaneous flux decreases in time,
maximising Q corresponds to maximising the amount of fluid processed over the
shortest time period. To examine how the optimal configuration depends on the
choice of metric, we also consider a one-parameter family of measures in the form
of a convex combination of the two metrics: E(α) = αV (T ) + (1−α)Q(T ) for some
constant α ∈ [0, 1]. While we present results for the chosen metrics only, the model
presented in this paper can be used for any choice of optimisation metric.

We show results for our performance metrics in figure 6. We see that the total
throughput is minimised for a horizontal membrane with β = 0 positioned towards
the top and bottom of the domain, where a = 1 and a = 0 respectively (figure
6a). This corresponds to a filtration device in which the concertinaed membranes
are close to touching. The maximum total throughput is achieved for β ≈ 0.2 and
a ≈ 0.7 where the membrane is slightly angled and positioned off-centre upwards
towards x = 1 (figure 6a). The average flux is similarly minimised when a = 0 or
1 and the concertina pleats close up. The average flux is maximised for β ≈ 0.7
and a ≈ 0.4. This is associated to membranes significantly angled and positioned
off-centre towards the lower boundary at x = 0.

The distinction between the configurations that maximise V (T ) and Q is made
clear when we consider the configurations that maximise E(α) (figure 6c). Our
results show that the two optimal configurations discussed above are the only optimal
configurations for α ∈ [0, 1]. For small values of α the optimal configuration agrees
with that which maximises the average flux. As the value of α is increased, the
optimal configuration switches at (and remains fixed for all values of α greater than)
the critical value of α ≈ 0.02 to coincide with the configuration that maximises
the total throughput. The critical value of α ≈ 0.02 is notably small since there
is a large difference between the magnitudes of the metrics V (T ) and Q. Thus
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we conclude that for particular applications for which it is preferable to maximise
the total amount of fluid processed, irrespective of the time it takes, the optimal
configuration is a slightly angled membrane positioned off-centre upwards towards
x = 1. For applications where it is important to maximise the amount of fluid
processed whilst minimising the time of operation, the optimal configuration is a
membrane that is significantly angled and positioned off-centre towards the lower
boundary at x = 0. The optimal angle and position in both cases are provided by
our model.

(a) (b)

(c)

Figure 6: The total throughput V (T ) (2.38) in figure 6a, Q = V (T )/T in figure
6b, and the configuration that maximises E(α) = αV (T ) + (1 − α)Q in figure 6c
calculated from numerical solutions to (2.36) with β ∈ [0, 1], a ∈ [β/2, 1− β/2],
κm = 1, φf1 = 0.8, and Qc = 10−2.

5 The effect of a spatially varying permeance

We have so far considered a constant membrane permeance κm. In this section we
relax this assumption to investigate the effect of a spatially varying permeance. This
is motivated by the observation that a spatially varying permeance may be chosen
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to ensure uniform cake growth. A non-uniform permeance could be achieved by
varying the membrane thickness in space or equally the pore distribution. The latter
of these is becoming increasingly achievable through new technologies that enable
practitioners to engineer a non-uniform pore distribution. This will minimise the
effect of the changing geometry on introducing resistance to the flow. We therefore
seek the membrane permeance profile that leads to uniform cake growth.

Although, in theory, we can derive the membrane permeance κm(z, t) that yields
uniform cake growth for all time, in practice it is difficult to vary the permeance
in time. Therefore we choose to find the time-steady permeance κm(z) that yields
uniform cake growth initially. This is achieved for a permeance profile that generates
a constant flow at the membrane front at t = 0:

u1(x, z, 0) = constant = Um at x = m(z). (5.1)

Initially, s(z, 0) = m(z) and so κ(z, 0) = κm(z) using (2.36c). Using (5.1) in the
Darcy-flow boundary condition (2.23) at the membrane, and noting that we have
pi = pi(z, t) for i = 1, 2 from the lubrication equations (2.19a), we then find

κm(z) =
Um

p1(z, 0)− p2(z, 0)
. (5.2)

We then use (5.2) to simplify the governing equations for the pressure (2.36a)–
(2.36b), which decouple to give

1
3

[
m(z)3p′1(z, 0)

]′
= Um, p1|z=0 = 1, p′1|z=1 = 0, (5.3a)

1
3

[
(m(z) + h− 1)3p′2(z, 0)

]′
= φf1Um, p2|z=1 = 0, p′2|z=0 = 0. (5.3b)

Equations (5.3) admit exact analytical solutions for p1 and p2:

p1(z, 0) = 1 +
12Umz [2a(z − 2) + β(3z − 2)]

(2a+ β)2(2a+ β − 2βz)2
, (5.4a)

p2(z, 0) =
12Um(z − 1)φf1 [2a(z + 1) + β − (3β + 2)z − 2]

(−2a+ β + 2)2(2a+ β − 2βz − 2)2
. (5.4b)

From (5.2) we see that if there exists a zero pressure difference ∆p = p1 − p2 = 0
anywhere along the membrane there will be an infinite permeance at that point,
which corresponds to physical holes in the membrane. Note that we have introduced
the, so far, unspecified parameter Um. For each position and angle (a, β) there exists
a bounded range of values of Um for which ∆p > 0, calculated from (5.4) for all z.
We first note that Um is bounded from below by Um = 0 for which p1 = 1 and p2 = 0
from (5.4). To find an upper bound, we find the maximum value of Um for which
min ∆p > 0 holds at t = 0:

U∗m(a, b) = max Um for which ∆p(z, 0; a, b) > 0 for all z. (5.5)

This gives the bounded range Um ∈ [0, U∗m] for each (a, β)-pairing. The contour plot
for U∗m in β ∈ [0, 1− δβ] and a ∈ [β/2 + δa, 1− (β/2 + δa)] for δβ = 0.1 and δa = 0.04
is given in figure 7a. We see that for a membrane positioned towards the corners
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(a) (b)

Figure 7: The upper bound of the constant velocity U∗m calculated in (5.5) using
analytical pressure profiles (5.4) and β ∈ [0, 1] and a ∈ [β/2, 1−β/2] given in figure
7a. The non-uniform membrane permeance profiles κm(z) (5.2) calculated using
(5.4) with β = 0, 0.2, 0.4, 0.6, 0.8 at t = 0 in figure 7b for a = 0.5 and Um = 0.02.
Both figures use φf1 = 0.8.

of the domain a very slow flow U∗m � 1 is required for ∆p > 0. For more centred
membranes (a ≈ 0.5), ∆p > 0 can be achieved for faster flows. However, crucially,
for the full (a, β)-parameter space tested, U∗m is a small parameter, and thus uniform
cake growth is only achieved for small fluxes through the domain.

We present the resulting permeance profiles κm(z) in figure 7b for a range of
membrane angles. We see that for horizontal and slightly angled membranes the
permeance profile that ensures constant velocity at the membrane is concave. What
this means in practice is that for horizontal (or close to horizontal) membranes,
for constant velocity at the membrane, we should choose a membrane that has
increased permeance at the centre of the membrane. As we increase the angle of
the membrane the concavity of the permeance profile decreases, and for significantly
angled membranes the membrane profile is strongly convex. In this case, we should
therefore increase the permeance at the edges of the membrane and decrease the
permeance towards to the centre.

6 Conclusions

We have examined caking dynamics in a concertinaed ceramic filtration membrane.
Our work builds on the previous work of Pereira et al. [2021], which presented a
study of the steady particle-free flow through a concertinaed filtration membrane.
In this paper, we further developed the model to study the flow of a particle-laden
fluid mixture through the same filtration device and derive the appropriate model
for external cake build-up on the membrane surface. We modelled the flow of the
fluid mixture on either side of the membrane using the Stokes equations and the
flow through the porous membrane and cake layers using Darcy’s law. By system-
atically reducing the model equations, we simplified the flow problem to solving
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coupled lubrication equations, which account for the moving boundary associated
with blocking, in the upstream and downstream subdomains on either side of the
membrane.

Practitioners use flux–throughput curves to determine the nature of blocking
within a filter, with concave and convex curves identified, respectively, with caking
and internal blocking. We found, however, that when a centred membrane is angled
caking dynamics can result in a convex flux–throughput curve. This result highlights
potential misinterpretations that may result from using these curves to identify the
governing blocking mechanism.

The overarching aim of this paper is to understand the effect of the membrane
configuration on the filtration performance, which is determined by the particular
measure of choice. As this metric will vary for different industrial applications, we
consider a one-parameter family of metrics in this paper. The two extreme points
of this family correspond to maximisation of the total throughput and average flux,
respectively, while points in between correspond to linear combinations of the two
properties. For the particular set-up of an infinitely thin membrane with unit per-
meance, the configuration that maximises the total throughput is a slightly angled
membrane positioned off-centre upwards in the filtration-module domain. This con-
figuration is distinct to that which optimises the average flux, which is a significantly
angled membrane positioned off-centre towards the lower boundary of the domain.

We also explored the derivation of a spatially varying permeance corresponding to
an initially uniform cake growth. We found that, to ensure a uniform cake growth,
one requires a very small flux through the device initially. Thus, in practice, a
non-uniform permeance will not be a useful tool when maximising the average flux
through the domain (and consequently nor will it be useful to maximise the total
throughput), but it may be relevant for different optimisation metrics.

In this paper we have introduced a mathematical framework for modelling caking
in a direct-flow filtration device. Smart Separations Ltd are a start-up company
who develop a direct-flow filtration device similar to that discussed in this paper.
Motivated by insight provided by this company, we focused on the effect of caking
dynamics on filtration performance. An interesting extension of the work presented
here would be to explore the additional blocking mechanism of internal blocking.

The model formulation and results presented in this paper may be readily used
by practitioners: for a specified application, this work provides understanding of the
device configuration that optimises filtration performance.
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A Appendix

The cake front is an interface separating the upstream domain Ω̂1 and the cake
layer Ω̂c = {x̂ ∈ [ŝ(ẑ, t̂), ŝ(ẑ, t̂) + ĥ], ẑ ∈ [0, 1]}. The position of this interface can be
given implicitly by F̂ (x̂, ẑ, t̂) = x̂− ŝ(ẑ, t̂) = 0. The normal velocity of this moving
boundary v̂n := v̂ · ns can be written as

v̂n = −∂F̂ /∂t̂
|∇F |

. (A.1)

Imposing conservation of flux across this moving boundary yields

Q̂1 · ns − v̂nĉ1 = Q̂c · ns − v̂nĉc, (A.2)

where Q̂1 and Q̂c are the particle fluxes within the upstream and cake domains,
respectively, and ĉ1 and ĉc are the concentrations of particles within the upstream
and cake domains, respectively.

The concentration of particles in Ω̂1 and Ω̂c are related through

ĉc
φpc

=
ĉ1
φp1
, (A.3)

where φpc and φp1 are, respectively, the volume fractions of particles in Ωc and in Ω1.
We have taken the intrinsic particle volume to be the same value in both phases.
Neglecting diffusion in Ω̂1, we can write the particle flux as Q̂1 = ĉ1û1. Moreover,
we assume particles are not advected within the cake layer, and hence Q̂c = 0.
Using these values for the particle fluxes in (A.2), together with (A.3), we obtain
the following expression for the normal velocity of the cake layer in terms of the
system variables

v̂n = − φp1
φpc − φp1

û1 · ns. (A.4)

Substituting v̂n (A.4) into (A.1) and rewriting in terms of the cake front position
ŝ(ẑ, t̂) gives (2.14) which, together with the initial condition (2.15), yields the cake
evolution equation.

B Appendix

In this appendix we consider a unidirectional pipe flow and include a porous mem-
brane in the middle of the domain. The aim of this study is to understand the effect
to the flow when particles are added to a system. We consider a unidirectional pipe
flow to enable analytical insight.

We consider a cylindrical pipe of radius R̂ and length Ẑ as shown in figure 8. We
assume axisymmetry and use cylindrical coordinates (r̂, ẑ) to specify the geometry:
we position a porous membrane of thickness ĥ centred along the pipe at ẑ = L̂,
where Ẑ = 2L̂ + ĥ; the domain is then divided into the upstream and downstream
subdomains

Ω̂1 = {r̂ ∈ [0, R̂], ẑ ∈ [0, L̂]}, (B.1a)

Ω̂2 = {r̂ ∈ [0, R̂], ẑ ∈ [L̂+ ĥ, Ẑ]}. (B.1b)
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The fluid mixture is made up of a continuous fluid phase and discrete particles to
be filtered. We assume a constant volume fraction of fluid φf1 and volume fraction
of particles φp1 = 1 − φf1 in Ω1. We further assume that there is perfect filtration
by the membrane such that the downstream subdomain Ω2 comprises only the fluid
phase and as such the volume fraction of fluid is φf2 = 1.

Ω̂1 Ω̂2

R̂

Ẑ

L̂ L̂ĥ

Figure 8: Schematic of the dimensional unidirectional pipe flow through a mem-
brane. Particles are filtered out by the membrane drawn in pink in the centre of the
pipe.

The flow is driven by a fixed pressure drop across the pipe ∆p̂ = p̂in − p̂out > 0,
with p̂ = p̂in at ẑ = 0 and p̂ = p̂out at ẑ = Ẑ. We denote the distinct pressure drops
across Ω̂1, the membrane, and Ω̂2 by ∆p̂1, ∆p̂m, and ∆p̂2, respectively. The total
pressure drop across the pipe is therefore

∆p̂ = ∆p̂1 + ∆p̂m + ∆p̂2. (B.2)

We assume a steady, laminar, incompressible Poiseuille flow in Ω̂1 and Ω̂2, and can
therefore express the total inflow flux of fluid and particles Q̂1 in Ω̂1 and total outflow
flux of fluid Q̂2 in Ω̂2 in the following way:

Q̂1 =
πR̂4∆p̂1

8µ̂L̂
, (B.3a)

Q̂2 =
πR̂4∆p̂2

8µ̂L̂
. (B.3b)

Furthermore, we prescribe Darcy flow across the membrane to write the flux through
the membrane as:

Q̂m = πR̂2κ̂m∆p̂m, (B.4)

where κ̂m is the permeance of the membrane.
We nondimensionalise the system by introducing the following scalings:

r̂ = R̂r, ẑ = δR̂z, p̂ =
µ̂Ŵ

δ2L̂
p+ p̂out, κ̂m =

R̂2

8L̂µ̂
κm,

Q̂1 =
πŴ R̂2

δ4
Q1, Q̂2 =

πŴ R̂2

δ4
Q2, Q̂m =

πŴ R̂2

δ4
Qm, (B.5)
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where δ = L̂/R̂. Moreover, the velocity scaling Ŵ is given in terms of the pressure
drop:

Ŵ =
δ2L̂

µ̂
(p̂in − p̂out). (B.6)

We choose a short wide domain with δ � 1. This enables a closer comparison
between the unidirectional flow system in this appendix and the non-unidirectional
lubrication flow system presented in the body of the paper and discussed in Section 3.

Applying the scalings (B.5) to (B.3) and (B.4) yields the dimensionless fluxes in
terms of the dimensionless pressure drops:

Q1 = ∆p1, Qm = κm∆pm, Q2 = ∆p2. (B.7)

Using (B.7) in (B.3) together with conservation of fluid: φf1Q1 = Qm = Q2 we can
find the inflow and outflow fluxes in terms of the total pressure drop ∆p:

Q1 =
∆p

1 + φf1 +
φf1
κm

, (B.8a)

Q2 =
∆p

1 +
1

φf1
+

1

κm

. (B.8b)

The flux profiles are shown in figure 9. Analogously to the results in Section 3,
the inflow flux decreases with increased fluid volume fraction (figure 9a). For a
decreased fluid volume fraction, there is a corresponding increased particle volume
fraction. There is consequently less physical space available for the fluid to move,
so for the same fixed pressure drop, the flow will speed up. On the downstream side
of the membrane we observe that the outflow flux increases with the fluid volume
fraction (figure 9b). This shows that the total amount of fluid processed through
the domain will increase when there are fewer particles in the system.

(a) (b)

Figure 9: Analytical inflow flux (B.8a) and outflow flux (B.8b) through a pipe with
dimensionless pressure drop ∆p = 1 and porous membrane of permeance κm =
0.5, 1, 1.5, 2.
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The results discussed in Section 3 and in this appendix show how including par-
ticles in the system affects the flux through a system of two open domains separated
by a porous membrane for a given pressure drop. Namely, we find that introducing
particles speeds up the flow rate upstream of the membrane whilst decreasing the
total amount of fluid processed by the system.
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