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Abstract

The focus of this paper is on the modelling of defaultable bonds and the optimal liquidation of
portfolios of such bonds. By developing an existing credit intensity model, we suggest a framework
for valuing defaultable bonds that allows for capturing, not only the default risk, but also the
liquidity risk. We investigate empirically defaultable bonds and extract their liquidity risk within
this model. We observe a regime shift at the beginning of the credit crisis in the liquidity risk of
a range of defaultable bonds. The third part of the paper is on optimal liquidation of portfolios
of defaultable bonds. The portfolio liquidation problem for bonds can be formulated as a multiple
optimal stopping problem, where stopping corresponds to the sale of a certain quantity of the asset.
We allow the depth of the market to depend on the liquidity yield of each bond and for sales to put
a downward pressure on the price depending on the size of the trade. We then show the relative
effect of the change in liquidity over the credit crisis in the amount that a bond portfolio can be
liquidated for under this model.

1 Introduction

The liquidation of portfolios of defaultable assets, whether to meet certain liabilities, to increase
liquidity or to cut a losing position has always been an important issue. Recently, in the light of the
financial crisis, however it has become crucial to the performance and sometimes even the survival of
financial firms. This paper focuses on the modelling of defaultable bonds and the optimal liquidation
of portfolios of such bonds.

The liquidity risk of an asset is the risk that arises from the inability to sell the asset or the
requirement to have to sell it at a low price, because there is no one in the marketplace prepared to
buy the asset for a higher price. Simple measures of liquidity risk are the bid-ask spread, or the total
trading volume. The recent crisis in the credit markets, which started in July 2007 was a good example
of why, along with credit risk, liquidity risk is very important and should not be underestimated. The
crisis originated in the US sub-prime mortgage market, but then quickly spread across all credit areas.
It affected credit businesses that have hardly anything to do with sub-prime mortgages and represented
the general unwillingness of investors to take on credit risk, putting downward pressure on any type of
debt. This naturally created low liquidity in the credit market and the newspapers were alternatively
using ”credit crisis” and ”liquidity crisis” to describe the events.
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The two main factors that are believed to explain risky bond spreads over the risk free term
structure are the credit risk and the liquidity risk. While much has been done in the direction of
modelling the credit risk, there is not much work in the literature on how liquidity risk affects bond
prices. Only recently a few papers Ericsson and Renault (2006) and Longstaff, Mithal and Neis (2006),
have been published which discuss the liquidity risk. In Ericsson and Renault (2006) a structural model
is developed for liquidity and default risk where the illiquidity is modelled as a random shock which
causes the bond price to sell at a random discount to the perfectly liquid bond. Longstaff, Mithal and
Neis (2006) use credit default swap and bond data to obtain the default and non-default components
in US corporate spreads. They use a framework similar to Duffie and Singleton (1999), where the
corporate bond cash flows are discounted at an adjusted rate that includes a liquidity yield process.
A stochastic liquidity convenience yield is considered in the literature for credit risk free bonds in
papers by Kempf and Uhrig-Homburg (2000) and Grinblatt (1995), where they suggest a two factor
liquidity model for risk free bonds. Bond prices are functions of the short term interest rate and
another exogenous process which accounts for the liquidity. In this work, together with liquidity, we
will consider default risk in the pricing of bonds.

We will build on these papers to develop a three factor model, where the different factors are
short term interest rate, default intensity and liquidity yield, to allow us to value defaultable bonds.
The parameters for the interest rate process can be estimated from the interest rate market and the
parameters for the intensity process can be estimated from the CDS market. We can then extract the
liquidity process using quotes for different bond issues.

The reduced form version of our framework is similar to the one introduced by Longstaff, Mithal
and Neis (2006). Our model differs in the following important assumptions:

• Liquidity risk is individual to a particular bond and cannot be hedged.

• An investor in illiquid bonds expects a higher rate of return than an investor in liquid ones (to
compensate for the additional liquidity risk that cannot be hedged).

• We define l as the continuous rate of return, which an investor in the illiquid bond will receive
for holding the liquidity risk.

• We assume recovery of treasury. At default, the recovery of the defaulted debt is proportional
to the value of a default risk-free asset, which has the same promised cashflows as the defaulted
asset. A treasury bond with the same coupon structure is usually used.

• We are modelling the liquidity risk of a bond as a risk of not being able to sell the bond or access
cash. For this reason, the recovery also depends on the liquidity yield. Usually the recovery is not
received immediately after a default, because there may be some long legal procedures. Valuing
the assets of the defaulted entity and their liquidation could also sometimes take a considerable
amount of time. In these cases if a bondholder needs to liquidate the position, the bond has to
be sold in the distressed/defaulted debt market, which is also affected by liquidity1.

Our assumptions allow us to obtain a closed form solution for the bond prices in the case where the
different driving factors are modelled as independent mean reverting square root (CIR) processes.
This compares to prices that are given by a one-dimensional integral in Longstaff, Mithal and Neis
(2006). In our model the liquidity premium appears explicitly as a discount on the price of an illiquid
bond.

1The size of the distressed/defaulted debt market has increased several times over the past few years and especially
recently. In the light of the financial crisis, many opportunities have emerged for liquid investors to take on underpriced
illiquid problematic debt.
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There has been some empirical work on liquidity including that by de Jong and Driessen (2006)
and Chacko (2006). The results of de Jong and Driessen (2006) show that the liquidity premia varies
across the different quality debt and is positively correlated with it. For the empirical part of our
work we use CDS quotes provided by Markit for the period 2001 - 2007. We also use corporate bond
data from TRACE and treasury rates data from the WRDS database. We present several cases: AIG,
Citigroup, General Electric, Goldman Sachs and Merrill Lynch. We specifically chose financial firms
to see how their subprime related writedowns in 2007 have affected the liquidity of their debt products.
It is widely agreed that the banking crisis started when problems in the credit markets caused the
liquidity to dry up. We will see some empirical evidence for that. Also at the time of the first occurence
of the symptoms of the crisis we can see a regime change in the liquidity factor. In 2008, especially
after the acquisition of Bear Stearns by JPMorgan, the CDS markets also became illiquid, so it is less
straightforward to apply our approach for 2008. During 2008 and especially towards the end of the
year the CDS spreads were also very dependent on the counterparty risk as investors became more
aware that the large investment banks, the usual counterparties in CDS trades, were also not immune
to default.

In the third part of the paper we use the risky bond model to formulate an optimal liquidation
problem for bonds and suggest an efficient numerical method to solve it. Due to the small number of
trades per day in the bond market it is useful to model time as discrete. The liquidation problem for a
portfolio of bonds is then naturally formulated as a discrete time multiple optimal stopping problem,
where a stopping time corresponds to a selling time for a fixed unit of the asset. In order to model
some of the features of the risky bond market we assume that the amount that can be sold in the
market at each time (the depth of the market) depends on the liquidity yield of each bond. We also
assume that selling puts a short term downward pressure on the price depending on the size of the
trade. Using Aleksandrov and Hambly (2008) we can formulate and solve efficiently this liquidation
problem. We then compare the actual return from liquidating a portfolio of 20 Goldman-Sachs bonds
before and after the credit crisis. The lack of liquidity results in a 5.5% reduction in the return.

The outline of the paper is as follows. We begin in Section 2 by developing the model, firstly in
generality and then reducing it to an analytic expression after making modelling assumptions about
the different processes involved. Once the model is in place it can be used to calculate the liquidity
risk in some traded corporate bonds and the results of the empirical analysis are given in Section 3.
Finally in Section 4 we formulate the liquidation problem and discuss its numerical implementation
before giving some results.

2 Intensity and Liquidity - Model Formulation

We will develop a three factor reduced form model for zero coupon bonds where the driving factors are
short term interest rates, intensity of default and liquidity yield. We will first consider a general setting
where the driving factors are general stochastic processes before specializing to CIR type processes
which will allow an explicit solution for bond prices.

In an intensity or reduced form model the default arrival time is modelled as the first arrival time
of a Poisson process with some intensity or, if the intensity is stochastic, of a Cox process. For more
details on these processes see Cont and Tankov (2004). There is no assumption about the firm’s assets
or liabilities as the jump time is an exogenous process and thus is independent of the market state
variables. The intensity based approach was introduced by Jarrow and Turnbull (1995) and further
developed by Duffie and Singleton (1999) and Lando (1998). Intensity models have become popular
among practitioners, because they are relatively easy to calibrate to CDS or defaultable bond data.

The default time of an obligor, the first jump time of the Poisson process, is assumed to have
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an intensity process that is adapted to the market filtration Ft. Corresponding to real markets, the
information we have for the arrival time should contain, not only whether there is a default at the
current time, but also whether there has been a default at some time in the past. We will discuss the
general case, where the interest rate r, jump intensity λ and liquidity yield l are stochastic processes.

The model:

1. The dynamics of the short term interest rate r follow

dr = µ1(t, r)dt+ σ1(t, r)dW1.

2. The default time τ is the first event of a Poisson process with intensity λ satisfying

dλ = µ2(t, λ)dt+ σ2(t, λ)dW2.

3. The liquidity convenience yield l satisfies

dl = µ3(t, l)dt+ σ3(t, l)dW3.

We also assume the driving Brownian motions are correlated in that

dWidWj = ρijdt, 1 ≤ j < i ≤ 3.

One way to guarantee the existence of strong solutions is to assume global Lischitz condition on
the coefficients. For i = 1, 2, 3 there exist constants Ki such that

||µi(t, x)− µi(t, y)||+ ||σi(t, x)− σi(t, y)|| ≤ Ki||x− y||, ∀x, y ∈ R.

The model that we will use, mean-reverting square-root model, does not however satisfy the Lipschitz
condition at 0. Despite that, it is well known that the SDE for this process has a strong solution. We
also assume the linear growth condition in that for i = 1, 2, 3 there are constants Ki such that

||µi(t, x)||2 + ||σi(t, x)||2 ≤ K2
i (1 + ||x||2).

to insure that the processes r, λ and l are square integrable.
Let Gt be the filtration of the state variables Xt = {rt, ...} (usually just the interest rates, but it

could have other factors as well) including the jump intensity and the liquidity yield

Gt = σ{Xs, λs, ls : 0 ≤ s ≤ t}

and Ht be the filtration containing the information on whether or not there has been a default up to
time t

Ht = σ{1τ≤s : 0 ≤ s ≤ t}.

The market filtration Ft i.e. the information about the state variables and whether there has been
default or not is then

Ft = Gt ∨Ht.

Let I(r(t), λ(t), l(t), t, T ) be the price of the illiquid defaultable bond. In the event of a default
with recovery Id, the increment in I will be Id − I.
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We write 1τ>T for the payoff at T , if no default occurs up to time T and Id1τ<T for the payoff
at time τ , if there is a default with recovery Id. Using Duffie and Singleton (1999) the bond price is
given by the formula:

I(r, λ, l, t, T ) = E[e−
∫ T
t rs+lsds1τ>T |Ft] + E[e−

∫ τ
t rs+lsdsId1τ<T |Ft]. (1)

This is equivalent to discounting the cashflows at rate r+ l. We assume recovery of treasury and also
that the recovery takes into account the liquidity of the bond in the defaulted security market, which

means that our recovery at time τ is proportional to E[e−
∫ T
τ rs+lsds|Fτ ]. We write

Id = δE[e−
∫ T
τ rs+lsds|Fτ ], (2)

where δ is a constant.

Theorem 1 A representation of equation (1) is given by

I(r, λ, l, t, T ) = E[e−
∫ T
t rs+λs+lsds|Gt] + δ(E[e−

∫ T
t rs+lsds|Gt]− E[e−

∫ T
t rs+λs+lsds|Gt]). (3)

In order to prove this Theorem we begin with two Lemmas.

Lemma 1

E[1τ≥T |GT ∨Ht] = 1τ>t exp(−
∫ T

t
λsds).

Proof:

E[1τ≥T |GT ∨Ht] = 1τ>tE[1τ≥T |GT ∨Ht]

= 1τ>t
P({τ ≥ T}

∩
{τ > t}|GT )

P(τ > t|GT )

= 1τ>t
P(τ ≥ T |GT )

P(τ > t|GT )

= 1τ>t exp(−
∫ T

t
λsds).

�

Lemma 2

E[e−
∫ T
t rs+lsds1τ≥T |Ft] = 1τ≥tE[e−

∫ T
t rs+ls+λsds|Gt].

Proof:

E[e−
∫ T
t rs+lsds1τ≥T |Ft] = E[E[e−

∫ T
t rs+lsds1τ≥T |GT ∨Ht]|Ft]

= E[e−
∫ T
t rs+lsdsE[1τ≥T |GT ∨Ht]|Ft]

= 1τ≥tE[e−
∫ T
t rs+ls+λsds|Ft].
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We are now going to express the last expectation as an expectation conditioned on the state variable
filtration Gt, rather than on the market filtration Ft. The exponential random variable E is independent
of GT so

E[e−
∫ T
t rs+ls+λsds|Gt ∨ σ(E)] = E[e−

∫ T
t rs+ls+λsds|Gt].

At the same time we have:

Gt ⊂ Ft ⊂ Gt ∨ σ(E).

Thus

E[e−
∫ T
t rs+ls+λsds|Gt ∨Ht] = E[e−

∫ T
t rs+ls+λsds|Gt]

and the proof is completed.

�
Proof: (Theorem 1) By the preceding two Lemmas and the fact that

E[e−
∫ τ
t rs+lsdsδE[e−

∫ T
τ rs+lsds|Fτ ]1τ<T |Ft] = δE[e−

∫ T
t rs+lsds1τ<T |Ft], (4)

we have

I(r, λ, l, t, T ) = E[e−
∫ T
t rs+lsds1τ>T + Ide−

∫ τ
t rs+lsds1τ<T |Ft]

= E[e−
∫ T
t rs+λs+lsds|Gt] + δ(E[e−

∫ T
t rs+lsds|Gt]− E[e−

∫ T
t rs+λs+lsds|Gt]).

�
As a comparison Longstaff, Mithal and Neis (2006) assume recovery at par and the corresponding

expression for the zero-coupon bond price using our notation would be

I = E[e−
∫ T
t rs+λs+lsds|Gt] + IdE[

∫ T

t
λse

−
∫ s
t ru+λu+lududs|Gt]. (5)

To prove this we use

Lemma 3

E[e−
∫ τ
t rs+lsds1τ<T |Ft] = 1τ≥tE[

∫ T

t
λse

−
∫ s
t ru+λududs|Gt].

Proof: The density of τ is

∂

∂s
P(τ ≤ s|τ > t,GT ) = λse

−
∫ s
t λudu.

Thus

E[e−
∫ τ
t rs+lsds1τ<T |Ft]

= E[E[e−
∫ τ
t rs+lsds1τ<T |GT ∨Ht]|Ft]

= 1τ≥tE[
∫ T

t
λse

−
∫ s
t ru+λu+lududs|Ft]

= 1τ≥tE[
∫ T

t
λse

−
∫ s
t ru+λu+lududs|Gt].

The last equality is obtained using the same idea as used in the previous Lemma.
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�

To compare our model with Longstaff, Mithal and Neis (2006) numerically we assume 40% recovery
of par for the Longstaff, Mithal and Neis framework and then we estimate δ = 54% for our model
using least square regression. We do this using the following procedure. We assume that the driving
processes are mean-reverting square root processes and are independent of each other (see the next
section for the corresponding formulas). We then calculate the values of (5) and the expectations in
(3) for 60,000 different sets of parameters. We then regress the corresponding values with respect to
δ for the range of the model parameters. The standard regression error we calculate is 0.054, which
shows that the models take similar values.

2.1 Uncorrelated Brownian Motions

In the previous subsection we introduced the general framework we use for modelling credit and
liquidity spreads. Here we will look at the case when the Brownian motions are not correlated.

The first expectation from (1) can be written as

E[e−
∫ T
t rs+λs+lsds|Gt] = E[e−

∫ T
t rsdse−

∫ T
t λsdse−

∫ T
t lsds|Gt]

= E[e−
∫ T
t rsds|Gt]E[e−

∫ T
t λsds|Gt]E[e−

∫ T
t lsds|Gt],

where

P (r, t, T ) = E[e−
∫ T
t rsds|Gt]

is the default risk-free zero coupon bond price,

Λ(λ, t, T ) = E[e−
∫ T
t λsds|Gt]

is the survival probability and we can think of

D(l, t, T ) = E[e−
∫ T
t lsds|Gt]

as a liquidity discount factor.
We can write the illiquid bond price as the liquid bond price multiplied by a discount factor

I(r, λ, l, t, T ) = D(l, t, T )L(r, λ, t, T ) (6)

where
L(r, λ, t, T ) = P (r, t, T )Λ(λ, t, T ) + δP (r, t, T )(1− Λ(λ, t, T )). (7)

In this uncorrelated case the credit and liquidity spreads γc and γl can be separated as

γc = − ln(L(r, λ, t, T )/P (r, t, T ))

T − t
= − ln(Λ(λ, t, T ) + δ(1− Λ(λ, t, T ))

T − t
,

γl = − ln(I(r, λ, l, t, T )/L(r, λ, t, T ))

T − t
= − ln(D(l, t, T ))

T − t
,

and the total spread is

γ = γc + γl.
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2.2 Mean reverting square root process model

We now consider a specific model for the different driving factors. For the short term interest rate, we
consider the CIR model as originally suggested in Cox, Ingersoll and Ross (1985) and we also assume
the same model (with different parameters) for the other factors.

The model:

1. The dynamics of the short term interest rate r satisfy

dr = k(θ − r)dt+ σr
√
rdW1.

where k, θ and σr are constant parameters.

2. The intensity of default λ satisfies

dλ = ρ(ν − λ)dt+ σλ
√
λdW2,

where ρ, ν and σλ are constant parameters

3. The liquidity convenience yield l satisfies

dl = β(µ− l)dt+ σl
√
ldW3,

where β, µ and σl are constant parameters.

We also assume that the driving Brownian motions are not correlated.
For all the mean-reverting square-root processes in this part we impose the positivity condition i.e.

kθ > σ2/2, which guarantees that the process does not reach zero. The main properties of the CIR
process are that it is always positive and that it is mean reverting. The drift is positive if r < θ and
negative if r > θ and thus r is pulled to the level θ with speed k. As in Cox, Ingersoll and Ross (1985)
it is easy to show that bond prices P , without credit or liquidity risk, satisfies the partial differential
equation

σ2r
2
rPrr + k(θ − r)Pr + Pt = rP

with terminal condition

P (r, T, T ) = 1.

The closed form solution is

P (r, t, T ) = A(t, T )e−B(t,T )r,

where

A(t, T ) =

[
2ωek+ω(T − t)/2

(ω + k)(eω(T−t) − 1) + 2ω

] 2kθ

σ2
r
,

B(t, T ) =
2(eω(T−t) − 1)

(ω + k)(eω(T−t) − 1) + 2ω
,

ω = (k2 + 2σ2r )
1/2.
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We will calculate E[e−
∫ T
t rsds|Gt], E[e−

∫ T
t λsds|Gt] and E[e−

∫ T
t lsds|Gt]. The first expectation above

is the value of the risk free zero coupon bond. From Feynman-Kac theorem the two other expectations
are solutions to the analogous partial differential equations

σ2λ
2
λΛλλ + ρ(ν − λ)Λλ + Λt = λΛ,Λ(λ, T, T ) = 1

and

σ2l
2
lDll + β(µ− l)Dl +Dt = lD,D(l, T, T ) = 1.

As before, these can be explicitly solved as

Λ(λ, t, T ) = C(t, T )e−E(t,T )λ,

where

C(t, T ) =

[
2ωe(ρ+ω)(T−t)/2

(ω + ρ)(eω(T−t) − 1) + 2ω

] 2ρν

σ2
λ ,

E(t, T ) =
2(eω(T−t) − 1)

(ω + ρ)(eω(T−t) − 1) + 2ω
,

ω = (ρ2 + 2σ2λ)
1/2.

and

D(l, t, T ) = G(t, T )e−H(t,T )l,

where

G(t, T ) =

[
2ηe(β+η)(T−t)/2

(β + η)(eη(T−t) − 1) + 2η

] 2βµ

σ2
y
,

H(t, T ) =
2(eη(T−t) − 1)

(η + β)(eη(T−t) − 1) + 2η
,

η = (β2 + 2σ2y)
1/2.

Thus from (6) and (7) we have an analytic expression for the bond price given by

I(r, λ, l, t, T ) = D(l, t, T ) (P (r, t, T )Λ(λ, t, T ) + δP (r, t, T )(1− Λ(λ, t, T ))) ,

with P,Λ, D as given above.

3 Empirical Work

In this section we will give some empirical observations about the liquidity premia of several U.S.
corporate bonds. We will discuss the change in the liquidity environment over the summer of 2007
and also estimate the parameters for our liquidity model. The data we use is the following:
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Figure 1: Credit and liquidity spreads for the Citigroup bond - C.HDO issued on 22/07/2004 with maturity
29/07/2009 and issue size USD1bn.
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Figure 2: Credit and liquidity spreads for the General Electric bond - GE.AAD issued on 31/05/2002 with
maturity 15/06/2012 and issue size USD3.75bn.

• Fixed maturities U.S. Treasury rates (taken from the WRDS database of Wharton Business
School). We use Treasury rates as opposed to Libor rates, because the Treasury rates are the
closest rates to default risk-free (at least in theory). There is a significant amount of credit risk in
the Libor curve. In 2008 we saw significant increase in the TED spread (the difference between
the interest rates for three-month U.S. Treasuries contracts and the three-month Eurodollars
contract as represented by the LIBOR), which illustrated that point. The industry usually
compares the CDS spread to the Asset Swap Spread2 of a name, because of financing issues.

2The Asset Swap Spread is the spread over LIBOR in the floating leg of a swap where the fixed leg is the bond’s
coupon payments
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The difference of the two is called the basis. We will however only look at the treasury curve
for the reason already stated. The data we have taken from WRDS is obtained in the following
way: Yields on Treasury nominal securities at “constant maturity” are interpolated by the U.S.
Treasury from the daily yield curve for non-inflation-indexed Treasury securities. This curve,
which relates the yield on a security to its time to maturity, is based on the closing market bid
yields on actively traded Treasury securities in the over-the-counter market. These market yields
are calculated from composites of quotations obtained by the Federal Reserve Bank of New York.
The constant maturity yield values are read from the yield curve at fixed maturities, currently
1, 3 and 6 months and 1, 2, 3, 5, 7, 10 and 20 years. Given these yield values at constant
maturities, we use cubic splines to interpolate the yield curve. We then read the needed yield
off that yield curve.

• Credit default swap data (provided by Markit). The CDS quotes were for 6 months and 1, 2, 3,
4, 5, 7, 10, 15, 20 and 30 years. Again cubic splines were used to build the whole credit curve.

• Bond yield data (taken from Trade Reporting and Compliance Engine (TRACE)). TRACE is
a vehicle that facilitates the mandatory reporting of over the counter secondary market trans-
actions in eligible fixed income securities. All brokers/dealers who are Financial Industry Reg-
ulatory Authority member firms have an obligation to report transactions in corporate bonds
to TRACE under an SEC approved set of rules. As TRACE reports all trades in a particular
bond, we calculate the bond yields of the considered names by averaging the daily yields of all
transactions weighted by their sizes.
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Figure 3: Liquidity spreads for the Merrill Lynch bonds - MER.GHM, MER.GGF, MER.GGW, and MER.HE

Once we have build the interest rate and credit curves we then calculate the liquidity spread as
the difference between the bond yield and the sum of the interest rate and the default spread for a
particular maturity. In this way we have liquidity yield to maturity. Some visual examples of liquidity
yields are given on figures 1-5. On figures 1 and 2 we can see a comparison of the credit and the
liquidity spreads of two bond issues of Citigroup and General Electric. We can see that the liquidity
spread is very significant and in some cases larger than the credit spread.

On figure 6 we have plotted the average liquidity yield of 40 different bonds issued by 10 large US
corporations. We can clearly see that there is some sort of change in the behaviour of the average yield
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Liquidity spreads for some AIG bonds.
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Figure 4: Liquidity spreads for the AIG bonds - AIG.GHW, AIG.GLP, AIG.QP, and AIG.QR

at the beginning of the credit crisis in July-August 2007. The square on figure 6 marks the 1 August
2007, the day after the Bear Stearns High-Grade Structured Credit Fund and Bear Stearns High-
Grade Structured Credit Enhanced Leveraged Fund filed for Chapter 15 bankruptcy. The collapse of
these two hedge funds with capital of over 1.6 billion USD started the panic in the credit markets.
On figures 3-5 which represent liquidity yields for several bonds issued by Merrill Lynch, AIG and
Goldman Sachs we can see that they all have behaviour similar to the average.
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Figure 5: Liquidity spreads for the Goldman Sachs bonds - GS.KJ, GS.OU, GS.UG, and GS.UY

As we have separated the liquidity yield and we are primarily interested in it we will estimate our
model parameters for the liquidity process only. We gave the explicit calculation in the case when we
assume that the liquidity process is a CIR process. In this part we will also consider the Vasicek model
for the liquidity process. The parameter estimation will be done using the Kalman filter. We will use
the methodology from Bolder (2001) and Chen and Scott (2003). We will give a short description of
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Figure 6: Average liquidity spread calculated over 40 bond issues by 10 obligors.

the procedure in Appendix A, but for more details see the two papers.
Because of the difference in the behaviour of the liquidity yield before the beginning of the crisis

and during the crisis we have estimated the model parameters for the liquidity process for two time
intervals - before 1 August 2007 and after. The results are given in Table 1. We can see that the
parameters that maximise the likelihood function in the Kalman filter are different before and after.
After 1 August 2007 in most cases we have higher means, variances and speed of mean reversion for
both the mean reverting process and CIR process.

4 Portfolio Liquidation Problem

The liquidation of defaultable assets has become very important during the current financial crisis.
Examples where this may be required in the financial industry include:

• A bank liquidating toxic assets to cut losses, to obtain liquidity or to improve its leverage
ratio3. From the beginning of the crisis and especially after the bankruptcy of Lehman Brothers,
banks were very aggressive to bring the leverage ratios down and contract their balance sheets.
Morgan Stanley, for example shrunk its balance sheet from USD 1,131,649 mil in Mar 2008 to
USD 626,023 mil in Mar 2009, bringing the leverage ratio from 27.7x to 11.2x for the same
period. See figure 7.

• A prime broker liquidating clients assets after a default or unmet margin calls. In the event of
a hedge fund default its prime broker would in many cases have to liquidate the collateral.

• A buy-side firm (hedge fund, pension fund or insurance company) selling assets to meet redemp-
tions or cut losses. According to data compiled by Hedge Fund Research Inc. Hedge fund assets
shrank to $1.2 trillion at the end of 2008 from the June peak of $1.9 trillion due to market losses
and investor withdrawals.

It has very often been the case that when liquidating a portfolio, the actual resulting cash is very
different from the book value. This is because most quotes in the marketplace are only valid for
limited amounts. This is a different complication to the fact that some financial products are not

3Leverage ratio is the ratio between the core capital of the firm i.e. shareholders’ equity and the total consolidated
assets. It is a measure of the riskiness of the firm.
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Figure 7: Source: Morgan Stanley Reports.

actively traded and the price is marked-to-model as opposed to mark-to-market. Most financial firms
who mark-to-market use the quoted market price to value their assets. This however has proven to be
misleading. Here we show how this occurs for the defaultable illiquid securities we have considered.
Thus not only an asset price model, but also a liquidation model and a projection for the resulting
cash from a liquidation should be used when valuing a position.

We consider defaultable illiquid securities - corporate and government bonds and will suggest a
framework for designing a liquidation strategy for such assets. The problem of liquidation of equities
or foreign exchange positions in a limit order book setting has been widely considered in the literature
Smith et al. (2003), Almgren and Chriss (2000) and others. Most of these approaches rely on modelling
the limit order book and bid-ask spread explicitly. Unfortunately this is only realistic in fairly liquid
markets, which equities and foreign exchange are, and unrealistic in the more illiquid bond markets.
The liquid stocks and currency pairs trade every second, even more often, very liquid U.S. corporate
bond issues trade several times a day. It has been calculated in Bessembinder et al. (2006) that the
average bond trades in the OTC market are of size USD 2.7 mil. This more discrete and sizable nature
of trading in defaultable bonds requires a different modelling approach for the liquidation problem. On
figure 8 we can observe the typical trading behaviour of a bond issue. After issuance the bond trades
heavily for some time. Very often buy-and-hold institutional investors buy into it and the amount of
trading in the issue stabilises at a lower level.
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Figure 8: Average trade size and number of trades for the American International Group - AIG.GPA issue.

We will state here the main economic assumptions for our liquidation problem:

1. The liquidation of the position occurs in discrete time, on a daily basis. Given the infrequency
of the trading in the corporate bond markets, this is not an unrealistic assumption.
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2. The financial institution liquidating the position is a price taker and its influence on the bond
price only temporary. It affects the price on the day, depending on the amount of bonds it sells
that day, by putting a downward pressure on the price. On the next day, however, the bond
price is determined by the economic fundamentals - interest rates, probability of default and the
liquidity of the bond on that day.

3. The depth of the market i.e. the maximum amount the firm can sell on a given day is determined
by the liquidity of the bond. High liquidity of the bond (low liquidity yield) corresponds to a
large amount that could be sold and vice versa.

The liquidation is done over a finite time horizon {1, 2, ..., T}. The amount that could be sold in
the market, which depends on the depth or the liquidity of the market, is given by kt (t = {1, 2, ..., T}).
kt is a decreasing function of the liquidity yield lt and has a discrete distribution. So the seller can sell
up to kt units of the asset at time t. The price of the defaultable bond that depends on the factors
rt, λt and lt is only for limited amounts of the security. This corresponds to the fact that usually
the price the market-makers announce or the price on the screen is for limited amounts. For larger
amounts there is a price correction. Thus the cashflow from selling one unit at time t would be

h1t = I(r, λ, l, t, T ).

However for more units of the security the price and thus the cashflows from the sale will adjust
to

h1t ≥ h2t ≥ h2t ... ≥ hktt ,

with cumulative cashflow from the sale of p units of the asset

Hp
t =

p∑
i=1

hit, p = 1, 2, ..., kt.

The difference between h1t , h
2
t , ..., h

kt
t represents the price impact of the sale. In this way the liquidity

of a specific security affects its price on the screen and the total amount the market could take at
any one time. On the other hand the amount to be sold introduces an additional effect on the total
cashflow. We assume that the asset price is affected by the sale only temporarily, i.e. after a sale the
price goes back to the price level given by rt, λt and lt before the next time step. This is a reasonable
assumption if the seller’s position is not a large portion of the market in that security and the other
market participants are not aware of the liquidation plans. Otherwise the sale may have a larger
impact on the price lasting longer.

Here we will make some more assumptions about the microstructure of the bond market.

1. The quote I(r, λ, l, t, T ) is good for a trade that is of size equal to the average bond trade in
the issue. The price is then affected by every consecutive block of that size. So if twice the
amount of an average trade is to be sold, the first block could be sold for the announced price
I(r, λ, l, t, T ) and the second block will be sold at a discount.

2. The maximum that could be sold in the market at any one day, in a perfectly liquid market is
equal to twice the average daily volume in the issue. This means at each time t the maximum
amount that can be sold in the market kt (which is a random variable) takes values in the set
(1, 2, ...,M), where

M = integer part

[
2 ∗ average daily volume

average daily trade

]
. (8)
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For the numerical example we will consider a distribution for kt that is derived from lt in the following
way.

kt =



6, if lt < µ− 2σ̂

5, if µ− 2σ̂ ≤ lt < µ− σ̂

4, if µ− σ̂ ≤ lt < µ

3, if µ ≤ lt < µ+ σ̂

2, if µ+ σ̂ ≤ lt < µ+ 2σ̂

1, if µ+ 2σ̂ ≥ lt

where σ̂2 =
σ2
l µ
2β . µ is the stationary mean of the process lt. σ̂

2 is the stationary variance of the mean

reverting process with the same speed and level of mean reversion as l and constant variance σ2l .
We also assume that the sale of the asset impacts the price through a discount factor, that is

hi =
I

(1 + α)i−1
. (9)
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Figure 9: The intersection between the continuation value as a function of the liquidity yield and bond price
and bond price as a function of the liquidity yield is the exercise boundary.

We will use the notation V ∗,m
t for the optimal value for which the position can be liquidated. We

define a liquidation policy πk to be a set of stopping times {τi}mi=1 with τm ≤ τm−1 ≤ · · · ≤ τ1 and
#{j : τj = s} ≤ ks. We will often drop the subscript and just write π for ease of notation. Then the
value of the policy πk at time t is given by

V πk,m
t = Et(

T∑
s=t

H
#{j:τj=s}
s (Xs)).
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Figure 10: The intersection between the continuation value as a function of the liquidity discount and bond
price and bond price as a function of the liquidity discount is the exercise boundary.

Definition 1 The value function is defined to be

V ∗,m
t = sup

πk

V πk,m
t = sup

πk

Et(

T∑
s=t

H
#{j:τj=s}
s (Xs)).

We denote the corresponding optimal policy π∗ = {τ∗m, τ∗m−1, ..., τ
∗
1 }.

For our purposes it will be more convenient to work with an alternative formulation. Using dynamic
programming it is straightforward to see that the value function can be written as follows.

Lemma 4 (Dynamic programming formulation). The value function V ∗,m
t at time t is given by

V ∗,m
T =H

min{kT ,m}
T ,

V ∗,m
t =max{Hmin{kt,m}

t + Et[V
∗,m−min{kt,m}
t+1 ],

H
min{kt,m−1}
t + Et[V

∗,m−(min{kt,m−1})
t+1 ],

..., H1
t + Et[V

∗,m−1
t+1 ],Et[V

∗,m
t+1 ]}.

Note that for 0 ≤ i ≤ kt the quantity

H
min{kt,m−i}
t + Et[V

∗,m−min{kt,m−i}
t+1 ]

is the cashflow from the sale of the m-th, m− 1-th, ..., m−min{kt,m− i}+ 1-th units at time t plus
the expected future payoff from the remaining m−min{kt,m− i} units.

We will give definitions for few other useful quantities.
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Definition 2 The continuation value C∗,m
t at time t,is given by

C∗,m
t = Et[V

∗,m
t+1 ].

Now the dynamic programming equations can be written in terms of the continuation value.

C∗,m
T = 0,

C∗,m
t = Et

[
max{Hmin{kt+1,m}

t+1 + C
∗,m−min{kt+1,m}
t+1 ,H

min{kt+1,m−1}
t+1 + C

∗,m−(min{kt+1,m−1})
t+1 ,

..., H1
t+1 + C∗,m−1

t+1 , C∗,m
t+1}

]
An important quantity is the value of an additional unit of the asset in the position.

Definition 3 The marginal value of one additional unit is denoted by ∆V ∗,m
t for m ≥ 1:

∆V ∗,m
t = V ∗,m

t − V ∗,m−1
t .

The marginal value for m = 1 is just the value for one unit

∆V ∗,1
t = V ∗,1

t .

Of course the marginal continuation values can be given by

∆C∗,m
t = C∗,m

t − C∗,m−1
t .

4.1 Numerical Solution

Here we will introduce a method to compute an approximation to the optimal liquidation policy. It
can be calculated by a generalization of the Monte Carlo regression method introduced by Longstaff
and Schwartz (1998). A more complete discussion about the method can be found in Aleksandrov and
Hambly (2008).

With the ordering of the continuation values (the proof of this can be found in Aleksandrov and
Hambly (2008))

Et[∆V
∗,m
t+1 ] ≤ Et[∆V

∗,m−1
t+1 ], ∀m,∀t

we can determine the optimal liquidation policy at time level t as

if i = max(j : hjt ≥ Et[∆V
∗,m−j+1
t+1 ]|1 ≤ j ≤ min{m, kt}) - sell i units.

if Et[∆V
∗,m
t+1 ] > h1t - do not sell.

In terms of the marginal continuation values we can write the strategy as

if i = max(j : hjt ≥ ∆C∗,m−j+1
t |1 ≤ j ≤ min{m, kt}) - sell i units.

if ∆C∗,m
t > h1t - do not sell.

The idea here is to work backwards in time, approximating the marginal continuation value with a
linear combination of basis functions. In this way an approximation of the optimal liquidation strategy
is found and consequently a lower bound for the value function.

Algorithm

Let ψi : Rd → R for i = 1, . . . , l be the basis functions used for the regression.
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1. For all times t ∈ {0, 1, 2, ..., T} and at each point x ∈ Rd we define ∆Ĉm
t (x), an approximation

to the m−th marginal continuation value ∆C∗,m
t , by

∆Ĉm
t (x) =

l∑
i=1

cmt,iψi(x).

Of course the optimal continuation values are not known. Thus we use non-optimal continuation
values Cm

t defined as follows.

2. Suppose that, working backwards in time and forward from one unit, approximations

∆Ĉm
t+1,∆Ĉ

m−1
t+1 , ...,∆Ĉ

m−min{m−1,kt+1}
t+1 to the m−th, m − 1,...,m − min{m − 1, kt+1} marginal

continuation value functions have been obtained. Then for path j define the approximate con-

tinuation value C
m,(j)
t to be

C
m,(j)
t =



H
min{k(j)t+1,m}
t+1 (X

(j)
t+1) + C

m−min{k(j)t+1,m},(j)
t+1 ,

if h
min{k(j)t+1,m}
t+1 (X

(j)
t+1) ≥ ∆Ĉ

m−min{k(j)t+1,m−1}
t+1 (X

(j)
t+1)

H
min{k(j)t+1,m−1}
t+1 (X

(j)
t+1) + C

m−min{k(j)t+1,m−1},(j)
t+1 ,

if min{k(j)t+1,m− 1} = max(i : hit+1(X
(j)
t+1) ≥ ∆Ĉm−i+1

t+1 (X
(j)
t+1)|1 ≤ i ≤ min{m, kt+1})

...

C
m,(j)
t+1 ,

if ∆Ĉm
t+1(X

(j)
t+1) > ht+1(X

(j)
t+1)

The non-optimal m−th marginal continuation values are also defined by

∆C
m,(j)
t = C

m,(j)
t − C

m−1,(j)
t .

3. Let ψ = (ψ1, ψ2, ..., ψl) and c̄
m
t = (cmt,1, c

m
t,2, ..., c

m
t,l). If n paths are simulated, an estimate for the

regression coefficients would be

c̄mt = argmin
c∈Rl

n∑
j=1

(
∆C

m,(j)
t −

l∑
i=1

cmt,iψi(X
(j)
t )

)2
.

The explicit formulas for the coefficients are

c̄mt = Ψ−1vm,

Ψl,p =
1

n

n∑
j=1

ψl(X
(j)
t )ψp(X

(j)
t ),

vml =
1

n

n∑
j=1

ψl(X
(j)
t )∆C

m,(j)
t .

4. Once the coefficients cmt,1, c
m
t,2, ..., c

m
t,l are obtained we can approximate the m-th marginal con-

tinuation value, and from there the stopping rule, at any point in the state space. We work
backwards in time until we reach t = 0.
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4.2 Numerical Example

Here we can use the regression approach to find the optimal liquidation strategy. In this way we can
show a lower bound for the cash flow that can be guaranteed from the liquidation of the position. As
basis functions we use 1, D,Λ, P and I, which are calculated at each time point of the simulated paths.
Here the analytical expression for the bond price is crucial for the simulations. In figures 9 and 10 we
can see the exercise boundary obtained as the intersection between the payoff and the continuation
value. We consider the following example in the intensity setting. We want to liquidate a position
of 20 units of a defaultable zero-coupon bond over 20 trading days (roughly one month). Here we
assume that one unit of the bond has notional one. Using the parameter values recovery δ = 0.53,
σr = 0.2, k = 0.5, r0 = 0.05, σλ = 0.3, ρ = 2, ν = 0.03, λ0 = 0.03, σl = 0.2, β = 0.5, µ = 0.02, l0 = 0.02
and maturity of the bond 5 years, we calculate that the price of one unit as 0.6671. In this case the
book value of our holding will be 13.34(= 20 × 0.6671). Using our liquidation model we obtain that
on average we can liquidate the portfolio for 11.9717 (with a standard deviation of 1.1476). Thus
the actual cash flow from the liquidation is 10.26% less than the book value. The book value is
actually more than one standard deviation away (13.34 > 11.9717 + 1.1476 ∼ 13.12) from what could
be achieved after a liquidation using our suggested method and model. In figure 11 we can see the
dependence of the liquidation value on the short term price impact α as well as the discount of the
liquidation value from the book value.

This discount is due to:

• Downward price pressure from the sale.

• Price fluctuations over the liquidation period (in some cases they are positive and the effect is
marginal)

• In some cases inability to sell the whole amount over the liquidation period, due to the unknown
random liquidity of the market. We impose a hard restriction here and at the end of the period
the unsold units are worthless.

To observe the impact of the regime change in the liquidity factor that occurs around August 2007
on the liquidation value we run the calculation with numbers before and after 1 August 2007. We
use the average numbers for the liquidity parameters (given in Table 1) for one of the more stable
companies in our set - Goldman Sachs. We run the liquidation algorithm for the average liquidity
parameters before and after 1 August 2007, everything else we keep the same. The set up of this
liquidation problem is the same as the one above - we want to liquidate 20 zero coupon bonds issued
by Goldman, over a horizon of 20 trading days. The selling constraints kt are also given in the same
form as above. The calculation shows that before the beginning of the crisis we can liquidate the
position, under our model assumptions, on average for 11.13. After the beginning of the crisis however
we can liquidate the same position for average of 10.54. That is a 5.5% discount.

5 Summary

Many improvements and generalisations of the single firm models have been introduced since their
first appearances in Merton (1974) and Jarrow and Turnbull (1995), for the structural and intensity
approaches respectively. The bond spreads of defaultable bonds over the treasuries are in most of those
cases treated as purely default driven. There is empirical evidence that this is not true. Particularly
recently, because of the credit crisis good quality debt has been largely undervalued, because of lack
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Figure 11: Dependence of the liquidation value on the short term price impact.

of liquidity in the credit market. To cover writedowns and margin calls due to bad debts, funds had to
liquidate positions with a better marked-to-market (good quality debt) in a low liquidity environment
and thus take big losses. This illustrates another point that the portfolio is only worth what the other
market participants are prepared to pay for it and that may be very different from its book value.
After these events liquidity risks in the debt market will be watched more carefully and maybe banks
and investment funds will also try to adjust their existing default risk models to capture the liquidity
risk as well.
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A Kalman Filter for the liquidity process.

We have a one factor model and one observed yield. The formulation of the Kalman filter consists
of measurement equations and transition equations. For the liquidity discount factors we have the
representation

D(l, t, T ) = G(t, T )e−H(t,T )l,

both in the case of mean reverting process and CIR process (G and H are known functions). The
liquidity spread can be written as

γl = − ln(D(l, t, T ))

T − t
= − ln(G(t, T ))

T − t
+

−H(t, T )l

T − t
.

So if we have observation of the liquidity spread on dates t1, t2, ..., tn we can write the measurement
equations as

γl(ti, T ) = α(ti, T ) + ξ(ti, T )l(ti) + zi.

where zi is a normal random variable with variance r2. To discretise the stochastic differential equation
we rely on the scheme

l(ti, T ) = µ(1− e−β∆t) + e−β∆tl(ti−1, T ) + ϵi,

where

ϵi|Fi−1 ∼ N (0, Q)

Q here is in the case of a mean reverting process

Q =
σ2l
2β

(1− e−2β∆t)

and for a CIR process

Q =
µσ2l
2β

(1− e−β∆t)2 +
σ2l
β
(e−β∆t − e−2β∆t)l(ti−1)

For shortness of notation we write:

l(ti, T ) = V +Wl(ti−1, T ) + ϵi,

We will give a short description of the procedure from Bolder (2001). The measurement equations
define the filtrations Fi = σ{γl(t1, T ), γl(t2, T ), ..., γl(ti, T )}.

1 Initializing the state vector. The unconditional mean and variance are used for starting the
recursion. The unconditional mean, for both the mean reverting and the CIR models is:

E[l(t1, T )] = E[l(t1, T )|F0] = µ
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The unconditional variance for the mean reverting model is:

var[l(t1, T )] = E[l(t1, T )|F0] =
σ2l
2β

and the CIR it is

var[l(t1, T )] = E[l(t1, T )|F0] =
σ2l µ

2β

2 Forecasting the measurement equation. The conditional forecast of the measurement equation
has the following form:

E[γl(ti, T )|Fi−1] = α+ ξE[l(ti, T )|Fi−1]

The conditional variance is:

var[γl(ti, T )|Fi−1] = ξ2var[l(ti, T )|Fi−1] + r2.

3 Updating the state vector. We update the conditional equation by:

E[l(ti, T )|Fi] = E[l(ti, T )|Fi−1] + ξ
var[l(ti, T )|Fi−1]

var[γl(ti, T )|Fi−1]
(γl(ti, T )− E[γl(ti, T )|Fi−1])

and variance:

var[l(ti, T )|Fi] =
(
1− ξ2

var[l(ti, T )|Fi−1]

var[γl(ti, T )|Fi−1]

)
var[l(ti, T )|Fi−1]

4 Forecasting the state vector. Using the state equation, in this step, a forecast is calculated based
on the conditional updated values for the previous period.

E[l(ti+1, T )|Fi] = V +WE[l(ti, T )|Fi]

The conditional variance here is:

var[l(ti+1, T )|Fi] = var[l(ti, T )|Fi−1]−W 2var[l(ti, T )|Fi] +Q

5 Maximum likelihood function. The last step is to construct the log-likelihood function Using
the first four steps we generate forecasts for the state vector. Under the assumption that the
prediction errors of the measurement system are Gaussian, we can calculate the log-likelihood
function.

f = −nN ln(2π)

2
− 1

2

N∑
i=1

[ln |var[l(ti, T )|Fi−1]|+
(γl(ti, T )− E[γl(ti, T )|Fi−1])

2

var[l(ti, T )|Fi−1]
]

To find the optimal set of parameters we use an optimization method on f .

In the case of a CIR process the unobservable state variables are distributed conditionally as
noncentral χ2. In the procedure above the distribution has been approximated by a normal with
matching first two moments.
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Table 1: Parameters estimations for the mean reverting (MR) and CIR processes before and after 1
August 2007.

bond process before after
µ σ β µ σ β

AIG.GHW MR 0.0051 0.0029 0.4848 0.0065 0.0042 0.9126
CIR 0.0075 0.0120 0.8805 0.0070 0.0460 1.2946

AIG.GLP MR 0.0060 0.0080 1.8014 0.0132 0.0230 4.5542
CIR 0.0048 0.0124 1.5359 0.0062 0.0267 0.6166

AIG.GPA MR 0.0057 0.0099 3.8473 0.0106 0.0253 7.6145
CIR 0.0057 0.0099 0.6286 0.0057 0.0266 0.8944

AIG.QR MR 0.0056 0.0074 1.3027 0.0096 0.0179 4.2142
CIR 0.0062 0.0127 0.8781 0.0075 0.0230 1.5203

C.GDS MR 0.0047 0.0018 0.1520 0.0101 0.0475 10.0751
CIR 0.0031 0.0273 13.4326 0.0101 0.1163 14.1264

C.HDI MR 0.0026 0.0056 1.2881 0.0083 0.0183 14.1306
CIR 0.0030 0.0143 0.9776 0.0053 0.0017 0.0027

C.HDO MR 0.0031 0.0093 1.6973 0.0101 0.0206 5.7834
CIR 0.0036 0.0078 0.2472 0.0046 0.0223 1.4203

C.NW MR 0.0052 0.0046 0.8685 0.082 0.0387 0.0190
CIR 0.0054 0.0030 0.0132 0.053 0.0038 6.1158

GE.AAD MR 0.0039 0.0091 1.4348 0.0085 0.0121 3.6040
CIR 0.0051 0.0148 0.9050 0.0055 0.0176 2.6849

GE.ACE MR 0.0039 0.0088 1.6064 0.0065 0.0135 3.7464
CIR 0.0068 0.0087 0.4093 0.0061 0.0242 1.9282

GE.ADF MR 0.0044 0.0077 1.4919 0.0055 0.094 2.6747
CIR 0.0051 0.0111 0.6088 0.0054 0.0289 4.0542

GE.HBO MR 0.0072 0.0105 2.5913 0.0058 0.062 6.7346
CIR 0.0045 0.0225 3.8041 0.0065 0.0296 4.1422

GS.KJ MR 0.0045 0.0080 1.2536 0.0073 0.0142 4.9076
CIR 0.0042 0.0145 0.6730 0.0041 0.0200 0.9629

GS.OU MR 0.0046 0.0096 1.9975 0.0085 0.0162 5.1010
CIR 0.0052 0.0134 0.7265 0.0059 0.0294 6.1019

GS.UG MR 0.0051 0.0090 1.9966 0.0111 0.0179 4.0201
CIR 0.0043 0.0099 0.5404 0.0059 0.0159 1.1647

GS.UY MR 0.0040 0.0074 3.0421 0.0066 0.0158 8.5737
CIR 0.0034 0.0136 1.5917 0.0034 0.0239 1.1541

MER.GGF MR 0.0037 0.0096 1.9618 0.0095 0.0222 5.9708
CIR 0.0047 0.0147 0.9194 0.0031 0.0236 0.6763

MER.GGW MR 0.0031 0.0136 8.6038 0.0055 0.0294 28.7537
CIR 0.0038 0.0212 2.1055 0.0054 0.0394 17.8579

MER.GHW MR 0.0039 0.0080 1.5875 0.0081 0.0239 5.2213
CIR 0.0040 0.0213 3.5702 0.0042 0.0248 1.7148

MER.HE MR 0.0038 0.0160 7.0717 0.0061 0.0228 18.9605
CIR 0.0069 0.0102 0.3572 0.0061 0.0378 11.3464
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