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Abstract

We derive large-basket approximations of a price-weighted index whose compo-

nent prices follow a single sector jump-diffusion model. As the basket size approaches

infinity a suitable average converges to a Black-Scholes model driven by the common

factor process. We extend this by considering the behaviour of the residual idiosyn-

cratic noise and show that a version of the 3/2 model emerges as a natural stochastic

volatility model approximation. This provides a theoretical justification for its use

as a model for jointly pricing index and volatility derivatives.

1 Introduction

A stock market index is a market statistic used to capture the performance of a portfolio

of stocks traded in the market. Two of the most popular index types are price-weighted

and capitalisation-weighted indices, each of which, in general, can be thought of as a

weighted sum of the prices of stocks in the index basket. An example of a price-weighted

index is the Dow Jones Industrial Average.

In applications an index process is usually modelled directly, assuming a specific

model. Here we will take a bottom-up approach and assume a particular asset-price

model for the component stocks and then consider the index as a weighted sum of these

stock-price processes. The index process in this bottom up approach is naturally a very

high-dimensional object. However, exploiting the averaging inherent in the weighting of

the individual components, we will derive a natural stochastic volatility process for a

price-weighted index in the large-basket limit.

The component assets of the index are modelled as jump diffusions driven by three

noises. These correspond to a global market Brownian motion, an idiosyncratic Brownian

risk factor, and an idiosyncratic shock coming from a Lévy process. One would expect

that, as the basket size tends to infinity and the weights tend to zero, there should

be a law of large numbers approximation; indeed, a Black-Scholes model for the index

driven by the global market risk factor emerges in the limit. By considering the error in

this approximation as the basket size increases we are able to produce a 3/2 stochastic

volatility model for the index. The version we obtain of this model has some initial
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drawbacks but suggests modifications which make the class of 3/2 models seem to be

natural for price-weighted indices constructed from large baskets of assets. The 3/2

stochastic volatility model has recently received a lot of attention as it has other attractive

features, see Carr & Sun (2007), Drimus (2012). Along with its extensions in Baldeaux

& Badran (2013), it provides consistent modelling between index options and volatility

derivatives. Thus we provide a further justification for its use.

The outline of the paper is as follows. We will begin by introducing the market model

in which we work, that of asset prices following jump diffusions in a large market. We

introduce the price-weighted index and other empirical moment estimators before giving

our main convergence theorem describing the behaviour of the index in the large-basket

limit. In Section 2 we study the resulting stochastic volatility model, showing its features,

which include explosion. We then consider alternative analyses which prevent the occur-

rence of explosions and connect with more standard versions of the model appearing in

other papers. In Section 3, we briefly discuss volatility derivatives in the model before

moving to the proof of the main result in Section 4.

1.1 The market model

The market model that we will develop is an extension of a simple single-sector model,

as considered for instance in Bush, Hambly, Haworth, Jin & Reisinger (2011) to allow

jumps in the asset-price process. Each asset will follow a jump diffusion model of the

type proposed in Merton (1976), Kou (2002). In this simple model, all assets have the

same constant drift, instantaneous volatility, and are correlated via a single market factor

capturing global economic effects. Each asset has its own idiosyncratic noise consisting

of a Brownian component and a jump component. We only put the jumps into the

idiosyncratic component as such shocks will be much more common at the individual

asset level, rather than the market as a whole. We note that although apparently too

simplistic, as we will allow the number of assets to become infinite, a model of this type

which allowed varying parameters in an infinite basket would require strong conditions

on these parameters in order to avoid asymptotic arbitrage, see Kabanov & Kramkov

(1994, 1998).

Let (Ωn,Fn,Pn) denote a probability space corresponding to a market with n + 1

assets. We have n risky assets whose prices Si(t) for i = 1, . . . , n evolve, under a measure

Pn, according to the jump diffusion process

dSi(t)

Si(t−)
= α dt+ σρdM(t) + σ

√
1− ρ2 dWi(t) +

∫
R\{0}

(ex − 1)Ni(dt,dx), (1.1)

where the random drivers M,Wi are Brownian motions, Ni is a Poisson random measure

with a finite Lévy intensity measure ν = λg. Here λ is the intensity of the Poisson

counting process N i(t) and g is the probability density function of the jumps J ik in the
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compound Poisson process

Ri(t) =

∫ t

0

∫
R\{0}

xNi(du,dx) =

N i(t)∑
k=1

J ik

with the jumps occurring at random times τ ik. Moreover, the processes M,W1, . . . ,Wn,

R1, . . . , Rn are independent. For definitions and standard results concerning integration

with respect to Poisson random measures we refer the reader to Applebaum (2009).

The coefficients in (1.1) are constants: α is a drift coefficient, though the total in-

stantaneous expected return per unit time is given by µ = α +
∫
R\{0}(e

x − 1)ν(dx) and

we assume µ > 0; the instantaneous volatility, arising from the Brownian motion terms,

is denoted by σ > 0; and ρ ∈ (0, 1) is the correlation coefficient which we also assume

to be strictly positive (although provided ρ 6= 0 we could take ρ < 0). We also assume

the existence of a riskless money market account paying a constant rate of interest r

satisfying 0 < r < µ.

Since it is immaterial how our assets are labelled, we assume that {S1(0), . . . , Sn(0)}
is a family of independent identically distributed (0,∞)-valued random variables with

at least 8 moments. We also assume that this initial distribution is independent of M ,

{Wi}1≤i≤n, and {Ri}1≤i≤n. As we can solve the system explicitly, we can let n → ∞
and our system extends to an infinite system; we write (Ω,F ,P), with an associated

expectation operator E, for the limit probability space containing the full infinite asset

price model with the random initial conditions. We note that the assumptions we make on

the assets could be generalised to more general jump processes and jumps in the market

noise at the expense of more notation and complexity in the proofs. Here we focus on a

relatively simple case to illustrate what happens.

1.2 Price-weighted index

Our focus will be a price-weighted market index which we define as

In(t) =
1

dn

n∑
i=1

Si(t) , (1.2)

where dn is a constant for each n. We are only considering short time behaviour where

the composition and weights of the index basket will remain the same. We aim to find an

index approximation process Ĩn such that Ĩn(t) ≈ In(t) for large values of n and which

would be driven by fewer sources of randomness. For simplicity we choose dn = n.

Combining our model (1.1) and (1.2), the index process has dynamics

In(t) =

∫ t

0
In(u−) [(α+ β1) du+ ρσ dM(u)] +

1√
n

Πn(t), (1.3)
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where we use the notation βm =
∫
R\{0}(e

mx − 1)ν(dx) for m ∈ N and

Πn(t) =
σ
√

1− ρ2

√
n

n∑
i=1

∫ t

0
Si(u−) dWi(u) +

1√
n

n∑
i=1

∫ t

0

∫
R\{0}

Si(u−)(ex − 1)Ñi(du,dx),

(1.4)

in which Ñi denotes the compensated Poisson random measure.

More generally, we introduce the k-th empirical moment process I
(k)
n = 1

n

∑n
i=1 S

k
i

satisfying

dI(k)
n (t) =

(
kα+

1

2
k(k − 1)σ2 + βk

)
I(k)
n (t−) dt+ kσρI(k)

n (t−) dM(t)

+kσ
√

1− ρ2
1

n

n∑
i=1

Si(t−)k dW i(t) +
1

n

n∑
i=1

Si(t−)k
∫
R\{0}

(ekx − 1)Ñi(dt,dx)

as well as its limit process I(k), which will be the solution to

dI(k)(t) =

(
kα+

1

2
k(k − 1)σ2 + βk

)
I(k)(t) dt+ kσρI(k)(t) dM(t)

with the initial condition I(k)(0) = E
[
S1(0)k

]
a.s. assuming the expectation is finite.

1.3 Index approximations

Our main mathematical result concerns weak convergence of the stochastic processes In
and Πn as n→∞ and provides a justification for our index approximations.

A simple observation from the structure of (1.3) is that there is a law of large numbers

in that, as n→∞, we will see a Black-Scholes model

dI(1)(t) = µI(1)(t) dt+ σρI(1)(t) dM(t)

arising in the limit.

For a more refined approximation we consider the behaviour of the error term made

by the large basket approximation to a finite basket and deduce our index approximationdI(t) = µI(t) dt+ σρI(t) dM(t) + ξ√
n

√
I(2)(t) dB(t),

dI(2)(t) = (2µ+ σ2 + κ)I(2)(t) dt+ 2σρI(2)(t) dM(t),
(1.5)

where µ = α+ β1, γ = σ2(1− ρ2), κ = β2 − 2β1 =
∫
R\{0}(e

x − 1)2ν(dx), ξ =
√
γ + κ, M

and B are independent Brownian motions.

This is a corollary of our main theorem, which is proved in Section 4, and states the

following:

Theorem 1.1. Let
∫
R\{0} e

8xν(dx) <∞ and E
[
Si(0)8

]
<∞. Then for k = 1, 2, we have

I(k)
n ⇒ I(k) (1.6)
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and

Πn ⇒ Π :=

∫ ·
0

√
ξ2I(2)(u) dB(u) as n→∞, (1.7)

where B is a standard Brownian motion independent of M .

The first statement (1.6) for k = 1 yields the Black-Scholes model in the large-basket

limit. For a finite-basket index approximation, we want the aggregate idiosyncratic noise

contribution to be reflected as well as dependence on the basket size n preserved. The

statement (1.7) describes the limit behaviour of the idiosyncratic noise term Πn. Thus

replacing Πn with Π in (1.3) while keeping the factor 1√
n

in front, we obtain a refined

index approximation; this can be viewed as disregarding the finite basket correction terms

when approximating the correction term Πn.

The initial conditions I(0) and I(2)(0) can be viewed in two ways. As they arise from

the infinite basket limits of 1
n

∑n
i Si(0) and 1

n

∑n
i Si(0)2 respectively, we could determine

them from the basket constituents. An alternative way is to take them as inputs into the

model that can be chosen to achieve the best fit during calibration.

2 Stochastic volatility approximation

It is time to explore the properties of the proposed index approximation (1.5).

We can write (1.5) in the form of a stochastic volatility model. Let J = 1
nI

(2)/I2.

From our limit expressions for I and I(2), a simple exercise in stochastic calculus yields

the following

dJ =
1

n

(
I(2) dI−2 + I−2 dI(2) + d[I(2), I−2]

)
=

1

n

(
I(2)(3σ2ρ2 + 3ξ2J − 2µ)I−2 dt− I(2)

(
2σρI−2 dM +

2ξ
√
I(2)

√
n

I−3 dB

)

+(2µ+ σ2 + κ)I(2)I−2 dt+ 2σρI(2)I−2 dM − 4σ2ρ2I(2)I−2 dt

)
= ((σ2(1− ρ2) + κ)J + 3ξ2J2) dt− 2ξJ3/2 dB.

Thus we have a version of the 3/2 stochastic volatility model{
dI(t) = µI(t) dt+ σρI(t) dM(t) + ξI(t)

√
J(t) dB(t),

dJ(t) = ξ2(J(t) + 3J(t)2) dt− 2ξJ(t)3/2 dB(t)
(2.1)

with J(0) = 1
nI

(2)(0)/I(0)2. We note the influence of the basket size is now only in the

initial condition for the volatility process J . In applications this initial condition could

be determined by calibration. Also, note that as n → ∞, the initial condition J(0) → 0

and we see the solution J = 0 appearing. This is consistent with our Black-Scholes limit

approximation I(1) for the index.

Next, we give some properties of the variance process J .
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Proposition 2.1. (1) Y (t) = 1/J(t) is a CIR process with the SDE

dY (t) = ξ2 (1− Y (t)) dt+ 2ξ
√
Y (t) dB(t).

(2) The process X(t) = 1/
√
J(t) is an Ornstein-Uhlenbeck process satisfying

dX(t) = −1

2
ξ2X(t) dt+ ξ dB(t),

and hence the process J(t) is expressed explicitly as

J(t) =

(
1√
J(0)

e−
1
2
ξ2t + ξ

∫ t

0
e

1
2
ξ2(u−t) dB(u)

)−2

.

Proof. (1) This is Ito’s formula applied to 1/J with J as in (2.1).

(2) Again by Ito, we see that X is an Ornstein-Uhlenbeck process. Thus writing J(t)

in terms of the solution to the Ornstein-Uhlenbeck SDE for X, we have

J(t) =

(
1√
J(0)

e−
1
2
ξ2t + ξ

∫ t

0
e

1
2
ξ2(u−t) dB(u)

)−2

.

As X = 1/
√
J is an Ornstein-Uhlenbeck process, it can hit 0 and thus it is clear that

the process J must explode. This explosion coincides with the index crashing to 0 and

is a low probability event for which we will give an explicit formula. Clearly this market

collapse is a potentially serious drawback of the model. Though we note that other models

with this property are still used in practice; a popular example is the Bachelier model

(see Schachermayer & Teichmann 2008).

Later we will investigate the model assuming that such an eventuality is sufficiently

unlikely that we can exclude it by conditioning on non-explosion.

2.1 Explicit characterisation of the original model

A nice feature of the process I is that it can be solved explicitly.

Theorem 2.2. The index model (2.1) is explicitly given by

I(t) = I(0)e(µ−
1
2
σ2ρ2)t+σρM(t)

(
1 + ξ

√
J(0)

∫ t

0
e

1
2
ξ2u dB(u)

)
. (2.2)

Proof. Let L(t) = I(1)(0)/I(1)(t) = e−(µ− 1
2
σ2ρ2)t−σρM(t) be the process satisfying

dL(t) = −(µ− σ2ρ2)L(t) dt− σρL(t) dM(t).
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We also write A(t) =
√
I(2)(t) = A(0)e(µ+ 1

2
σ2(1−2ρ2)+κ

2 )t+σρM(t). By Itô’s formula,

d (L(t)I(t)) = L(t) dI(t) + I(t) dL(t) + d[I, L](t)

= L(t)

(
µI(t) dt+ σρI(t) dM(t) +

ξ√
n
A(t) dB(t)

)
+I(t)

(
−(µ− σ2ρ2)L(t) dt− σρL(t) dM(t)

)
− σ2ρ2I(t)L(t) dt

=
ξ√
n
L(t)A(t) dB(t).

Hence

L(t)I(t) = I(0) +

∫ t

0

ξ√
n
L(u)A(u) dB(u),

and, as L(u)A(u) =
√
I(2)(0) exp(1

2ξ
2u), division of both sides by L(t) gives

I(t) = e(µ−
1
2
σ2ρ2)t+σρM(t)

(
I(0) +

ξ√
n
A(0)

∫ t

0
e

1
2
ξ2u dB(u)

)
.

Rewriting in terms of J(0) gives the result.

The probability of I hitting zero before time t can be calculated explicitly.

Proposition 2.3. Let τ0 = inf{t ≥ 0 : I(t) = 0} be the first time the process I hits zero.

Then, for t > 0,

P(τ0 < t) = 2

1− Φ

 1√
J(0)

(
eξ2t − 1

)
 ,

where Φ is the cumulative distribution function of the standard normal distribution.

Proof. Let

G(t) = ξ
√
J(0)

∫ t

0
e

1
2
ξ2u dB(u).

From the explicit solution and rewriting G(t) as a time-changed Brownian motion B̃[G]t ,

for an independent Brownian motion B̃, we can write τ0 = inf{t ≥ 0 : B̃[G]t = −1}. Thus,

applying the reflection principle,

P(τ0 < t) = P
(

sup
0≤s≤t

B̃[G]s > 1

)
= 2P

(
B̃[G]t > 1

)
= 2

(
1− Φ

(
1√
[G]t

))
.

Computing the quadratic variation of G gives the result.

It is easy to see that for reasonable parameter and basket size choices these probabil-

ities are very small.
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We also see the fact that I hits zero in the explosion of J , that is when 1/J , a CIR

process hits zero. It is easy to check that in our case the condition on the coefficients for

the CIR to hit zero is 2ξ2 ≤ (2ξ)2, which holds for all ξ.

In the next subsections, we address the issue of the exploding stochastic variance

component J(t) and discuss improvements on the original index approximation model.

Firstly, we will assume that explosion is sufficiently unlikely that we can condition on it

not occurring. To do this, we condition on the Ornstein-Uhlenbeck process X not hitting

0. For our second version, we look more deeply into the approximation for I(2) and use

this to show bounds on the drift and volatility of the model.

2.2 A conditioned model with finite variance

As X hitting zero is the same event as the process J exploding, the Ornstein-Uhlenbeck

process conditioned not to hit 0, denoted by X̄, gives a model for the variance process J

conditioned not to explode, which we will denote by J̄ .

Lemma 2.4. The process X̄ which is X conditioned not to hit zero satisfies the SDE

dX̄(t) = ξ2

(
1

X̄(t)
− X̄(t)

2

)
dt+ ξ dB(t).

Proof. This comes from an application of the Doob-h-transform. The space-time gener-

ator L of X applied to a C1,2 function f is given by

Lf =
∂f

∂t
+
ξ2

2

∂2f

∂x2
− ξ2

2
x
∂f

∂x
.

The function h(t, x) = exp(tξ2/2)x is space-time harmonic for this process. Thus if we

wish to consider X conditioned not to hit zero, we need to consider the associated h

process. Standard calculations with the generator show that if Lh is the h-transformed

generator, then it is given by

Lhf = Lf + ξ2 1

h

∂h

∂x

∂f

∂x
.

Thus the SDE for the conditioned process is given by X̄ as written above.

Remark 2.5. The Ornstein-Uhlenbeck process conditioned not to hit zero is the radial

part of a three-dimensional Ornstein-Uhlenbeck process just as the Bessel process, which

is Brownian motion conditioned not to hit zero, is the radial part of a three-dimensional

Brownian motion.

Our new model for the index conditional on its non-collapse, Ī, is thus{
dĪ(t) = µĪ(t) dt+ σρĪ(t) dM(t) + ξĪ(t)

√
J̄(t) dB(t),

dJ̄(t) = ξ2(J̄(t) + J̄(t)2) dt− 2ξJ̄(t)3/2 dB(t)
(2.3)
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with J̄(0) = 1
nI

(2)(0)/I(0)2. Also, observe Ȳ = 1/J̄ is a CIR process given by

dȲ (t) = ξ2(3− Ȳ (t)) dt+ 2ξ
√
Ȳ (t) dB(t).

It is easy to check that the parameters are such that almost surely this process does not

hit zero.

Interestingly, we note that the instantaneous stochastic variance component J̄ is a

special case of the quadratic drift 3/2 model of Carr & Sun (2007), which was derived

therein as the unique risk-neutral variance process satisfying the stochastic volatility ratio

hypothesis and the maturity independent diffusion hypothesis.

Another remark to make is that we can rewrite (2.3) in the conventional stochastic

volatility model form as{
dĪ(t) = µĪ(t) dt+

√
σ2ρ2 + ξ2J̄(t)Ī(t) dW (t),

dJ̄(t) = ξ2(J̄(t) + J̄(t)2) dt− 2ξJ̄(t)
3
2 dB(t),

where

W (t) =

∫ t

0

1√
σ2ρ2 + ξ2J̄(u)

(
σρdM(u) + ξ

√
J̄(u) dB(u)

)
is a Brownian motion by Lévy’s characterisation. Here the Brownian motions W (t) and

B(t) are stochastically correlated with the correlation coefficient

ρ′(t) =
ξ
√
J̄(u)√

σ2ρ2 + ξ2J̄(u)
,

coming from d[W,B](t) = ρ′(t) dt. Thus our model Ī(t) falls into a class of stochas-

tic volatility models with randomly (though endogenously) correlated Brownian drivers.

Note that we have negative (even though stochastic) correlation between Ī and J̄ , given

by d[Ī , J̄ ] = −2ξ2Ī J̄2 dt. This is commonly seen in the market behaviour of prices and

volatility (Drimus 2012). Note that in the same way, I and J have negative quadratic

co-variation up to the explosion time of J .

2.3 An alternative approach to the 3/2 model

A restrictive feature shared by J as well as its conditioned version J̄ is that there is only

a single parameter available for calibration. Here we show that the large basket approach

is consistent with the standard version of the 3/2 stochastic volatility model with more

parameters. At this point, for simplicity, we will assume that there are no jumps in the

asset prices and just focus on the diffusion part. We do not prove any theorems here but

just indicate that by including further corrections, the drift and volatility terms will be

of the same functional form in J as in our original model but with different parameters.

We begin by returning to the finite basket and perform a further analysis. In our

approximation we have neglected the error that arises from the correction term in the

9



empirical second moment. If we write

dRn,k =
1√
n

n∑
i=1

Ski dWi,

then the first two empirical moments can be written as

dIn = µIn dt+ σρIn dM +
σ
√

1− ρ2

√
n

dRn,1

dI(2)
n = (2µ+ σ2)I(2)

n dt+ 2σρI(2)
n dM +

2σ
√

1− ρ2

√
n

dRn,2.

As d[Rn,k] = I
(2k)
n dt, we can write dRn,1 =

√
I

(2)
n dBn and dRn,2 =

√
I

(4)
n dB′n for

Brownian motions Bn, B
′
n with

d[Bn, B
′
n] =

I
(3)
n√

I
(2)
n I

(4)
n

dt. (2.4)

A straightforward exercise with Ito’s formula gives the dynamics for Jn = I
(2)
n /(nI2

n) as

the SDE

dJn = σ2(1−ρ2)

(
Jn + 3J2

n − 4
I

(3)
n

n2I3
n

)
dt−2σ

√
1− ρ2

J3/2
n dBn −

(
I

(4)
n

n3I4
n

)1/2

dB′n

 .

We now use elementary analytic inequalities to examine the size of the terms appearing

in this SDE.

Lemma 2.6. We have the following inequalities

J2
n ≤

I
(3)
n

n2I3
n

≤ Jn, J3
n ≤

I
(4)
n

n3I4
n

≤ J2
n.

Proof. Firstly we note that by Hölder’s inequality we have I
(2)
n ≤

√
InI

(3)
n , and hence

J2
n ≤

I
(3)
n

n2I3
n

.

Also, as

J (k)
n :=

I
(k)
n

nk−1Ikn
=

∑n
i=1 S

k
i

(
∑n

i=1 Si)
k
,

and all Si > 0, we see J
(k)
n is decreasing in k and hence

I
(3)
n

n2I3
n

≤ J (2)
n = Jn.
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The second inequality follows from a similar use of Hölder and monotonicity of J
(k)
n

in k.

We now show that the lower bound is the correct order in Jn.

Lemma 2.7. For all t ≥ 0 we have

lim
n→∞

I
(3)
n (t)

n2In(t)3
Jn(t)−2 =

E[S1(0)3]E[S1(0)]

E[S1(0)2]2
exp(σ2(1− ρ2)t)

and

lim
n→∞

I
(4)
n (t)

n3In(t)4
Jn(t)−3 =

E[S1(0)4]E[S1(0)]2

E[S1(0)2]3
exp(3σ2(1− ρ2)t)

P-almost surely.

Proof. As we have at least 8 moments for Si(0), we can just apply the strong law of large

numbers to the empirical moment estimators.

Recalling our earlier analysis, if we define adapted processes an, bn by

an(t) =
I

(3)
n

n2I3
n

J−2
n , bn(t) =

I
(4)
n

n3I4
n

J−3
n ,

our stochastic volatility model can be written in the form

dIn = µIn dt+ σρIn dM + σ
√

1− ρ2
√
JnIn dBn

dJn = σ2(1− ρ2)
(
Jn + (3− 4an(t))J2

n

)
dt− 2σ

√
1− ρ2(1− 2an(t) + bn(t))1/2J3/2

n dB̃n,

where B̃n is a Brownian motion with d[Bn, B̃n] = (1− an(t))/(1− 2an(t) + bn(t))1/2 dt.

Thus our approach of considering large baskets is consistent with a 3/2 stochastic

volatility model for a price-weighted index of the form

dÎ = Î
(
µdt+ ρσ dM + σ

√
1− ρ2

√
Ĵ dW ′

)
dĴ = κĴ(θ − Ĵ) dt+ φĴ3/2 dW̃ .

Here M,W ′, W̃ are Brownian motions, with M independent of W ′, W̃ which are corre-

lated. The parameter κ, θ, φ are adapted processes in general. This is the type of model

that has been used in recent papers such as Baldeaux & Badran (2013), Drimus (2012)

(with constant parameters).

3 Application to volatility derivatives

As we have obtained a stochastic volatility model for the index, we could price options

on the index within the standard stochastic volatility framework. However we choose

to focus on the variance process and briefly discuss how our model can price volatility

derivatives in the context of our first two explicit models.

11



It is straightforward to show that the model (I, J) admits an equivalent martingale

measure Q under which{
dI(t) = rI(t) dt+ σρI(t) dMQ(t) + ξI(t)

√
J(t) dBQ(t),

dJ(t) = ξ2(J(t) + 3J(t)2) dt− 2ξJ(t)3/2 dBQ(t),

where MQ, BQ are independent Q-Brownian motions. Likewise for the model (Ī , J̄) with

non-exploding variance, there is an equivalent martingale measure Q̄ under which the

model takes the form{
dĪ(t) = rĪ(t) dt+ σρĪ(t) dM Q̄(t) + ξĪ(t)

√
J̄(t) dBQ̄(t),

dJ̄(t) = ξ2(J̄(t) + J̄(t)2) dt− 2ξJ̄(t)3/2 dBQ̄(t),

with M Q̄, BQ̄ being independent Q̄-Brownian motions.

Remark 3.1. (1) The price of volatility swaps or calls on realised variance will be infinite

in the exploding model. The prices of puts on realised variance will always be finite.

(2) We note that in performing a Monte Carlo simulation over a one year time interval

for 106 paths and reasonable parameter values, one is unlikely to see the explosion of J .

We will mainly focus on the non-exploding model and define the instantaneous vari-

ance V (t) = σ2ρ2 + ξ2J̄(t) and the realised variance Q(t) by

Q(t) =

∫ t

0
d[log Ī](s) = σ2ρ2t+ ξ2

∫ t

0
J̄(s) ds.

We note that the CIR process Ȳ has negative moments up to 3/2, so that EQ̄J̄
k <

∞ for all k < 3/2. For the original exploding model, the associated CIR process Y

has negative moments up to 1/2 in that EQJ
k < ∞ for k < 1/2. See the paper by

Hurd & Kuznetsov (2008) for such properties of the CIR process. We remark that the

results in Hurd & Kuznetsov (2008) also allow us to derive a formula for the Laplace

transform of the realized variance in this model. We let vθ = −1/4 +
√

1 + 8θ/4 and

ζ = 1
2(1− exp(−ξ2T ))−1. Then for θ ≥ −1/8 we have

EQ̄ [exp(−θQ(T ))] = e−θσ
2ρ2TEQ̄

[
exp

(
−θξ2

∫ T

0
Ȳ −1
t dt

)]
= e−θσ

2ρ2T−ξ2vθT J̄(0)−vθζvθ
Γ
(

3
2 + vθ

)
Γ
(

3
2 + 2vθ

) 1F1

(
vθ,

3

2
+ 2vθ;−

ζ

J̄(0)
e−ξ

2T

)
,

where 1F1 is a confluent hypergeometric function and Γ is the gamma function.

The pricing of variance swaps is straightforward within the model for J̄ . The time 0

price, v0, of the swap over the period [0, T ] is given by

v0 = EQ̄ [Q(T )] = σ2ρ2T + ξ2

∫ T

0
EQ̄
[
J̄(s)

]
ds.

12



As the inverse of the CIR has moments of order up to 3/2, we have by Hurd & Kuznetsov

(2008) that

EQ̄
[
J̄(s)

]
= EQ̄

[
Ȳ −1
s

]
=

1

1− exp(−ξ2s)
1F1

(
1,

3

2
,− exp(−ξ2s)

2J̄(0)(1− exp(−ξ2s))

)
.

Substituting this back into the variance swap price, rewriting the confluent hypergeomet-

ric function in standard integral form, and then changing variables we have that

v0 = EQ̄ [Q(T )] = σ2ρ2T +

∫ ∞
zT

∫ 1

0

e−zu

2z(1− u)1/2
dudz,

where zT = exp(−ξ2T )
2J̄(0)(1−exp(−ξ2T ))

. Unfortunately, there does not seem to be an explicit

formula in this case, unlike say the standard Heston model. The prices of volatility

swaps and options on variance or volatility with the model would have to be computed

numerically.

4 Weak convergence theorems

This final section is dedicated to the proof of the main convergence result, Theorem 1.1.

The two constituent parts of the theorem are proved separately as Theorem 4.6 and

Corollary 4.8.

4.1 Convergence preliminaries

Before we proceed with the proofs, some known results that will be used in due course

are gathered below for completeness. Firstly, we state a diffusion approximation theorem,

which will be our main tool in proving convergence to a diffusion process. The following

version appears as Theorem 4.1 on page 354 of Ethier & Kurtz (1989).

Theorem 4.1 (Rebolledo 1979). Let a = ((aij)) be a continuous, symmetric, non-

negative definite, d× d matrix-valued function on Rd and let b : Rd → Rd be continuous.

Let

A(a, b) = {(f,Gf ≡ 1

2

∑
aij∂i∂jf +

∑
bi∂if) : f ∈ C∞c (Rd)}, (4.1)

where C∞c (Rd) denotes the class of compactly supported infinitely differentiable functions

on Rd, and suppose that the CRd [0,∞) martingale problem for A is well-posed.

For n ∈ {1, 2, ...}, let Xn and Bn be processes with sample paths in DRd [0,∞), and

let An = ((Aijn )) be a symmetric d× d matrix-valued process such that Aijn has sample

paths in DRd [0,∞) and An(t) − An(s) is non-negative definite for t > s ≥ 0. Set Fnt =

σ(Xn(s), Bn(s), An(s) : s ≤ t).
Let τ rn = inf{t ≥ 0 : |Xn(t)| ≥ r or |Xn(t−)| ≥ r}, and suppose that

Mn ≡ Xn −Bn (4.2)

13



and

M i
nM

j
n −Aijn , i, j = 1, . . . , d, (4.3)

are {Fnt }-local martingales, and that for each r > 0, T > 0, and i, j = 1, . . . , d,

lim
n→∞

E

[
sup

t≤T∧τrn
|Xn(t)−Xn(t−)|2

]
= 0, (4.4)

lim
n→∞

E

[
sup

t≤T∧τrn
|Bn(t)−Bn(t−)|2

]
= 0, (4.5)

lim
n→∞

E

[
sup

t≤T∧τrn
|Aijn (t)−Aijn (t−)|

]
= 0, (4.6)

sup
t≤T∧τrn

∣∣∣∣Bi
n(t)−

∫ t

0
bi(Xn(s)) ds

∣∣∣∣→ 0 in probability, (4.7)

sup
t≤T∧τrn

∣∣∣∣Aijn (t)−
∫ t

0
aij(Xn(s)) ds

∣∣∣∣→ 0 in probability. (4.8)

Suppose that P ◦ Xn(0)−1 ⇒ η ∈ P(Rd). Then {Xn} converges in distribution to the

solution of the martingale problem for (A, η).

The following elementary inequality will be handy for checking a condition of the

diffusion approximation theorem.

Theorem 4.2 (Arnold & Groeneveld 1979). Let X1, . . . , Xn be jointly distributed with

common expectation µ and variance σ2. Then

E
[

max
1≤i≤n

Xi

]
≤ µ+ σ

√
n− 1 .

4.2 The limit Black-Scholes model

In this part, we will establish the limiting behaviour of the index process In. Indeed,

we will prove convergence of the k-th empirical moment process I
(k)
n = 1

n

∑n
i=1 S

k
i to a

limiting diffusion process I(k) as n→∞. We begin by proving a few simple lemmas. The

conditions given in the following lemmas are merely sufficient and by no means the best

possible as our aim is to explore an idea rather than derive results of maximum generality.

Lemma 4.3. Let m ∈ N and suppose that E [Si(0)m] < ∞ and
∫
R\{0} e

mxν(dx) < ∞.

Then for all positive k ≤ m and all t ≥ 0, E[Si(t)
k] = E[S1(t)k] <∞.

Proof. It is enough to show that E[S1(t)m] < ∞ and this is standard as we have an

explicit form for S1(t).
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Lemma 4.4. Suppose that E
[
Si(t)

2k
]
<∞ for all t ≥ 0. Then for any T > 0 and k ∈ N,

E

(sup
t≤T

1√
n

∫ t

0
I(k)
n (u) du

)2
→ 0 as n→∞ .

Proof. Since I
(k)
n (u) is always positive, we have that

∫ t
0

1√
n
I

(k)
n (u) du is increasing in t,

and an application of Cauchy-Schwarz gives

E

( sup
0≤t≤T

∫ t

0

1√
n
I(k)
n (u) du

)2
 ≤ E

[(∫ T

0

1√
n
I(k)
n (u) du

)2
]

≤ T

n
E
[∫ T

0
I(k)
n (u)2 du

]
. (4.9)

Using the Cauchy-Schwarz inequality again we have, for all u ≥ 0,

E
[
I(k)
n (u)2

]
du ≤ 1

n2
E

[
n

n∑
i=1

Si(u)2k

]
= EI(2k)

n (u) = ES1(u)2k <∞,

and, as the bound is positive and increasing, by Fubini’s theorem, E
[∫ T

0 I
(k)
n (u)2 du

]
<∞.

Thus, letting n→∞ in (4.9), gives the result.

Lemma 4.5. Let T > 0, k ∈ N and suppose that E
[
Si(t)

2k
]
<∞ for all t ≥ 0. Then for

any p > 1
2 ,

1

np
E

[
sup

1≤i≤n
sup
t≤T

Si(t)
k

]
→ 0 as n→∞ .

Proof. Let us write Zi := supt≤T Si(t)
k. By Doob’s submartingale inequality,

E
[
Z2
i

]
= E

[
sup
t≤T

Si(t)
2k

]
≤ 2k

2k − 1
E
[
Si(T )2k

]
<∞ ,

so both mean and variance of Zi exist and we call them µi and σi respectively. Also, note

that for any t ≤ 0, S1(t), . . . , Sn(t) are identically distributed, therefore, Z1, . . . , Zn are

also identically distributed with µi = µ, σi = σ for all i ∈ {1, . . . , n}. Now, by Theorem

4.2, we obtain

1

np
E
[

max
1≤i≤n

Zi

]
≤ 1

np
(
µ+ σ

√
n− 1

)
→ 0 as n→∞.

Now, we state and prove a result about the behaviour of I
(k)
n as n→∞. The notation

is as in Section 1.2.
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Theorem 4.6. Let k ∈ N and suppose that E
[
Si(0)4k

]
<∞ and

∫
R\{0} e

4kxν(dx) <∞.

Then I
(k)
n ⇒ I(k) as n→∞, where the process I(k) is given by{

dI(k)(t) =
(
kα+ 1

2k(k − 1)σ2 + βk
)
I(k)(t) dt+ kσρI(k)(t) dM(t),

I(k)(0) = E[S1(0)k].

Proof. We first note that the martingale problem for I(k) is well posed as it is a geometric

Brownian motion. We will apply the diffusion approximation theorem (Theorem 4.1) to

show that Xn = I
(k)
n converges to I(k).

Applying Itô’s formula we obtain the dynamics of I
(k)
n as

dI(k)
n (t) =

(
kα+

1

2
k(k − 1)σ2 + βk

)
I(k)
n (t−) dt+ kσρI(k)

n (t−) dM(t)

+kσ
√

1− ρ2
1

n

n∑
i=1

Si(t−)k dW i(t)

+
1

n

n∑
i=1

Si(t−)k
∫
R\{0}

(ekx − 1)Ñi(dt,dx) . (4.10)

Letting

Bn(t) =

∫ t

0

(
kα+

1

2
k(k − 1)σ2 + βk

)
I(k)
n (u) du ,

clearly, Mn = Xn −Bn is a local martingale. Furthermore, letting

An(t) = [Mn](t)

=

∫ t

0
k2σ2ρ2I(k)

n (u)2 + k2σ2(1− ρ2)
1

n
I(2k)
n (u) du

+
1

n2

n∑
i=1

∫ t

0
Si(u−)2k

∫
R\{0}

(ekx − 1)2Ni(du,dx) ,

by the Doob-Meyer decomposition (c.f. Ethier & Kurtz 1989 p. 79), M2
n − An is a local

martingale.

Now, the conditions (4.4)-(4.8) need to be checked. Since the jumps occur at distinct

times almost surely,

E

[
sup
t≤T
|Xn(t)−Xn(t−)|2

]
= E

[
sup

1≤i≤n
sup
t≤T

(
1

n

(
Ski (t)− Ski (t−)

))2
]

≤ 1

n2
E

[
sup

1≤i≤n
sup
t≤T

Si(t)
2k

]
.

Likewise,

E

[
sup
t≤T
|An(t)−An(t−)|

]
≤ 1

n2
E

[
sup

1≤i≤n
sup
t≤T

Si(t)
2k

]
.
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Thus by Lemma 4.5, both E
[
supt≤T |Xn(t)−Xn(t−)|2

]
and E

[
supt≤T |An(t)−An(t−)|

]
converge to 0 as n → ∞, proving the conditions (4.4) and (4.6). The jump condition

(4.5) is trivially satisfied because the Bn are continuous in t. Also, the condition (4.7)

trivially holds because

Bn(t)−
∫ t

0
b(Xn(u)) du = 0 for all t ≥ 0 .

To establish the condition (4.8), let us denote

Gn(t) :=

∫ t

0
k2σ2(1− ρ2)

1

n
I(2k)
n (u) du,

Hn(t) :=
1

n2

n∑
i=1

∫ t

0

∫
R\{0}

Si(u−)2k(ekx − 1)2Ni(du,dx).

Consider

E

[
sup
t≤T

∣∣∣∣An(t)−
∫ t

0
a(Xn(u)) du

∣∣∣∣2
]
≤ E

(sup
t≤T
|Gn(t)|+ sup

t≤T
|Hn(t)|

)2


≤ 2E

[
sup
t≤T
|Gn(t)|2

]
+ 2E

[
sup
t≤T
|Hn(t)|2

]
.

For (4.8) to hold, it is sufficient to show that E
[
supt≤T |Gn(t)|2

]
and E

[
supt≤T |Hn(t)|2

]
converge to 0 as n→∞. The term

E

[
sup
t≤T
|Gn(t)|2

]
= k4σ4(1− ρ2)2 1

n
E

[
sup
t≤T

∣∣∣∣∫ t

0

1√
n
I(2k)
n (u) du

∣∣∣∣2
]
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converges to 0 as n→∞ by Lemma 4.4. Also,

E

[
sup
t≤T
|Hn(t)|2

]
= E

[
Hn(T )2

]
=

1

n4
E

( n∑
i=1

∑
0≤u≤T

(Si(u)k − Si(u−)k)2

)2


≤ 1

n3
E

 n∑
i=1

( ∑
0≤u≤T

(Si(u)k − Si(u−)k)2

)2


≤ 1

n2
E

N1(T )

N1(T )∑
j=1

S1(τ1
j−)4k(ekJ

1
j − 1)4


=

1

n2

∞∑
N=1

E

N N∑
j=1

S1(τ1
j−)4k(ekJ

1
j − 1)4

P(N1(T ) = N)

≤ 1

n2

∞∑
N=1

N2
(

sup
t≤T

E
[
S1(t)4k

] )
E
[
(ekJ

1
j − 1)4

]
P(N1(T ) = N)

=
1

n2

(
sup
t≤T

E
[
S1(t)4k

] )
E
[
(ekJ

1
j − 1)4

]
E
[
N1(T )2

]
→ 0 as n→∞ .

In the above, the first two inequalities hold by Cauchy-Schwartz, the third one by inde-

pendence of S1(τ1
j−) and J 1

j .

Lastly, noting that by the law of large numbers, P ◦ I(k)
n (0)−1 ⇒ δE[S1(0)k], we have

finished checking the conditions of Theorem 4.1 and so the proof is completed.

4.3 Approximation of the idiosyncratic noise

In this subsection, we will be concerned with the large n limit behaviour of the scaled

idiosyncratic noise term Πn in (1.4). Alternatively, one can view the term as Πn(t) =√
n
(
In(t)− I(1)(t)

)
, which can be thought of as a scaled fluctuation of In(t) around the

first approximation I(1)(t). Scaled by
√
n, the idiosyncratic noise no longer vanishes as

in the first approximation, but weakly converges to a non-trivial process Π. The result

comes as a corollary of the following theorem. The notation is as in Section 1.2.

Theorem 4.7. Let

Xn(t) :=

(
Πn(t)

ξ2I
(2)
n (t)

)
and

X(t) :=

( ∫ t
0 ξ
√
I(2)(u) dB(u)

ξ2I(2)(t)

)
,

where B is a standard Brownian motion independent of M . Also, suppose that E
[
Si(0)8

]
<∞
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and
∫
R\{0} e

8xν(dx) <∞.

Then Xn ⇒ X as n→∞.

As weak convergence of vectors implies weak convergence of their components, we

have the following immediate corollary.

Corollary 4.8. Under the conditions of Theorem 4.7 and with the same notation,

Πn ⇒
∫ ·

0 ξ
√
I(2)(u) dB(u) as n→∞.

In order to prove Theorem 4.7 we again use Theorem 4.1 to show that Xn converges

weakly to the solution of a well-posed martingale problem solved by X. This martingale

problem has the generator

b(x, y) =

(
0(

2α+ σ2 + β2

)
y

)
,

a(x, y) =

(
|y| 0

0 4σ2ρ2y2

)
,

and the initial condition η = δX(0), where X(0) :=
(
0, ξ2E[S1(0)2]

)T
. By the Stroock-

Varadhan theorem (see p. 170 of Rogers & Williams 2000), the martingale problem is

well-posed. Also, note that by the law of large numbers, so P ◦Xn(0)−1 ⇒ δX(0).

We define

Bn(t) =

(
0

ξ2
∫ t

0

(
2α+ σ2 + β2

)
I

(2)
n (u) du

)
.

so that Mn = Xn − Bn has no drift part and is a local martingale. Then by the Doob-

Meyer decomposition (c.f. Ethier & Kurtz 1989 p. 79), we choose

Aijn (t) = [M i
n,M

j
n](t) = Gijn (t) +H i,j

n (t) (1 ≤ i, j ≤ 2),

where

G11
n (t) = γ

∫ t

0
I(2)
n (u) du,

G12
n (t) = G21

n (t) =
2ξ2γ√
n

∫ t

0
I(3)
n (u) du,

G22
n (t) = ξ4

(
4σ2ρ2

∫ t

0

(
I(2)
n (u)

)2
du+

4γ

n

∫ t

0
I(4)
n (u) du

)
,

H11
n (t) =

1

n

n∑
i=1

∫ t

0

∫
R\{0}

Si(u−)2(ex − 1)2Ni(du,dx),

H12
n (t) = H21

n (t) = ξ2n−
3
2

n∑
i=1

∫ t

0

∫
R\{0}

Si(u−)3(e2x − 1)(ex − 1)Ni(du, dx),

H22
n (t) =

ξ4

n2

n∑
i=1

∫ t

0

∫
R\{0}

Si(u−)4(e2x − 1)2Ni(du, dx) .
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The conditions of the diffusion approximation theorem are checked in the subsequent

lemmas.

Lemma 4.9. For any t > s ≥ 0, An(t)−An(s) is non-negative definite.

Proof. It is enough to show that Gn(t) − Gn(s) and Hn(t) − Hn(s) are non-negative

definite. By the Cauchy-Schwarz inequality applied twice,

(∫ t

s

n∑
i=1

S2
i (u) du

)(∫ t

s

n∑
i=1

S4
i (u) du

)
≥

∫ t

s

(
n∑
i=1

S2
i (u)

) 1
2
(

n∑
i=1

S4
i (u)

) 1
2

du

2

≥

(∫ t

s

n∑
i=1

Si(u)3 du

)2

,

which implies (
G11
n (t)−G11

n (s)
) (
G22
n (t)−G22

n (s)
)
≥
(
G12
n (t)−G12

n (s)
)2
.

Also, by another application of the Cauchy-Schwarz inequality, n∑
i=1

∑
s≤u≤t

(∆Si(u))2

 n∑
i=1

∑
s≤u≤t

(
∆S2

i (u)
)2 ≥

 n∑
i=1

∑
s≤u≤t

∆Si(u)∆S2
i (u)

2

,

where we use the jump notation ∆Y (t) = Y (t)− Y (t−) for a real-valued càdlàg process

Y . This implies that(
H11
n (t)−H11

n (s)
) (
H22
n (t)−H22

n (s)
)
≥
(
H12
n (t)−H12

n (s)
)2
.

Hence both Gn(t)−Gn(s) and Hn(t)−Hn(s) are non-negative definite.

Lemma 4.10. Conditions (4.5) and (4.7) are satisfied.

Proof. Since Bn(t) is continuous, then the jump condition (4.5) trivially holds. Next, the

condition (4.7) is also trivially satisfied because Bn(t)−
∫ t

0 b(Xn(u)) du = 0.

Lemma 4.11. Suppose that E
[
Si(t)

8
]
< ∞ for all t ≥ 0. Then the jump conditions

(4.4) and (4.6) are satisfied.
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Proof. We begin by considering

E

[
sup
t≤T
|Xn(t)−Xn(t−)|2

]

= E

[
sup
t≤T

((
1√
n

n∑
i=1

(Si(t)− Si(t−))

)2

+

(
ξ2

n

n∑
i=1

(Si(t)
2 − Si(t−)2)

)2
)]

=
1

n
E

[
sup
t≤T

n∑
i=1

(Si(t)− Si(t−))2

]
+
ξ4

n2
E

[
sup
t≤T

n∑
i=1

(
Si(t)

2 − Si(t−)2
)2]

≤ 1

n
E

[
sup

1≤i≤n
sup
t≤T

Si(t)
2

]
+
ξ4

n2
E

[
sup

1≤i≤n
sup
t≤T

Si(t)
4

]
,

where we repeatedly have used the fact that no two jumps occur at the same time almost

surely. Similarly,

E

[
sup
t≤T
|A11

n (t)−A11
n (t−)|

]
= E

[
sup
t≤T

1

n

n∑
i=1

(Si(t)− Si(t−))2

]

≤ 1

n
E

[
sup

1≤i≤n
sup
t≤T

Si(t)
2

]
,

and

E

[
sup
t≤T
|A12

n (t)−A12
n (t−)|

]

= E

[
sup
t≤T

ξ2n−
3
2

n∑
i=1

∣∣Si(t)2 − Si(t−)2
∣∣ |Si(t)− Si(t−)|

]

= ξ2n−
3
2E

[
sup

1≤i≤n
sup
t≤T

∣∣Si(t)2 − Si(t−)2
∣∣ |Si(t)− Si(t−)|

]

≤ ξ2n−
3
2E

[
sup

1≤i≤n
sup
t≤T

Si(t)
3

]
,

and

E

[
sup
t≤T
|A22

n (t)−A22
n (t−)|

]
= E

[
sup
t≤T

ξ4

n2

n∑
i=1

(Si(t)
2 − Si(t−)2)2

]

≤ ξ4

n2
E

[
sup

1≤i≤n
sup
t≤T

Si(t)
4

]
.

Now, we observe that by Lemma 4.5, every expectation above converges to 0 as n→∞,

therefore the conditions (4.4) and (4.6) are satisfied.

Lemma 4.12. Suppose that E
[
Si(0)8

]
< ∞ and

∫
R\{0} e

8xν(dx) < ∞. Then the condi-

tion (4.8) is satisfied.
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Proof. We need to verify all three cases of the condition (4.8).

(i) Case: i = j = 1.

Un(t) := A11
n (t)−

∫ t

0
a11(Xn(u)) du =

1

n

n∑
i=1

∫ t

0

∫
R\{0}

(ex − 1)2Si(u−)2Ñ(du, dx).

Let us fix T > 0 and note that UTn := Un(·∧T ) is a martingale, so |UTn | is a positive

submartingale and we can apply Doob’s submartingale inequality giving

E

[
sup
t≤T
|Un(t)|2

]
= E

[
sup
t≤T
|UTn (t)|2

]
≤ 4E

[
|UTn (T )|2

]
= 4E

[
Un(T )2

]
. (4.11)

Let

Yi(T ) :=

∫ T

0

∫
R\{0}

Si(u−)2(ex − 1)2Ñi(du, dx) .

Then

E
[
Un(T )2

]
=

1

n2

n∑
i=1

E
[
Yi(T )2

]
+

1

n2

n∑
i,k=1
i 6=k

E [Yi(T )Yk(T )] . (4.12)

Now, suppose that i 6= k and consider the second term in the expression above. As

our underlying probability space can be considered as the product space(
Ω{Si(0)}n1 × ΩM ×

∏n
i=1 ΩWi ×

∏n
i=1 ΩRi ,

∏n
i=1 PSi(0) × PM ×

∏n
i=1 PWi ×

∏n
i=1 PRi

)
with a natural sigma-algebra, Yi(T ) and Yk(T ) are independent conditional on the

market factor M .

Since Yi(· ∧ T ) conditioned on any sample path of M is a martingale,

E [Yi(T )|σ(M)] = E [Yi(0)|σ(M)] = 0 .

Hence, the second term in (4.12) is 0. By the Itô isometry for integrals with respect

to a compensated Poisson random measure,

E
[
Yi(T )2

]
= E

(∫ T

0

∫
R\{0}

Si(u−)2(ex − 1)2Ñi(du, dx)

)2


=

∫ T

0

∫
R\{0}

E
[
Si(u)4(ex − 1)4

]
ν(dx) du

=

∫
R\{0}

(ex − 1)4ν(dx)

∫ T

0
E
[
Si(u)4

]
du,

which is bounded above by some constant C because the fourth moment of Si exists

and the jump intensity measure density ν is such that
∫
R\{0}(e

x− 1)4ν(dx) is finite.
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Consequently, from (4.12) we obtain that

E
[
Un(T )2

]
=

1

n2
nE
[
Yi(T )2

]
<

1

n
C → 0 as n→∞,

and thus using (4.11) we can conclude that E
[
supt≤T |Un(t)|2

]
→ 0 as n→∞.

(ii) Case: i = 1, j = 2.

Recall

A12
n (t)−

∫ t

0
a12(Xn(u)) du = G12

n (t) +H12
n (t) .

Now, consider

E

[
sup
t≤T

H12
n (t)2

]
= E

[
H12
n (T )2

]
≤ ξ4

n3
E

n n∑
i=1

(∫ T

0

∫
R\{0}

Si(u−)3(e2x − 1)(ex − 1)Ni(du, dx)

)2


=
ξ4

n
E

N1(T )∑
j=1

S1(τ1
j−)3(e2J 1

j − 1)(eJ
1
j − 1)

2
≤ ξ4

n
E

N1(T )

N1(T )∑
j=1

S1(τ1
j−)6(e2J 1

j − 1)2(eJ
1
j − 1)2


=
ξ4

n

∞∑
N=1

E

N N∑
j=1

S1(τ1
j−)6(e2J 1

j − 1)2(eJ
1
j − 1)2

P(N1(T ) = N)

≤ ξ4

n

∞∑
N=1

N2
(

sup
t≤T

E
[
S1(t)6

] )
E
[
(e2J 1

1 − 1)2(eJ
1
1 − 1)2

]
P(N1(T ) = N)

=
1

n
ξ4
(

sup
t≤T

E
[
S1(t)6

] )
E
[
(e2J 1

1 − 1)2(eJ
1
1 − 1)2

]
E
[
N1(T )2

]
→ 0 as n→∞ .

In the above, the first two inequalities hold by Cauchy-Schwarz, the third inequality

follows from independence of S1(τ1
j−) and J 1

j .

Also, by Lemma 4.4,

sup
t≤T

∣∣G12
n (t)

∣∣→ 0 in L2 as n→∞,

consequently,

E

[
sup
t≤T

∣∣G12
n (t) +H12

n (t)
∣∣2] ≤ 2E

[
sup
t≤T
|G12

n (t)|2
]

+ 2E

[
sup
t≤T
|H12

n (t)|2
]
→ 0
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as n→∞.

(iii) Case: i = j = 2.

A22
n (t)−

∫ t

0
a22(Xn(u)) du = ξ4 (Un(t) + Vn(t)) ,

where

Un(t) =
4γ

n

∫ t

0
I(4)
n (u) du,

Vn(t) =
1

n2

n∑
i=1

∫ t

0

∫
R\{0}

Si(u−)4(e2x − 1)2Ni(du, dx) .

Notice that by an analogous argument as in (ii) above,

E

[
sup
t≤T
|Vn(t)|2

]
→ 0 as n→∞,

the only difference being that for this we use E
[
S1(t)8

]
<∞ and E

[
e8J 1

1

]
<∞.

Also, by applying Lemma 4.4 to Un(t), we obtain that

E

[
sup
t≤T
|Un(t)|2

]
→ 0 as n→∞ .

Consequently,

E

[
sup
t≤T
|Un(t) + Vn(t)|2

]
≤ 2E

[
sup
t≤T
|Un(t)|2

]
+ 2E

[
sup
t≤T
|Vn(t)|2

]
→ 0 as n→∞ .

Thus the condition (4.8) is satisfied.

Proof of Theorem 4.7. As all the conditions of Theorem 4.1 have been checked above, we

can conclude that Xn converges weakly to the solution of the martingale problem for X,

which completes the proof of Theorem 4.7.

Remark 4.13. If we trace back through the proof above, we see that similar arguments

yield (
1√
n

∑n
i=1

∫ ·
0 Si(u−) dWi(u)

I
(2)
n

)
⇒

( ∫ ·
0

√
I(2)(u) dB1(u)

I(2)

)
and (

1√
n

∑n
i=1

∫ ·
0

∫
R\{0} Si(u−)(ex − 1)Ñi(du,dx)

κI
(2)
n

)
⇒

( ∫ ·
0

√
κI(2)(u) dB2(u)

κI(2)

)
,

where B1, B2 are Brownian motions independent of M . It is worth noting that although
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the idiosyncratic terms are of different nature, one continuous, another pure jump, they

both weakly converge to the same process up to a scaling constant.
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loi de processus, Bull. Soc. Math. France Mem., 62, (1979).

25



[16] L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales,

Volume II (Second edition, Cambridge University Press, 2000).

[17] W. Schachermayer, J. Teichmann, How close are the Option Pricing Formulas of

Bachelier and Black-Merton-Scholes?, Math. Finance, 18, (2008), 155–170.

26


	Introduction
	The market model
	Price-weighted index
	Index approximations

	Stochastic volatility approximation
	Explicit characterisation of the original model
	A conditioned model with finite variance
	An alternative approach to the 3/2 model

	Application to volatility derivatives
	Weak convergence theorems
	Convergence preliminaries
	The limit Black-Scholes model
	Approximation of the idiosyncratic noise


