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Abstract

In this article, local limit theorems for sequences of simple random walks on
graphs are established. The results formulated are motivated by a variety of random
graph models, and explanations are provided as to how they apply to supercritical
percolation clusters, graph trees converging to the continuum random tree and the
homogenisation problem for nested fractals. A subsequential local limit theorem for
the simple random walks on generalised Sierpinski carpet graphs is also presented.

1 Introduction

The classical local limit theorem (see [16], Section XV.5, for example) describes how the
transition probabilities of the discrete time simple random walk on Z can be rescaled to
yield the Gaussian transition densities of Brownian motion on R. Analogous statements
have been proved in many other settings, including the recent result of [8], which demon-
strates that the transition probabilities of the discrete time simple random walk on the
random environment generated by supercritical bond-percolation on Zd can be rescaled
to a Gaussian limit (for almost-every environment). In this article, by generalising the
argument of [8], we deduce that the corresponding limit result holds for any sequence
of simple random walks on graphs whose laws can be rescaled appropriately and which
satisfies a tightness assumption on its transition densities.

Let us start by describing the framework of this article. We assume that there exists an
underlying metric space (E, dE) and suppose F is a subset of E such that F ∩ BE(x, r)
is compact for every x ∈ E and r > 0 (where BE(x, r) is the closed ball in (E, dE)
with centre x and radius r) and the metric space (F, dF ), where dF := dE|F×F , has the
midpoint property, by which we mean that for every x, y ∈ F , there exists a z ∈ F such
that dF (x, z) = 1

2
dF (x, y) = dF (z, y). We also presume that the following are defined:

ρ, a distinguished element of F ; ν, a Radon measure on (F, dF ) with full support; and
(qt(x))x∈F,t>0, a family of densities so that, for each t > 0, qt is a Borel measurable non-
negative function on F which integrates to 1 with respect to ν. Moreover, we suppose
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that (qt(x)) is a jointly continuous function of (t, x). Typically in examples we have a
conservative ν-symmetric Markov diffusion X with transition density (pt(x, y))x,y∈F,t>0,
and in this case we take qt(x) = pt(ρ, x). The entities introduced above will represent
the limits of sequences of corresponding objects defined from sequences of graphs. Note
that our assumptions imply that F is a closed, and therefore measurable, subset of E,
therefore the measure ν can be extended to a Borel measure on (E, dE).

We continue by introducing some general notation for random walks on graphs. First,
fix G = (V (G), E(G)) to be a locally finite connected graph with at least two vertices,
where V (G) denotes the vertex set and E(G) the edge set of G. For x, y ∈ V (G), we
write the number of edges in the shortest path from x to y in G as dG(x, y), so that dG is
a metric on V (G). Define a symmetric weight function µG : V (G)2 → R+ that satisfies
µG

xy > 0 if and only if {x, y} ∈ E(G). The discrete time simple random walk on the
weighted graph G is then the Markov chain ((XG

m)m≥0,P
G
x , x ∈ V (G)) with transition

probabilities (PG(x, y))x,y∈V (G) defined by PG(x, y) := µG
xy/µ

G
x , where µG

x :=
∑

y∈V (G) µG
xy.

If we define a measure νG on V (G) by setting, for A ⊆ V (G), νG(A) :=
∑

x∈A µG
x , then

νG is invariant for XG, and the transition density of XG, with respect to νG, is given by
(pG

m(x, y))x,y∈V (G), m≥0, where

pG
m(x, y) :=

PG
x (Xm = y)

νG({y}) .

Due to parity concerns for bipartite graphs, to obtain a smooth limiting result, rather
than the transition density itself, we will consider (qG

m(x, y))x,y∈V (G), m≥0 defined by

qG
m(x, y) :=

pG
m(x, y) + pG

m+1(x, y)

2
, (1)

and also define qG
m(x) := qG

m(ρ(G), x), where ρ(G) is a distinguished element of V (G).
For our main local limit theorem, we suppose that a sequence of graphs (Gn)n≥1 have

been embedded into E so that the various sequences of objects described in the previous
paragraph approximate dE, F , ν and the laws associated with qt, t > 0, in the way we
now describe precisely. For brevity, throughout this article we write νGn

, XGn
, qGn

, . . . as
νn, Xn, qn, . . . respectively.

Assumption 1. Let (Gn)n≥1 be a sequence of locally finite connected graphs that satisfy
#V (Gn) ≥ 2, V (Gn) ⊆ E and ρ(Gn) = ρ for every n ≥ 1. Fix three non-negative
divergent sequences (α(n))n≥1, (β(n))n≥1, and (γ(n))n≥1, and suppose that:

(a) there exists a constant c1 > 0 such that, for n ≥ 1,

dGn(x, y) ≥ c1α(n)dE(x, y), ∀x, y ∈ V (Gn). (2)

Furthermore, there exists a non-negative sequence (α̃(n))n≥1, such that α̃(n) =
o(α(n)) as n →∞ and also, for each r > 0, there exists a finite constant c2 and an
integer n0 such that

dGn(x, y) ≤ c2α(n)dE(x, y) + α̃(n), ∀x, y ∈ V (Gn) ∩BE(ρ, r),

for n ≥ n0, where BE(ρ, r) is the open ball in (E, dE) with centre ρ and radius r.
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(b) for each r > 0,
lim

n→∞
sup

x∈BF (ρ,r)

dE(x, V (Gn)) = 0,

where BF (ρ, r) is the open ball in (F, dF ) with centre ρ and radius r.

(c) for every x ∈ F and r > 0,

lim
n→∞

β(n)−1νn(BE(x, r)) = ν(BE(x, r)).

(d) for any compact interval I ⊂ (0,∞), x ∈ F and r > 0,

lim
n→∞

PGn

ρ

(
Xn
bγ(n)tc ∈ BE(x, r)

)
=

∫

BF (x,r)

qt(y)ν(dy)

uniformly for t ∈ I.

In addition to these approximation conditions, we will apply the following tightness
condition for the transition densities of the simple random walks on the graphs (Gn)n≥1.
In the case when V (Gn) ⊆ F for every n, we will show that (given Assumption 1) this
condition is actually necessary for a local limit theorem of the type we prove to hold.

Assumption 2. In the setting of Assumption 1, suppose that, for any compact interval
I ⊂ (0,∞) and r > 0,

lim
δ→0

lim sup
n→∞

sup
x,y∈BGn(ρ,α(n)r):
dGn(x,y)≤α(n)δ

sup
t∈I

β(n)
∣∣qn
bγ(n)tc(x)− qn

bγ(n)tc(y)
∣∣ = 0,

where BGn(ρ, r) is the open ball in (V (Gn), dGn) with centre ρ and radius r.

Finally, before we state our first main result, observe that if Assumption 1 holds,
then for r > 0, n ≥ 1, we can bound the graph distance dGn(x, y) above by a constant
(depending on n) uniformly over x, y ∈ V (Gn) ∩ BE(ρ, r). Hence, because Gn is by
definition a locally finite graph, there can only be a finite number of points in the set
V (Gn) ∩ BE(ρ, r), and consequently the same is true for any set of the form V (Gn) ∩
BE(x, r). In particular, this implies that for every x ∈ E, we can choose (not necessarily
uniquely) a point gn(x) ∈ V (Gn) that minimises the distance dE(x, y) over y ∈ V (Gn).

Theorem 1.1. Fix a compact interval I ⊂ (0,∞) and r > 0. Suppose Assumptions 1
and 2 hold, then

lim
n→∞

sup
x∈BF (ρ,r)

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ = 0. (3)

Conversely, when V (Gn) ⊆ F for every n, if Assumption 1 is satisfied and (3) holds for
every compact interval I ⊂ (0,∞) and r > 0, then Assumption 2 holds.

To allow us to extend (3) to hold uniformly over unbounded time intervals and non-
compact spaces F , we need to impose some extra conditions which guarantee the decay
in time and space of the discrete and continuous transition densities.
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Assumption 3. The following conditions are fulfilled.

(a) The transition density of X satisfies

lim
t→∞

sup
x∈F

qt(x) = 0, lim
r→∞

sup
x∈F\BF (ρ,r)

sup
t∈I

qt(x) = 0,

for any compact interval I ⊂ (0,∞).

(b) In the setting of Assumption 1,

lim
t→∞

lim sup
n→∞

sup
x∈V (Gn)

β(n)qn
bγ(n)tc(x) = 0,

and, for any compact interval I ⊂ (0,∞),

lim
r→∞

lim sup
n→∞

sup
x∈V (Gn)\BGn(ρ,α(n)r)

sup
t∈I

β(n)qn
bγ(n)tc(x) = 0.

If this extra assumption is satisfied, then we are able to prove the following.

Theorem 1.2. Fix T1 > 0. Suppose Assumptions 1, 2 and 3 hold, then

lim
n→∞

sup
x∈F

sup
t≥T1

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ = 0.

The main motivation for proving results such as Theorems 1.1 and 1.2 is to provide
conditions under which a weak convergence result, such as that appearing in Assumption
1(d), implies a local limit theorem. Obviously, the usefulness of such results depends
on the applicability of the assumptions that have been made, and so, after completing
the proofs of Theorems 1.1 and 1.2 in Section 2, we provide two alternative sufficient
conditions for Assumption 2. The first of these, see Assumption 4 in Section 3, involves
the parabolic Harnack inequality, which is also known to imply various other analytic
conditions for random walks on graphs (see [24] for a summary of results in this area).
The second, see Assumption 5 in Section 4, relies on being able to bound the resistance
metric on graphs in the sequence (Gn)n≥1 using the shortest path metric, and, as we shall
see in Section 7, is applicable to graph trees and nested fractal graphs.

In Section 5, a short investigation into the asymptotics of (qn
m(x, y))x,y∈V (G),m≥0, when

considered as a function of two spatial coordinates, is presented. In particular, we give
sufficient conditions for the uniform convergence of (β(n)qn

bγ(n)tc(gn(x), gn(y)))x,y∈F,t>0 to

the transition density of a Markov process (pt(x, y))x,y∈F,t>0 (at least in bounded space-
time regions). This is followed, in Section 6, by a demonstration of how the analytic
results that we prove can be adapted to the case when the weights of the graphs (Gn)n≥1

are random and we only have probabilistic versions of Assumptions 1, 2 and 3 instead
of almost-sure versions. We conclude our article with a collection of examples to which
our results apply, including random graphs on the integer lattice, graph trees converging
to the continuum random tree, nested fractal graphs and generalised Sierpinski carpet
graphs.

Finally, define the continuous time simple random walk on a graph G to be the
continuous time Markov process ((Y G

t )t≥0, P̃
G
x , x ∈ V (G)) with generator LG, as defined
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below at (10). The transition density of Y G, with respect to its invariant measure νG, is
given by

p̃G
t (x, y) =

P̃G
x (Y G

t = y)

νG({y}) ,

and we write q̃G
t (x) := p̃G

t (ρ, x). Under the continuous time analogues of Assumptions 1,
2 and 3, it is possible to obtain continuous time versions of Theorems 1.1 and 1.2 that
apply to the continuous time simple random walks on the graphs (Gn)n≥1. However, since
they can be proved using identical arguments, we omit them. See Examples 7.3, 7.4 and
7.5 for results which illustrate the more general continuous time local limit theorems.

2 Proof of local limit theorems

The aim of this section is to prove Theorems 1.1 and 1.2. We start by generalising slightly
Assumption 1(d).

Lemma 2.1. Suppose Assumption 1(d) holds, then, for any compact interval I ⊂ (0,∞),
x ∈ F and r > 0,

lim
n→∞

PGn

ρ

(
Xn
bγ(n)tc+i ∈ BE(x, r)

)
=

∫

BF (x,r)

qt(y)ν(dy)

uniformly for t ∈ I, i ∈ {0, 1}.
Proof. The proof is elementary, and requires the application of only Assumption 1(d),
the joint continuity of (qt(x)) in (t, x) and the fact that F ∩BE(x, r) is compact.

We now prove a point-wise version of a local limit theorem.

Proposition 2.2. Fix a compact interval I ⊂ (0,∞) and suppose Assumptions 1 and 2
hold, then, for every x ∈ F ,

lim
n→∞

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ = 0.

Proof. Fix x ∈ F , ε > 0 and set r = dE(ρ, x). Let c be a finite constant and n0 an integer
such that dGn(y, z) ≤ cα(n)dE(y, z) + α̃(n) for every y, z ∈ V (Gn) ∩ BE(ρ, r + 1) and
n ≥ n0; the existence of such constants is guaranteed by Assumption 1(a). Furthermore,
by the tightness condition of Assumption 2, and the supposition that (qt(y)) is jointly
continuous in (t, y), we can choose r0 ∈ (0, 1) small enough and an integer n1 ≥ n0 so
that

sup
y,z∈BGn (ρ,cα(n)(r+2)):

dGn (y,z)≤3cα(n)r0

sup
t∈I

β(n)
∣∣qn
bγ(n)tc(y)− qn

bγ(n)tc(z)
∣∣ ≤ ε, (4)

for n ≥ n1, and also
sup

y,z∈BF (ρ,r+1):
dF (y,z)≤r0

sup
t∈I

|qt(y)− qt(z)| ≤ ε. (5)
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For this choice of r0, we consider the quantity

J(t, n) :=
1

2

{
PGn

ρ

(
Xn
bγ(n)tc ∈ BE(x, r0)

)
+ PGn

ρ

(
Xn
bγ(n)tc+1 ∈ BE(x, r0)

)}

−
∫

BF (x,r0)

qt(y)ν(dy),

which can be written as J(t, n) = J1(t, n) + J2(t, n) + J3(t, n) + J4(t, n), where

J1(t, n) :=
∑

y∈V (Gn)∩BE(x,r0)

(
qn
bγ(n)tc(y)− qn

bγ(n)tc(gn(x))
)
νn({y}),

J2(t, n) := β(n)−1νn(BE(x, r0))
(
β(n)qn

bγ(n)tc(gn(x))− qt(x)
)
,

J3(t, n) := qt(x)
(
β(n)−1νn(BE(x, r0))− ν(BE(x, r0))

)
,

J4(t, n) :=

∫

BF (x,r0)

(qt(x)− qt(y)) ν(dy).

Now, by (5), we immediately have supt∈I |J4(t, n)| ≤ εν(BE(x, r0)). Furthermore, by
applying Assumption 1(c) and Lemma 2.1, it is possible to deduce that there exists an
integer n2 ≥ n1 such that supt∈I |J3(t, n)|, supt∈I |J(t, n)| ≤ εν(BE(x, r0)) for n ≥ n2. To
bound J1(t, n) in a similar fashion, first note that Assumption 1(b) implies dE(gn(x), x) →
0 as n → ∞. In particular, it follows that there exists an integer n3 ≥ n2 such that
gn(x) ∈ BE(x, r0) for n ≥ n3. Thus, for n ≥ n3,

sup
t∈I

|J1(t, n)| ≤ sup
y,z∈V (Gn)∩BE(x,r0)

sup
t∈I

∣∣qn
bγ(n)tc(y)− qn

bγ(n)tc(z)
∣∣ νn(BE(x, r0)). (6)

Recall from Assumption 1(a) that α̃(n) = o(α(n)), and therefore we can choose an integer
n4 ≥ n3 such that α̃(n) ≤ cα(n)r0. Consequently, for y, z ∈ V (Gn) ∩ BE(x, r0), we have
that y, z ∈ BGn(ρ, cα(n)(r + 2)) and also dGn(y, z) ≤ 3cα(n)r0 whenever n ≥ n4. Hence,
by (4),

sup
t∈I

|J1(t, n)| ≤ εβ(n)−1νn(BE(x, r0))

for n ≥ n4. To bound the right-hand side of this expression, note that Assumption
1(c) allows us to choose n5 ≥ n4 such that |β(n)−1νn(BE(x, r0))− ν(BE(x, r0))| ≤
ν(BE(x, r0))/2 for n ≥ n5. Thus supt∈I |J1(t, n)| ≤ 2εν(BE(x, r0)) for n ≥ n5. Piecing all
these bounds together yields, for n ≥ n5, supt∈I |J2(t, n)| ≤ 5εν(BE(x, r0)). Finally, note
that the left-hand side of this expression is bounded below by

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ ν(BE(x, r0))/2

whenever n ≥ n5. The result follows.

This result is readily extended to hold uniformly over bounded balls in F , thereby
establishing Theorem 1.1.

Proof of Theorem 1.1. Suppose Assumptions 1 and 2 hold. Fix r, ε > 0 and choose c, r0

and n1 as in the proof of the previous proposition. By assumption, BF (ρ, r) is compact,
hence there exists a finite collection X ⊆ BF (ρ, r) such that (BF (x, r0))x∈X is an open
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cover for BF (ρ, r). Since X is finite, applying Proposition 2.2 allows it to be deduced
that there exists an integer n2 ≥ n1 such that

sup
x∈X

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ ≤ ε, (7)

for n ≥ n2. Now, suppose x ∈ BF (ρ, r), then x ∈ BF (y(x), r0) for some y(x) ∈ X , and
we can write

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ ≤ sup
t∈I

β(n)
∣∣qn
bγ(n)tc(gn(x))− qn

bγ(n)tc(gn(y(x)))
∣∣

+ sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(y(x)))− qt(y(x))

∣∣

+ sup
t∈I

|qt(y(x))− qt(x)| .

Since x, y(x) ∈ BE(ρ, r + 1) and dE(x, y(x)) ≤ r0, the inequality at (5) implies that
the final term here is bounded above by ε uniformly over x ∈ BF (ρ, r). It follows from
(7) that the second term is also bounded above by ε uniformly over x ∈ BF (ρ, r) for
n ≥ n2. To deal with the first term, we start by choosing an integer n3 ≥ n2 such
that α̃(n) ≤ cα(n)r0 and dE(x, gn(x)) < r0 for every x ∈ BF (ρ, r) and n ≥ n3 (this is
possible by Assumptions 1(a) and 1(b)). For n ≥ n3, we therefore have gn(x), gn(y(x)) ∈
V (Gn) ∩ BE(ρ, r + 1), and consequently, as in the proof of the previous proposition,
gn(x), gn(y(x)) ∈ BGn(ρ, cα(n)(r+2)) and also dGn(gn(x), gn(y(x))) ≤ 3cα(n)r0 whenever
n ≥ n3. Thus we can apply the inequality at (4) to deduce that the first term in the
above upper bound is also bounded by ε uniformly over x ∈ BF (ρ, r), and the proof of
(3) is complete.

Let us now assume that V (Gn) ⊆ F , Assumption 1 is satisfied and (3) holds for every
compact interval I ⊂ (0,∞) and r > 0. Setting c1 to be the constant of (2), it is clear
that

sup
x,y∈BGn(ρ,α(n)r):
dGn (x,y)≤α(n)δ

sup
t∈I

β(n)
∣∣qn
bγ(n)tc(x)− qn

bγ(n)tc(y)
∣∣

≤ 2 sup
x∈BF (ρ,c−1

1 r)

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ + sup
x,y∈BF (ρ,c−1

1 r):

dF (x,y)≤c−1
1 δ

sup
t∈I

|qt(x)− qt(y)|

Assumption 2 is readily deduced from this bound by applying the limit at (3) and the
joint continuity of (qt(x))x∈F,t>0.

To complete this section, we demonstrate how Assumption 3 allows this result to
be extended to unbounded regions of time and space. However, we first prove a simple
lemma relating the dF -distance of a point x from ρ in F to the dGn-distance of the point
gn(x) from ρ in Gn.

Lemma 2.3. Suppose Assumption 1 holds and let c = c1/2, where c1 is the constant of
the bound at (2). If r > 0, then there exists an integer n0 such that

inf
x∈F\BF (ρ,r)

dGn(ρ, gn(x)) ≥ cα(n)r,

for every n ≥ n0.
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Proof. Fix r > 0. We first observe that the midpoint property of (F, dF ) and the as-
sumption that sets of the form BF (x, r), x ∈ F , r > 0, are compact imply that for
each x, y ∈ F there exists a (not necessarily unique) geodesic path (γ(t))0≤t≤1 in F
such that γ(0) = x, γ(1) = y and dF (γ(s), γ(t)) = |t − s|dF (x, y) for 0 ≤ s ≤ t ≤ 1.
Hence, for every x ∈ F\BF (ρ, r), there exists a y(x) such that dF (ρ, y(x)) = 3r/4 and
dF (y(x), x) = dF (ρ, x)− 3r/4. Consequently, we have that

dE(ρ, y(x)) + dE(y(x), x) = dE(ρ, x) ≤ dE(ρ, gn(x)) + dE(gn(y(x)), y(x)) + dE(y(x), x)

where we have applied the definition of gn(x) as the closest point in V (Gn) to x. Canceling
dE(y(x), x) from each side yields 3r/4 ≤ dE(ρ, gn(x)) + dE(gn(y(x)), y(x)).

By Assumption 1(b), we can choose an integer n0 such that supy∈BF (ρ,r) dE(y, gn(y)) ≤
r/4, for n ≥ n0. Thus we can conclude from the previous paragraph that dE(ρ, gn(x)) ≥
r/2, for every x ∈ F\BF (ρ, r) and n ≥ n0. The result is an easy consequence of this
bound and Assumption 1(a).

Proof of Theorem 1.2. Fix T1 and ε > 0. By Assumption 3, we can choose a finite time
T2 ≥ T1 and an integer n0 such that supx∈V (Gn) β(n)qn

bγ(n)tc(ρ, x) ≤ ε, for t ≥ T2 and

n ≥ n0, and also supx∈F qt(x) ≤ ε for t ≥ T2. Clearly, for this choice, we have

sup
x∈F

sup
t≥T2

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ ≤ 2ε (8)

for n ≥ n0.
Taking I = [T1, T2], applying Assumption 3 allows it to be deduced that there exists

a finite radius r0 and integer n1 ≥ n0 such that

sup
x∈V (Gn)\BGn(ρ,α(n)r0)

sup
t∈I

β(n)qn
bγ(n)tc(x) ≤ ε, (9)

for n ≥ n1, and also supx∈F\BF (ρ,r0) supt∈I qt(x) ≤ ε. Now, let c be the constant of Lemma
2.3 and define r1 := r0(1+ c−1). By Lemma 2.3, there exists an integer n2 ≥ n1 such that
for every x ∈ F\BF (ρ, r1) we have gn(x) ∈ V (Gn)\BGn(ρ, α(n)r0) for n ≥ n2, and so we
can apply the inequality at (9) to deduce that

sup
x∈F\BF (ρ,r1)

sup
t∈I

β(n)qn
bγ(n)tc(gn(x)) ≤ ε,

for n ≥ n2. Thus, because it also holds that supx∈F\BF (ρ,r1) supt∈I qt(x) ≤ ε, it follows
that

sup
x∈F\BF (ρ,r1)

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ ≤ 2ε,

for n ≥ n2. To complete the proof, it suffices to combine this conclusion with (8) and the
convergence result of Theorem 1.1.

3 Parabolic Harnack inequality and tightness

For a locally finite connected graph G define, for x ∈ V (G), R, T ≥ 0,

QG(x,R, T ) := [0, T ]×BG(x,R),
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and also Q−
G(x,R, T ) := [1

4
T, 1

2
T ] × BG(x, 1

2
R), Q+

G(x, R, T ) := [3
4
T, T ) × BG(x, 1

2
R). We

describe a function u(n, x) as caloric on QG(x,R, T ) if u is defined on QG(x,R, T ) :=
([0, T ] ∩ Z)×BG(x, R + 1), and

u(n + 1, x)− u(n, x) = LGu(n, x),

for every 0 ≤ n ≤ T − 1 and x ∈ BG(x,R), where LG is the generator of the random
walk XG, which can be defined as the operator satisfying

LGf(x) =
∑

y∈V (G)

PG(x, y)(f(y)− f(x)), (10)

for functions f ∈ RV (G). The parabolic Harnack inequality with constant CH is then said
to hold for QG(x,R, T ) if whenever u is non-negative and caloric on QG(x,R, T ), we have

sup
(n,x)∈Q−G(x,R,T )

û(n, x) ≤ CH inf
(n,x)∈Q+

G(x,R,T )
û(n, x),

where û(n, x) := u(n + 1, x) + u(n, x).
We show in this section how if we assume that the sequence of graphs (Gn)n≥1 of

Assumption 1 satisfy the parabolic Harnack inequality with a polynomial space-time
scaling in a suitably consistent fashion, then the tightness condition of Assumption 2 is
immediately satisfied. The key result in proving that this is the case is provided by the
following lemma, which demonstrates that the parabolic Harnack inequality implies the
Hölder continuity of the transition density on graphs. The proof is an adaptation of [8],
Proposition 3.2, which deals with the case κ = 2.

Lemma 3.1. Fix κ ≥ 2. Let x ∈ V (G) and suppose that the parabolic Harnack inequality
with constant CH holds for QG(x,R,Rκ) for R ≥ sG(x), where sG(x) is a positive integer
depending on x. If T 1/κ ≥ 4R ≥ 2sG(x), then

sup
y∈BG(x,R)

∣∣qG
T (x)− qG

T (y)
∣∣ ≤ c

(
R

T 1/κ

)θ
1

νG(BG(x, 1
4
T 1/κ))

,

where c and θ are constants depending only on CH taking values in (0,∞).

Proof. Let x ∈ V (G) and suppose T 1/κ ≥ 4R ≥ 2sG(x). Set T0 := T + 1 and R0 := T
1/κ
0 .

For k ∈ N, define the space-time regions Q(k) := [T0 −Rκ
k , T0]×BG(x,Rk), and

Q−(k) := [T0 − 3
4
Rκ

k , T0 − 1
2
Rκ

k ]×BG(x, 1
2
Rk), Q+(k) := [T0 − 2−κRκ

k , T0)×BG(x, 1
2
Rk),

where Rk := 2−kR0. Since κ ≥ 2, we have T0 − 2−κRκ
k ≥ T0 − 1

4
Rκ

k . Consequently, if
Rk ≥ sG(x), then we can apply the parabolic Harnack inequality on Q(k) to deduce that

sup
(m,y)∈Q−(k)

qG
m(y) ≤ CH inf

(m,y)∈Q+(k)
qG
m(y). (11)

As in the proof of [8], Proposition 3.2, it follows that we can bound Osc(qG, Q+(k))
above by (1− 1

2CH
)Osc(qG, Q(k)), whenever k satisfies Rk ≥ sG(x). Noting that Q+(k) =

Q(k + 1), we can iterate this result to obtain that

sup
y∈BG(x,R)

∣∣qG
T (x)− qG

T (y)
∣∣ ≤

(
1− 1

2CH

)k−1

Osc(qG, Q(1)),

9



where k is chosen to satisfy Rk ≥ 2R > Rk+1. This implies that there exist constants c1

and θ, which depend only on CH , that satisfy

sup
y∈BG(x,R)

∣∣qG
T (x)− qG

T (y)
∣∣ ≤ c1

(
R

T 1/κ

)θ

sup
(m,y)∈Q−(1)

qG
m(y).

Thus to complete the proof it suffices to bound the final term appropriately. Again
applying (11), we have that, for m ∈ [T0 − 3

4
Rκ

1 , T0 − 1
2
Rκ

1 ],

νG(BG(x, 1
4
R0)) sup

y∈BG(x,
1
4

R0)

qG
m(y) ≤ CH

∫

BG(x,
1
4

R0)

qG
T0−2−κRκ

1
(y)νG(dy) ≤ CH .

The result follows.

To apply this Hölder continuity result, we make the following assumption on the graph
sequence (Gn)n≥1. Note that Assumption 4(b) is an extension of Assumption 1(b) and
prevents elements of V (Gn) being too far from F for large n (at least in bounded spatial
regions).

Assumption 4. In the setting of Assumption 1, suppose that the following statements
are satisfied for some κ ≥ 2 and CH < ∞.

(a) Assumption 1(a) holds.

(b) For every r > 0,
lim

n→∞
V (Gn) ∩BE(ρ, r) = BF (ρ, r)

as n → ∞ with respect to the usual Hausdorff topology on non-empty compact
subsets of (E, dE).

(c) For every x ∈ V (Gn), n ≥ 1, there exists a positive integer sGn(x) such that the
parabolic Harnack inequality with constant CH holds for QGn(x,R, Rκ) for R ≥
sGn(x). Moreover, suppose that there exists a dense subset F ∗ of F such that, for
every x ∈ F ∗, α(n)−1sGn(gn(x)) → 0.

(d) As n →∞, we have α(n)κ = O(γ(n)).

The main result of this section is the following.

Proposition 3.2. If Assumption 4 holds, then so does Assumption 2.

Before we prove this result, however, we derive a lemma that describes a useful se-
quence of covers for balls of the form BGn(ρ, α(n)r).

Lemma 3.3. Suppose Assumption 4 holds. For every r, ε > 0 there exists a finite set
X ⊆ BF (ρ, r/c1) ∩ F ∗, where c1 is the constant of the bound at (2), and integer n0 such
that (BGn(gn(x), α(n)ε))x∈X is a cover for BGn(ρ, α(n)r) whenever n ≥ n0.

10



Proof. Fix r, ε > 0 and set r0 := r/c1, where c1 is the constant of the bound at (2).
Choose c2 and n0 by Assumption 1(a) so that if x, y ∈ V (Gn)∩BE(ρ, r0 +1) and n ≥ n0,
then dGn(x, y) ≤ c2α(n)dE(x, y)+εα(n)/4. Furthermore, use Assumption 4(b) to find an
integer n1 ≥ n0 such that

sup
x∈BF (ρ,r0+1)

dE(x, gn(x)) < ε0 (12)

and
sup

x∈V (Gn)∩BE(ρ,r0)

dE(x, BF (ρ, r0)) < ε0 (13)

for n ≥ n1, where ε0 := (ε/4c2) ∧ 1. As a final piece of information that we will need,
note that, since BF (ρ, r0) is compact and F ∗ is dense in F , there exists a finite collection
X ⊆ BF (ρ, r0)∩F ∗ such that (BF (x, ε0))x∈X is a cover for BF (ρ, r0). By (12), this implies
that (BE(gn(x), 2ε0))x∈X is a cover for BF (ρ, r0) for n ≥ n1.

Assume now that n ≥ n1 and let x ∈ BGn(ρ, α(n)r). Observe that Assumption
1(a) and (13) imply that x ∈ BE(ρ, r0) and there exists a y ∈ BF (ρ, r0) such that
x ∈ BE(y, ε0) respectively. Thus, applying the final result of the previous paragraph,
we have that x ∈ BE(gn(y), 3ε0) for some y ∈ X . Consequently, because x, gn(y) ∈
V (Gn) ∩ BE(ρ, r0 + 1) and dE(x, gn(y)) < 3ε0, it follows that x ∈ BGn(gn(y), α(n)ε).
Since the choice of x ∈ BGn(ρ, α(n)r) was arbitrary, the proof is complete.

Proof of Proposition 3.2. Fix r, ε > 0, I = [T1, T2] ⊂ (0,∞) and suppose that c1 is
defined to be the constant of the bound at (2). By Assumption 4(d), there exists a
constant c2 > 0 and an integer n0 such that bγ(n)T1c1/κ ≥ c2α(n) for n ≥ n0. Given these
constants, Assumptions 1(a) and 1(b) imply that we can choose r0 > 0 and an integer
n1 ≥ n0 such that V (Gn) ∩ BE(x, r0) ⊆ BGn(gn(x), 1

4
c2α(n)) for every x ∈ BF (ρ, r/c1)

and n ≥ n1. Furthermore, applying the compactness of BF (ρ, r/c1), we have that c3 :=
infx∈BF (ρ,r/c1) ν(BF (x, r0)) > 0. We use these constants to define

δ :=

(
cθ
2c3ε

2θ+2c

)1/θ

∧
(c2

8

)
,

where c and θ are the constants of Lemma 3.1 depending only on CH .
By Lemma 3.3, there exists a finite set X ⊆ BF (ρ, r/c1) ∩ F ∗ and an integer n2 ≥ n1

such that (BGn(gn(x), α(n)δ))x∈X is a cover for BGn(ρ, α(n)r) whenever n ≥ n2. Applying
the finiteness of X and Assumptions 1(c) and 4(c), we are also able to deduce the existence
of an integer n3 ≥ n2 such that maxx∈X sGn(gn(x)) ≤ 4α(n)δ and also

β(n)−1νn(BE(x, r0)) ≥ 1
2
ν(BE(x, r0)), ∀x ∈ X ,

for n ≥ n3. In particular, if n ≥ n3, then we have 2sGn(gn(x)) ≤ 8α(n)δ ≤ bγ(n)tc1/κ for
every t ∈ I, and so we can apply Lemma 3.1 and our choice of constants to deduce that

sup
x∈X

sup
y∈BGn(gn(x),2α(n)δ)

sup
t∈I

β(n)
∣∣qn
bγ(n)tc(gn(x))− qn

bγ(n)tc(y)
∣∣ ≤ ε/2

for every n ≥ n3. The proposition is a straightforward consequence of this inequality.
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4 Resistance estimates and tightness

As an alternative to the parabolic Harnack inequality, in this section we derive a sufficient
condition for Assumption 2 that involves an estimate of the resistance metric, which we
now define. First, for a graph G, introduce an inner product (·, ·)G on RV (G) × RV (G)

by setting (f, g)G :=
∑

x∈V (G) f(x)g(x)νG({x}). Use this and the discrete time generator

LG of the random walk XG, as defined by (10), to construct a Dirichlet form EG which
satisfies EG(f, g) := −(LGf, g)G. The domain of EG is FG := {f ∈ RV (G) : EG(f, f) < ∞}.
For x, y ∈ V (G), the resistance metric is defined by

RG(x, y) := sup

{ |f(x)− f(y)|2
EG(f, f)

: f ∈ FG, EG(f, f) > 0

}
. (14)

The following is proved as [3], Proposition 4.25, see also [23].

Lemma 4.1. The function RG is a metric on V (G). Furthermore, for f ∈ FG,

(f(x)− f(y))2 ≤ RG(x, y)EG(f, f), ∀x, y ∈ V (G).

We will use this lemma to deduce oscillation bounds for qG
m. To start with, observe

that it is elementary to show that

EG(qG
m, qG

m) = qG
2m(ρ)− qG

2m+2(ρ) (15)

for every m ≥ 0. This immediately implies that EG(qG
m, qG

m) ≤ qG
2m(ρ). However, we

will next prove a lemma demonstrating how to sharpen this bound. In the proof we use
the notation PG to represent the linear operator defined from the transition probabilities
(PG(x, y))x,y∈V (G) of the simple random walk XG by

PGf(x) =
∑

y∈V (G)

PG(x, y)f(y),

for f ∈ RV (G). Note that PG defines the usual random walk semigroup (Pm
G )m≥0 and

satisfies PG = LG + IG, where IG is the identity operator on RV (G).

Lemma 4.2. For every m ≥ 1, we have EG(qG
m, qG

m) ≤ 2qG
2dm/2e(ρ)/m.

Proof. Let us start by demonstrating that (EG(qG
m, qG

m))m≥0 is a decreasing sequence.
Applying (15) and the fact that pG

m+n(ρ, ρ) = (pG
m(ρ, ·), pG

n (ρ, ·))G, it is possible to deduce
that

EG(qG
m, qG

m)− EG(qG
m+1, q

G
m+1) = ((IG + PG)(IG − P 2

G)pG
m(ρ, ·), (IG − P 2

G)pG
m(ρ, ·))G,

where we also apply the self-adjointness of PG with respect to (·, ·)G. Since PG is stochas-
tic, it can easily be checked that ((IG + PG)f, f)G ≥ 0 for every f ∈ RV (G), and therefore
EG(qG

m, qG
m) ≥ EG(qG

m+1, q
G
m+1), as desired.

Again applying (15) we see that
∑2M−1

m=M EG(qG
m, qG

m) = qG
2M(ρ) − qG

4M(ρ) ≤ qG
2M(ρ).

Since the summands of the left-hand side are decreasing in m, we consequently have that
MEG(qG

2M−1, q
G
2M−1) ≤ qG

2M(ρ), and the result follows from this.
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We now describe how to bound qG
2m(ρ) in terms of the volume growth about ρ of the

graph G with respect to the resistance metric. Define a function VG : R+ → R+ by setting

VG(r) := νG({x : RG(ρ, x) ≤ r}),

so that VG(r) represents the volume of the closed ball around ρ of radius r with respect
to the resistance metric. Set hG(r) := rVG(r), and define the right-continuous inverse of
hG by

h−1
G (m) := sup{r : hG(r) ≤ m}. (16)

The proof of the following result is a simple adaptation of [7], Proposition 3.2. We do,
however, continue to include the proof in order to demonstrate the universality of the
constant in the resultant upper bound.

Lemma 4.3. For every m ≥ 1, we have qG
2m(ρ) ≤ 3h−1

G (m)/m.

Proof. Since, for r > 0,
∑

x∈V (G):RG(ρ,x)≤r qG
2m(x)νG({x}) ≤ 1, there must exist an x ∈

V (G) such that RG(ρ, x) ≤ r and also qG
2m(x) ≤ VG(r)−1. Hence we obtain

qG
2m(ρ)2 ≤ 2qG

2m(x)2 + 2(qG
2m(x)− qG

2m(ρ))2

≤ 2VG(r)−2 + 2rEG(qG
2m, qG

2m)

≤ 2VG(r)−2 +
2rqG

2m(ρ)

m
,

where we have applied Lemma 4.1 for the second inequality and Lemma 4.2 for the third.
This quadratic inequality implies that

qG
2m(ρ) ≤ r

m
+

1

2

√
4r2

m2
+

4

VG(r)2
≤ 2r

m
+

1

VG(r)
.

The result follows on choosing r = h−1
G (m).

Combining the three previous lemmas we obtain the following result.

Proposition 4.4. For m ≥ 1,

(qG
m(x)− qG

m(y))2 ≤ 12RG(x, y)h−1
G (dm/2e)

m2
, ∀x, y ∈ V (G).

Application of the above bound relies on being able to adequately control the resis-
tance between points in V (G) and the volume growth with respect to the resistance met-
ric, which is not always possible. However, as we shall demonstrate in Section 7, there
are classes of graphs for which we can make use of this result, most notable amongst
these are nested fractal graphs and graph trees. More specifically, in the case when the
resistance metric RGn is bounded above by a power of the shortest path metric dGn for
graphs in the sequence (Gn)n≥1, the tightness condition of Assumption 2 follows directly
from Assumptions 1(a) and 1(c) whenever the space, volume and time scaling factors are
related in a way we now describe.
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Assumption 5. Suppose that, in the setting of Assumption 1, (Gn)n≥1 is a sequence of
graphs for which Assumptions 1(a) and 1(c) hold and, for some κ ∈ (0,∞), there exist
constants c1, c2, c3 ∈ (0,∞) and an integer n0 such that

RGn(x, y) ≤ c1dGn(x, y)κ, ∀x, y ∈ V (Gn),

and also
c2γ(n) ≤ α(n)κβ(n) ≤ c3γ(n), (17)

for n ≥ n0.

Under this assumption we can bound functions of the form α(n)−κh−1
Gn(γ(n)·), n ≥ 1,

uniformly over compact intervals. In the proof of the following result, we consider the
function v : R+ → R+ which satisfies v(r) := ν(BE(ρ, r)).

Lemma 4.5. Suppose Assumption 5 holds. For any compact interval I ⊂ (0,∞),

lim sup
n→∞

sup
t∈I

α(n)−κh−1
Gn(γ(n)t) < ∞.

Proof. Fix I = [T1, T2] ⊂ (0,∞). Let c1, c2 and n0 be chosen such that c1dGn(x, y)κ ≥
RGn(x, y) for every x, y ∈ V (Gn) and α(n)κβ(n) ≥ c2γ(n) for n ≥ n0, which is possible
by Assumption 5. Define R ∈ (0,∞) to be a constant satisfying c1c2R

κv(R) > T2.
By Assumption 1(a), there also exists a constant c3 ≥ 1 and integer n1 ≥ n0 such
that dGn(x, y) ≤ c3α(n)dE(x, y) + α̃(n) for every x, y ∈ V (Gn) ∩ BE(ρ,R), n ≥ n1.
Furthermore, define n2 ≥ n1 to be an integer such that α̃(n) ≤ c3α(n)R for n ≥ n2, then
we have that

V (Gn) ∩BE(ρ,R) ⊆ BGn(ρ, 2c3α(n)R) ⊆ {x ∈ V (Gn) : RGn(ρ, x) ≤ c4α(n)κ} , (18)

for n ≥ n2, where c4 := c1(2c3R)κ.
Now, by Assumption 1(c), there exists an n3 ≥ n2 such that β(n)−1νn(BE(ρ,R)) is

bounded below by 2−κv(R) for every n ≥ n3. Consequently, applying (18), we have
that VGn(c4α(n)κ) > 2−κβ(n)v(R), for every n ≥ n3. It immediately follows that
hGn(c4α(n)κ) > c1c2c

κ
3γ(n)Rκv(R) for n ≥ n3. Thus

sup
t∈I

h−1
Gn(γ(n)t) ≤ h−1

Gn(γ(n)T2) ≤ h−1
Gn(c1c2c

κ
3γ(n)Rκv(R)) ≤ c4α(n)κ,

for n ≥ n3, which completes the proof.

We now arrive at the first main result of this section.

Proposition 4.6. If Assumption 5 holds, then so does Assumption 2.

Proof. Fix an interval I = [T1, T2] ⊂ (0,∞) and r > 0. It is straightforward to obtain
from Proposition 4.4 and Lemma 4.5 the existence of a finite constant c1 and an integer
n0 such that

sup
x,y∈V (Gn):

dGn(x,y)≤α(n)δ

sup
t∈I

β(n)2
∣∣qn
bγ(n)tc(x)− qn

bγ(n)tc(y)
∣∣2 ≤ c1

(
α(n)κβ(n)

γ(n)

)2

δκ,

for every δ > 0 and n ≥ n0. Hence the inequality at (17) implies the proposition.
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To complete this section, let us remark that the bounds at (17) can be interpreted in
terms of the random walk version of the Einstein relation, which explains how the time,
resistance and volume scaling exponents for random walks on graphs are related (see [30]
for background). In particular, if we assume that for a graph G the resistance satisfies
RG ³ dκ

G (where ³ is taken to mean “bounded above and below by constant multiples
of”) and the volume satisfies νG(BG(x, r)) ³ rd, then it is possible to deduce that

EG
ρ TG(ρ, r) ³ rκ+d,

where TG(ρ, r) := min{m ≥ 0 : XG
m 6∈ BG(ρ, r)} is the exit time of XG from BG(ρ, r),

and EG
ρ is the expectation under PG

ρ (see [7], Proposition 3.4, for example). Thus, if such
polynomial relations hold uniformly for the graphs in the sequence (Gn)n≥1, then, from
the scaling considerations of Assumption 1, one might expect to be able to conclude that

γ(n) ³ EGn

ρ TGn(ρ, α(n)) ³ α(n)κ+d, β(n) ³ νn(BGn(x, α(n))) ³ α(n)d,

which would imply that γ(n) ³ α(n)κβ(n), as required for (17) to hold.

5 Two-spatial parameter local limit theorems

So far we have considered the asymptotics of the transition densities of the simple random
walks on graphs in a sequence (Gn)n≥0 when the relevant processes are started from a
fixed point ρ. We now provide conditions that will allow us to extend these results
uniformly to arbitrary starting points and deduce local limit theorems for the two-spatial
parameter functions (qn

m(x, y))x,y∈V (Gn),m≥0, n ≥ 1, as defined at (1). In this section, we
assume that X = ((Xt)t≥0,Px, x ∈ F ) is a conservative ν-symmetric Markov diffusion on
F , with a transition density (pt(x, y))x,y∈F,t>0 which is jointly continuous in (t, x, y). The
extensions of Assumptions 1 and 2 we apply are the following.

Assumption 1̂. In the setting of Assumption 1, suppose that Assumptions 1(a), 1(b)
and 1(c) are satisfied. Moreover, suppose that there exists a dense subset F ∗ of F such
that, for any compact interval I ⊂ (0,∞), x ∈ F ∗, y ∈ F , and r > 0,

lim
n→∞

PGn

gn(x)

(
Xn
bγ(n)tc ∈ BE(y, r)

)
= Px (Xt ∈ BE(y, r)) (19)

uniformly for t ∈ I.

Assumption 2̂. In the setting of Assumption 1, suppose that, for any compact interval
I ⊂ (0,∞) and r > 0,

lim
δ→0

lim sup
n→∞

sup
x,y,z∈BGn(ρ,α(n)r):

dGn (y,z)≤α(n)δ

sup
t∈I

β(n)
∣∣qn
bγ(n)tc(x, y)− qn

bγ(n)tc(x, z)
∣∣ = 0.

We now prove our main two-spatial parameter local limit theorem, which is a variation
of Theorem 1.1.

Theorem 5.1. Fix a compact interval I ⊂ (0,∞) and r > 0. Suppose Assumptions 1̂
and 2̂ hold, then

lim
n→∞

sup
x,y∈BF (ρ,r)

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x), gn(y))− pt(x, y)

∣∣ = 0.
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Proof. Fix a compact interval I ⊂ (0,∞). For any x ∈ F ∗, y ∈ F , we can prove that

lim
n→∞

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x), gn(y))− pt(x, y)

∣∣ = 0 (20)

by following a proof similar to the proof of Proposition 2.2. To extend this result to
hold uniformly over x, y ∈ BF (ρ, r), we can proceed as in the proof of Theorem 1.1 by
first applying (20) to deduce the result holds uniformly over a suitably chosen finite set
X ⊆ BF (ρ, r), and then using the tightness condition of Assumption 2̂ and the continuity
of (pt(x, y)) to extend this to the whole of BF (ρ, r). Note that in order to strengthen (20)
in this way, one should choose X ⊆ BF (ρ, r) ∩ F ∗, which is possible by the denseness of
F ∗ in F .

If we suppose that the obvious extensions to the transition density decay conditions of
Assumption 3 hold, then, by following a proof similar to that of Theorem 1.2, it is possible
to extend this result to demonstrate that β(n)qn

bγ(n)tc(gn(x), gn(y)) converges uniformly

to pt(x, y) over (t, x, y) ∈ [T1,∞) × BF (ρ, R) × F , for any T1, R > 0. To prove uniform
convergence of the transition densities on [T1,∞) × F 2 in general, however, seems to
require some uniform control over space of the convergence of measures and processes of
Assumption 1(c) and Assumption 1̂.

We now extend Propositions 3.2 and 4.6 to show that the parabolic Harnack inequality
of Assumption 4 and the resistance estimates of Assumption 5 imply the uniform tightness
condition of Assumption 2̂.

Proposition 5.2. If Assumption 4 holds, then Assumption 2̂ holds.

Proof. Observe that the proof of Lemma 3.1 only depended on (pG
m(ρ, y)) being a caloric

function of (m, y) and the fact that
∫

V (G)
qG
m(y)νG(dy) ≤ 1 for any m ≥ 1. Hence, because

the same is true of (pG
m(x, y)) and (qG

m(x, y)) for any x ∈ V (G), we are able to deduce
that if T 1/κ ≥ 4R ≥ 2sG(y), then

sup
x∈V (G)

sup
z∈BG(y,R)

∣∣qG
T (x, y)− qG

T (x, z)
∣∣ ≤ c

(
R

T 1/κ

)θ
1

νG(BG(y, 1
4
T 1/κ))

,

where c, θ ∈ (0,∞) are the constants of Lemma 3.1 depending only on CH . Consequently,
if we fix r, ε > 0, a compact interval I ⊂ (0,∞), and then choose δ > 0 and X ⊆ F ∗ as
in the proof of Proposition 3.2, we obtain the existence of an integer n0 such that

sup
x∈V (Gn)

sup
y∈X

sup
z∈BGn (gn(y),2α(n)δ)

sup
t∈I

β(n)
∣∣qn
bγ(n)tc(x, gn(y))− qn

bγ(n)tc(x, z)
∣∣ ≤ ε/2

and (BGn(gn(y), α(n)δ))y∈X is a cover for BGn(ρ, α(n)r), whenever n ≥ n0. The proposi-
tion follows.

Proposition 5.3. If Assumption 5 holds, then Assumption 2̂ holds

Proof. Generalising the notation from Section 4, let VG(x, r) := νG({y : RG(x, y) ≤ r}),
hG(x, r) := rVG(x, r), and define h−1

G (x,m) by a formula analogous to (16). Fix a compact
interval I ⊂ (0,∞). By applying the estimate of Proposition 4.4 to qn

m(x, ·) instead of
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qn
m(·) and the bounds of Assumption 5, we can deduce that there exists finite constants

c1 and c2 and integer n0 such that

sup
x,y,z∈BGn (ρ,α(n)r):

dGn (y,z)≤α(n)δ

sup
t∈I

β(n)2
∣∣qn
bγ(n)tc(x, y)− qn

bγ(n)tc(x, z)
∣∣2

≤ c1δ
κ sup

x∈BGn (ρ,α(n)r)

α(n)−κh−1
Gn(x, c2γ(n)),

for every δ > 0 and n ≥ n0. Thus to complete the proof it suffices to obtain an asymptotic
bound for the supremum in this expression, which can be achieved by a simple extension
of Lemma 4.5.

6 Local limit theorems for random weights

We now explain how Theorems 1.1 and 1.2 can be generalised to the case where the
weight functions on the graphs in the sequence (Gn)n≥1 are chosen randomly from a law
Pµ, a probability measure on (0,∞)∪n≥0E(Gn). The adaptations of Assumptions 1 and 2
that we will apply are the following probabilistic versions.

Assumption 1R. In the setting of Assumption 1, suppose that Assumptions 1(a) and
1(b) hold. Moreover, suppose that, for every x ∈ F , r, ε > 0,

lim
n→∞

Pµ

(∣∣β(n)−1νn(BE(x, r))− ν(BE(x, r))
∣∣ > ε

)
= 0, (21)

and, for any compact interval I ⊂ (0,∞), x ∈ F and r, ε > 0,

lim
n→∞

Pµ

(
sup
t∈I

∣∣∣∣PGn

ρ

(
Xn
bγ(n)tc ∈ BE(x, r)

)−
∫

BE(x,r)

qt(y)ν(dy)

∣∣∣∣ > ε

)
= 0. (22)

Assumption 2R. In the setting of Assumption 1, suppose that, for any compact interval
I ⊂ (0,∞) and r, ε > 0,

lim
δ→0

lim sup
n→∞

Pµ


 sup

x,y∈BGn (ρ,α(n)r):
dGn (x,y)≤α(n)δ

sup
t∈I

β(n)
∣∣qn
bγ(n)tc(x)− qn

bγ(n)tc(y)
∣∣ > ε


 = 0.

These assumptions allow us to prove the subsequent probabilistic local limit theorem.

Theorem 6.1. Fix a compact interval I ⊂ (0,∞) and r, ε > 0. Suppose Assumptions
1R and 2R hold, then

lim
n→∞

Pµ

(
sup

x∈BF (ρ,r)

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ > ε

)
= 0.
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Proof. Fix a compact interval I ⊂ (0,∞), x ∈ F , ε, η > 0, set r = dE(ρ, x), and choose
c and n0 as in the proof of Proposition 2.2. By Assumption 2R, there exists an r0 small
enough and integer n1 ≥ n0 such that

Pµ


 sup

x,y∈BGn (ρ,cα(n)(r+2)):
dGn (x,y)≤3cα(n)r0

sup
t∈I

β(n)
∣∣qn
bγ(n)tc(x)− qn

bγ(n)tc(y)
∣∣ > ε/2


 < η, (23)

for every n ≥ n1, and (5) holds. Consider J(t, n) and Ji(t, n), i = 1, . . . , 4 as in the proof
of Proposition 2.2, and note that

Pµ

(
sup
t∈I

|J2(t, n)| > 4ε′
)
≤ Pµ

(
sup
t∈I

|J(t, n)| > ε′
)

+
∑

i=1,3,4

Pµ

(
sup
t∈I

|Ji(t, n)| > ε′
)

,

where ε′ := εν(BE(x, r0)). By (5), the term involving J4 is equal to 0. Furthermore, by
Assumption 1R, we can also choose n2 ≥ n1 large enough so that the terms featuring J
and J3 are bounded above by η for n ≥ n2. Note that to extend the convergence at (22)
to limn→∞ Pµ (supt∈I |J(t, n)| > ε) = 0 for any ε > 0, we apply a simple adaptation of
the argument appearing in the proof of Lemma 2.1. For the J1 term, we first apply the
upper bound for J1 appearing at (6) and then (23), to deduce that

Pµ

(
sup
t∈I

|J1(t, n)| > ε′
)
≤ η + Pµ

(
β(n)−1νn(BE(x, r0)) > 2ν(BE(x, r0))

)
,

for n ≥ n2. Thus Assumption 1R implies the existence of an integer n3 ≥ n2 such that
Pµ (supt∈I |J1(t, n)| > ε′) ≤ 2η for n ≥ n3. Consequently, for some integer n4 ≥ n3, we
have that Pµ(supt∈I |β(n)qn

bγ(n)tc(gn(x))− qt(x)| > 8ε) ≤ 6η, for n ≥ n4.
We now explain how to generalise this point-wise result to hold uniformly over balls

in F . Fix r, ε, η > 0 and apply Assumption 2R to choose r0 as above, so that (5) and
(23) both hold for large n. As in the proof of Theorem 1.1, let X ⊆ BF (ρ, r) be a finite
set such that (BF (x, r0))x∈X is a cover for BF (ρ, r), then we can apply the first part of
the proof to deduce that

Pµ

(
sup
x∈X

sup
t∈I

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ > ε

)
< η,

for large enough n. The theorem follows from this by applying the continuity and tightness
results of (5) and (23) respectively, similarly to the proof of Theorem 1.1.

The decay condition of Assumption 3 has the following analogous formulation.

Assumption 3R. The following conditions are fulfilled.

(a) Assumption 3(a) holds.

(b) In the setting of Assumption 1, for every ε > 0,

lim
t→∞

lim sup
n→∞

Pµ

(
sup

x∈V (Gn)

β(n)qn
bγ(n)tc(x) > ε

)
= 0,
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and, for any compact interval I ⊂ (0,∞), ε > 0,

lim
r→∞

lim sup
n→∞

Pµ

(
sup

x∈V (Gn)\BGn (ρ,α(n)r)

sup
t∈I

β(n)qn
bγ(n)tc(x) > ε

)
= 0.

If this assumption is satisfied, then by decomposing time and space as in the proof of
Theorem 1.2 we are able to deduce the corresponding result for random weights. Since
the proof is a straightforward adaptation of the proof of Theorem 1.2, we omit it.

Theorem 6.2. Fix T1 > 0. Suppose Assumptions 1R, 2R and 3R hold, then, for every
ε > 0,

lim
n→∞

Pµ

(
sup
x∈F

sup
t≥T1

∣∣β(n)qn
bγ(n)tc(gn(x))− qt(x)

∣∣ > ε

)
= 0.

We can also extend the two-spatial parameter local limit theorems of Section 5 to
random weights; see Section 7.3 for such a result.

7 Examples

To demonstrate the applicability of our local limit theorems, in this section we present a
range of examples for which we can check that our assumptions hold.

7.1 Lattice graphs

In [8] local limit theorems were proved for an infinite subgraph G of the integer lattice
Zd fulfilling certain conditions, including a version of the parabolic Harnack inequality
related to our Assumption 4 with κ = 2. It is easy to check that if we set Gn := n−1/2G
for a graph G satisfying Assumption 4.4. of [8], by which we mean that

V (Gn) = n−1/2V (G), E(Gn) := {{n−1/2x, n−1/2y} : {x, y} ∈ E(G)},
µGn

xy = µG
(n1/2x)(n1/2y)

,

and define ρ(Gn) = 0, then our Assumptions 1, 3 and 4 hold with: (E, dE) = (F, dF ) =
(Rd, | ·−·|∞), where | · |∞ is the usual L∞ norm in Rd; ρ = 0; ν equal to Lebesgue measure
on Rd; for some constant c1 ∈ (0,∞),

qt(x) =
1

(2πc1t)d/2
e−|x|

2/2c1t;

and
α(n) = n1/2, β(n) = c2n

d/2, γ(n) = n,

for some constant c2 ∈ (0,∞). Since, by Proposition 3.2, Assumption 4 implies Assump-
tion 2, we can apply Theorem 1.2 to verify the local limit theorem proved as [8], Theorem
4.5. Examples of G to which such an argument applies include: the unweighted (µGxy = 1
for {x, y} ∈ E(G)) integer lattice Zd; typical supercritical percolation clusters; and typ-
ical realisations of the weighted graph generated by the random conductance model on
Zd in the case when the conductances are uniformly bounded away from 0 and ∞. See
[8] for details.
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7.2 Graph trees converging to the continuum random tree

To describe a scaling limit result for ordered graph trees, we will use the now well-
established connection between trees and excursions (see [1], [27], for example). First, let
(Tn)n≥2 be a collection of (rooted) ordered graph trees, where Tn has n vertices. For each
n, define the function ŵn : {1, . . . , 2n − 1} → Tn to be the depth-first search around Tn

(see [2] for a definition). Extend ŵn so that ŵn(0) = ŵn(2n) = ρn, where ρn is the root
of Tn. Define the search-depth process wn by wn(i/2n) := dTn(ρn, ŵn(i)) for 0 ≤ i ≤ 2n,
where dTn is the graph distance on Tn. Also, extend the definition of wn to the whole of
the interval [0, 1] by linear interpolation, so that wn takes values in C([0, 1],R+).

Now, set W := {w ∈ C([0, 1],R+) : w(x) = 0 ⇔ x ∈ {0, 1}}. For each w ∈
W , construct on [0, 1] a distance by setting dw(s, t) := w(s) + w(t) − 2mw(s, t), where
mw(s, t) := inf{w(r) : r ∈ [s ∧ t, s ∨ t]}, and an equivalence relation by supposing s ∼ t
if and only if dw(s, t) = 0. If Tw := [0, 1]/ ∼ and dTw([s], [t]) := dw(s, t), where [s] is the
equivalence class containing s, then it is possible to check that (Tw, dTw) is a compact
real tree (see [14] for a definition of a real tree and proof of this result). The root ρw of
the tree Tw is defined to be the equivalence class [0]. Furthermore, if νw(A) is defined
to be the standard one-dimensional Lebesgue measure of the set {s ∈ [0, 1] : [s] ∈ A}
for Borel measurable A ⊆ Tw, then νw is a Borel probability measure on (Tw, dTw). Since
the support of νw is the whole of Tw, it is possible to apply [22], Theorem 5.4 to deduce
the existence of a reversible strong Markov diffusion on Tw, Xw say, which has νw as
its invariant measure. Moreover, by applying the argument of [13], Section 8, we can
suppose that Xw is Brownian motion on (Tw, dTw , νw), as defined in Section 5 of [1].

The continuum random tree is the random compact real tree TW that results when
W is the Brownian excursion, normalised to have length one. If the sequence (wn)n≥2

converges to a typical realisation of W , w say, in C([0, 1],R+), then it was shown in
[12] that it is also possible to describe the scaling limits of the vertex sets V (Tn), the
measures νn := νTn and the discrete time simple random walks Xn := XTn in terms
of the corresponding continuum objects Tw, νw and Xw by embedding in to a common
metric space. In the following result, which is a minor restatement of [12], Theorem 1.1,
the space l1 is the Banach space of infinite sequences of real numbers equipped with the
norm ‖x‖ :=

∑∞
i=1 |xi|.

Proposition 7.1. There exists a set W∗ ⊆ C([0, 1],R+) such that W ∈ W∗ almost-
surely, and if n−1/2wn → w in C([0, 1],R+) for some w ∈ W∗, then there exists, for each
n, an isometric embedding φn of (V (Tn), dTn) into l1 and also an isometric embedding φ
of (Tw, dTw) into l1 such that:

• φn(ρn) = 0, for every n ≥ 2, and also φ(ρw) = 0.

• n−1/2φn(V (Tn)) → φ(Tw) with respect to the Hausdorff topology on compact subsets
of l1.

• (2n)−1νn(φ−1
n (n1/2·)) → νw(φ−1(·)) weakly as Borel probability measures on l1.

•
(
n−1/2φn(Xn

bn3/2tc)
)

t≥0
→ φ(Xw) in distribution in the space D(R+, l1), conditional

on Xn
0 = ρn and Xw

0 = ρw.
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Note that, in [12], in place of νn, the uniform measure on the vertices of Tn, µn

say, was considered. However, it is easy to check that the Prohorov distance between
(2n)−1νn(φ−1

n (n1/2·)) and n−1µn(φ−1
n (n1/2·)) is bounded above by n−1/2, and so [12], The-

orem 1.1 does indeed imply the above convergence result for measures.
Whenever n−1/2wn → w ∈ W∗, it is a simple consequence of Proposition 7.1 to check

that if Xw admits a transition density (pt(x, y))x,y∈Tw,t>0 which is jointly continuous in
(t, x, y), then Assumption 1 holds with E = l1, F = φ(Tw), ρ = 0, ν = νw ◦ φ−1,
qt(x) = pt(ρ, x), Gn = n−1/2φn(Tn) and α(n) = n1/2, β(n) = 2n, γ(n) = n3/2. However,
by applying [13], Theorem 6.2 and Corollary 8.5, it is possible to assume that Xw does
indeed admit a suitable transition density for w ∈ W∗. Furthermore, since Tn is a graph
tree for each n, it is a fact that the resistance metric RTn is identical to the usual graph
distance dTn , and therefore Assumption 5 holds with κ = 1. Hence the following result is
true, where we use the notation qn := qTn .

Theorem 7.2. There exists a set W∗ ⊆ C([0, 1],R+) such that W ∈ W∗ almost-surely,
and if n−1/2wn → w in C([0, 1],R+) for some w ∈ W∗, then there exists, for each n,
an isometric embedding φn of (V (Tn), dTn) into l1 and also an isometric embedding φ of
(Tw, dTw) into l1 such that: in addition to the convergence results of Proposition 7.1, for
every compact interval I ⊂ (0,∞),

lim
n→∞

sup
x∈Tw

sup
t∈I

∣∣∣2nqn
bn3/2tc(g̃n(x))− pt(ρw, x)

∣∣∣ = 0,

where, for x ∈ Tw, g̃n(x) is a point in V (Tn) minimising the l1-distance between φ(x) and
n−1/2φn(y) over y ∈ V (Tn).

We now present a topology for transition densities on graphs and metric spaces that
allows us to state a version of this result that does not involve the underlying metric space
E = l1. A particular motivation for doing this is that it allows us to deduce, in addition
to the above quenched local limit theorem, a corresponding distributional result.

For an interval I ⊆ [0,∞), let M̃I be the collection of triples of the form (F, ρF , qF ),
where F = (F, dF ) is a non-empty compact metric space, ρF is a distinguished element
of F and qF = (qF

t (x))x∈F,t>0 is a jointly continuous real-valued function of (t, x). We
say two elements, (F, ρF , qF ) and (F ′, ρF ′ , q

F ′), of M̃I are equivalent if there exists an
isometry f : F → F ′ such that f(ρF ) = ρF ′ and qF ′

t ◦ f = qF
t for every t ∈ I. Define

MI to be the set of equivalence classes of M̃I under this relation. Note that we will
abuse notation and identify an equivalence class in MI with a particular element of it.
Similarly to the distance between pairs of “spatial trees” defined in [14], we introduce a
distance on MI that uses the notion of a correspondence between metric spaces, where, if
F and F ′ are two compact metric spaces, a correspondence between F and F ′ is a subset
C of F ×F ′ such that for every x ∈ F there exists at least one y ∈ F ′ such that (x, y) ∈ C
and conversely for every y ∈ F ′ there exists at least one x ∈ F such that (x, y) ∈ C. The
distortion of the correspondence C is defined by dis(C) := sup{|dF (x1, x2)− dF ′(y1, y2)| :
(x1, y1), (x2, y2) ∈ C}, and we set, for (F, ρF , qF ), (F ′, ρF ′ , q

F ′) ∈MI ,

∆I

(
(F, ρF , qF ), (F ′, ρF ′ , q

F ′)
)

:= inf
C∈C(F,F ′):
(ρF ,ρF ′ )∈C

δI(C),
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where δI(C) := (dis(C) + sup(x,y)∈C,t∈I

∣∣qF
t (x)− qF ′

t (y)
∣∣), and C(F, F ′) is the set of all

correspondences between F and F ′.

Lemma 7.3. For any compact interval I ⊆ [0,∞), (MI , ∆I) is a separable metric space.

Proof. That ∆I is a metric can be demonstrated by applying a straightforward adaptation
of the proof of [10], Theorem 7.3.30, which demonstrates the analogous result for the
Gromov-Hausdorff distance between compact metric spaces. To prove separability, first
let F be the countable collection of metric spaces (F, dF ) such that F is a finite set and
dF takes values in Q, and choose a sequence (in)n≥1 that is dense in I. For each n ≥ 1,
define Mn

I to be set of equivalence classes of triples of the form (F, ρF , qF ) such that
F ∈ F and, for every x ∈ F , qF

t (x) takes values in Q for t ∈ {im : m ≤ n} and is a linear
function of t between the values in {im : m ≤ n}. It is an elementary exercise to show
that ∪n≥1Mn

I is dense in (MI , ∆I). Hence, because ∪n≥1Mn
I is countable, (MI , ∆I) is

separable.

The following result contains a distributional analogue of Theorem 7.2 that applies
the above topology. Note that for a graph G, we extend the discrete time function
(qG

m(x))x∈V (G),m≥0 to continuous time by linear interpolation at each vertex. Thus we can
view ((V (G), dG), ρ(G), (qG

t (x))x∈V (G),t∈I) as an element of MI for every finite graph G.

Theorem 7.4. Fix a compact interval I ⊂ (0,∞). Suppose that (Tn)n≥2 is a sequence
of random rooted ordered graph trees whose search-depth functions (wn)n≥2 converge in
distribution to W , the Brownian excursion normalised to have length one, then

((
V (Tn), n−1/2dTn

)
, ρn,

(
2nqn

n3/2t(x)
)

x∈V (Tn),t∈I

)

converges in distribution to

(
(TW , dTW

) , ρW , (pt(ρW , x))x∈TW ,t∈I

)

in the space (MI , ∆I).

Proof. By the separability of C([0, 1],R+), it is possible to assume that we have realisa-
tions of (Tn)n≥2 and W such that n−1/2wn → W almost-surely. It is an easy consequence
of Theorem 7.2 (and Assumption 2) that

((
V (Tn), n−1/2dTn

)
, ρn,

(
2nqn

n3/2t(x)
)

x∈V (Tn),t∈I

)
→

(
(TW , dTW

) , ρW , (pt(ρW , x))x∈TW ,t∈I

)

in the space (MI , ∆I) almost-surely, and the result follows.

7.3 Local homogenisation for nested fractals

We start this section by introducing unbounded nested fractal sets, which will later
appear as scaling limits of the associated fractal graphs. Suppose (ψi)

N
i=1 is a family of

L−1-similitudes on Rd for some L > 1, by which we mean that, for each i, ψi is a map
from Rd to Rd that satisfies |ψi(x)−ψi(y)| = L−1|x−y|, for every x, y ∈ Rd, where | ·− · |
is the usual Euclidean distance on Rd. We assume that the collection (ψi)

N
i=1 satisfies the
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open set condition; this means that there exists a non-empty bounded set O ⊆ Rd such
that (ψi(O))N

i=1 are disjoint and ∪N
i=1ψi(O) ⊆ O. Since (ψi)

N
i=1 is a family of contraction

maps, there exists a unique non-empty compact set K such that K = ∪N
i=1ψi(K), which

we will suppose is connected. Write the set of fixed points of (ψi)
N
i=1 as Ξ, and define the

collection of essential fixed points of (ψi)
N
i=1 by

V0 := {x ∈ Ξ : ∃i, j ∈ {1, . . . , N}, i 6= j and y ∈ Ξ such that ψi(x) = ψi(y)} .

Throughout, we assume that #V0 ≥ 2. The compact set K is then said to be a nested
fractal if it satisfies the following finite ramification and symmetry properties.

• If i1 . . . in and j1 . . . jn are distinct sequences in {1, . . . , N}, then

ψi1...in(K) ∩ ψj1...jn(K) = ψi1...in(V0) ∩ ψj1...jn(V0),

where ψi1...in := ψi1 ◦ · · · ◦ ψin .

• If x, y ∈ V0, then the reflection in the hyperplane Hxy := {z ∈ Rd : |z−x| = |z−y|}
maps Vn to itself, where

Vn :=
N⋃

i1,...,in=1

ψi1...in(V0).

Without loss of generality, we assume that ψ1(x) = L−1x and 0 ∈ V0. The unbounded
nested fractal which will be of interest in this section is then defined by

F :=
⋃
n≥0

LnK.

Although the embedding of F into Euclidean space has been important for its construc-
tion, it will not be particularly important in what follows. Instead, we consider an
intrinsic shortest path metric dF on F , as defined in Section 3 of [17] (we assume that
the size vector introduced there is simply r̃ = (1, . . . , 1)), which satisfies the properties
presented in the following lemma. In particular, we describe how the metric dF is related
to both the Euclidean metric in Rd, and the shortest path graph distance on the graph
G, defined by setting

V (G) :=
⋃
n≥0

LnV0

E(G) := {{Lnψi1...in(x), Lnψi1...in(y)} : x, y ∈ V0, x 6= y, i1, . . . , in ∈ {1, . . . , N}, n ≥ 0} .

We also record a scaling formula for dF , which is proved in [17].

Lemma 7.5. There exists a metric dF on F , which satisfies the midpoint property, and
moreover, there exist constants c1, c2, c3, c4 ∈ (0,∞) and α ∈ (1,∞) such that

c1dF (x, y) ≤ |x− y|dc ≤ c2dF (x, y), ∀x, y ∈ F, (24)

where dc := ln α/ ln L, and also

c3dF (x, y) ≤ dG(x, y) ≤ c4dF (x, y), ∀x, y ∈ V (G). (25)
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Finally, dF can be constructed so that

dF (Lx,Ly) = αdF (x, y), ∀x, y ∈ F. (26)

Observe that this result implies all the conditions on (F, dF ) that are required in the
introduction, where we suppose throughout the remainder of this section that (E, dE) :=
(F, dF ) and ρ := 0. Furthermore, it is a standard result that K has Hausdorff dimension
ln N/ ln L with respect to the Euclidean metric (see [15], for example), and the same is
true of F . We will denote by ν the (ln N/ ln L)-dimensional Hausdorff measure on F
with respect to the Euclidean metric, and note that it is easy to check (by applying (24)
and the symmetries of the fractal) that there exist constants c1, c2 ∈ (0,∞) such that
c1r

df ≤ ν(BF (x, r)) ≤ c2r
df , for every x ∈ F and r > 0, where df := ln N/ ln α and

BF (x, r) is the open ball with centre x and radius r in (F, dF ). Hence ν satisfies the
properties required of the measure on the metric space (F, dF ) in the introduction. The
following continuity result will also be useful.

Lemma 7.6. For every x ∈ F and r > 0, ν(∂BF (x, r)) = 0, where ∂BF (x, r) :=
BF (x, r)\BF (x, r).

Proof. We prove the corresponding result for K, the lemma then follows by rescaling. As a
straightforward consequence of [17], Proposition 3.6, there exist constants c1, c2 ∈ (0,∞)
such that

c1α
−n < sup

x∈ψi1...in(K)

inf
y∈K\ψi1...in(K)

dK(x, y) ≤ sup
x,y∈ψi1...in(K)

dK(x, y) < c2α
−n (27)

for every i1, . . . , in ∈ {1, . . . , N}, n ∈ N, where dK := dF |K×K . Choose M to be an
integer strictly greater than ln(8c2/c1)/ ln α.

Let x ∈ F , r > 0 and let n0 be an integer chosen to satisfy r > 2c2α
−n0M . We

now claim that if In ⊆ {1, . . . , N}nM is chosen so that (ψi1...inM
(K))i1...inM∈In is a cover

for ∂BK(x, r) and n ≥ n0, then there exists a set In+1 ⊆ {1, . . . , N}(n+1)M for which
(ψi1...i(n+1)M

(K))i1...i(n+1)M∈In+1 is a cover for ∂BK(x, r) and #In+1 ≤ (NM − 1)#In. Let
(i1, . . . , inM) ∈ In. Clearly, we can assume that there exists an x0 ∈ ψi1...inM

(K) such
that dK(x, x0) = r (if not, then we can discard (i1, . . . , inM) from In), and, by (27), there
exists an x1 ∈ ψi1...inM

(K) such that BK(x1, c1α
−nM) ⊆ ψi1...inM

(K). We have, applying
(27) and our choice of n0,

dK(x, x1) ≥ |dK(x, x0)− dK(x0, x1)| ≥ r − c2α
−nM ≥ c2α

−nM .

Thus there exists an x2 ∈ ψi1...inM
(K) on the geodesic path from x to x1 that satisfies

dK(x, x2) = dK(x, x1) − 1
2
c1α

−nM . It immediately follows that we can find j1, . . . , jM ∈
{1, . . . , N} and x3 ∈ ψi1...inM j1...jM

(K) such that |r − dK(x, x3)| > 1
8
c1α

−nM . If z ∈
ψi1...inM j1...jM

(K), then

|r − dK(x, z)| ≥ |r − dK(x, x3)| − dK(x3, z) > 1
8
c1α

−nM − c2α
−(n+1)M > 0.

In particular, this implies that ψi1...inM j1...jM
(K) ∩ ∂BK(x, r) = ∅. The claim can easily

be obtained from this result.
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By applying the conclusion of the previous paragraph and the scaling relation at
(24), an elementary argument can be applied to deduce that the Hausdorff dimension of
∂BK(x, r) with respect to the Euclidean metric is no greater than ln(NM − 1)/ ln LM .
Hence, since ν was defined as the ln N/ ln L-dimensional Hausdorff measure on K, we
must have that ν(∂BK(x, r)) = 0 as desired.

We will henceforth suppose that the weights on the edges in E(G) are selected ran-
domly from a law Pµ on (0,∞)E(G) which satisfies uniform boundedness and cell inde-
pendence. By uniform boundedness, we mean that there exist deterministic constants
c1, c2 ∈ (0,∞) such that, Pµ-a.s.,

c1 ≤ µGxy ≤ c2, ∀{x, y} ∈ E(G), (28)

and define cell independence to be the property that for each n ≥ 0, the collections
{(

µG(Lnψi1...in(x))(Lnψi1...in(y))

)
x,y∈V0,x6=y

}

i1,...,in∈{1,...,N}

are independent and have the same distribution as (µGxy)x,y∈V0,x6=y. Note that we still
require µGxy = µGyx for every x, y ∈ V (G), and µGxy = 0 if {x, y} 6∈ E(G). In the next lemma
we deduce that measure νG on V (G) associated with such a family of random weights can
be rescaled to obtain the measure ν on F .

Lemma 7.7. If we denote νn := νG(Ln·), then there exists a deterministic constant
c ∈ (0,∞) such that, Pµ-a.s., the measures cN−nνn converge to ν in the vague topology
on locally finite Borel measures on (F, dF ).

Proof. By definition, we have that

νn(K) :=
∑

x,y∈V (G)∩LnK:
{x,y}∈E(G)

µGxy +
∑

x∈V (G)∩LnK, y∈V (G)\LnK:
{x,y}∈E(G)

µGxy. (29)

Applying the independence properties of (µGxy)x,y∈V0,x 6=y, the first term is equal in distribu-

tion to
∑N

i1,...,in=1 ξi1...in , where (ξi1...in)N
i1,...,in=1 are independent copies of ξ :=

∑
x,y∈V0

µGxy.
It follows that, for every ε > 0,

Pµ

(∣∣∣∣∣N
−n

N∑
i1,...,in=1

ξi1...in − Eµξ

∣∣∣∣∣ > ε

)
≤ Eµξ

2

Nnε2
.

Thus, by applying the Borel-Cantelli lemma, we are able to deduce that, when multiplied
by N−n, the first term of (29) converges to Eµξ, Pµ-a.s.

Under the assumption of uniform boundedness, the second term of (29) is bounded
above deterministically by c1#{{x, y} ∈ E(G) : x ∈ V (G) ∩ LnK, y ∈ V (G)\LnK} for
some constant c1. It is straightforward to check that G is a graph of bounded degree (cf.
[3], Proposition 5.21) and by combining this fact with the finite ramification property of
K, it is possible to deduce that #{{x, y} ∈ E(G) : x ∈ V (G) ∩ LnK, y ∈ V (G)\LnK}
is bounded by a constant that is independent of n. This completes the proof that
c2N

−nνn(K) → ν(K), Pµ-a.s., where c2 := ν(K)/Eµξ.
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Applying the self-similarity of F , the above argument is easily generalised to yield,
Pµ-a.s.,

lim
n→∞

c2N
−nνn

(
Lm1ψi1...im2

(K)
)

= ν
(
Lm1ψi1...im2

(K)
)
,

for every i1, . . . , im2 ∈ {1, . . . , N}, m1,m2 ∈ N. The lemma follows from this by applying
[9], Theorem 2.3, for example.

Our description of the transition density asymptotics and scaling limit of the simple
random walk on G will be presented in terms a resistance-scaling factor λ, which appears
as an “eigenvalue” for the renormalisation map that we now introduce. For a set of non-
negative weights (Cxy)x,y∈V 0,x6=y which satisfy Cxy = Cyx, a quadratic form EC on RV0 can
be constructed by setting

EC(f, f) :=
∑

x,y∈V0,x 6=y

Cxy(f(x)− f(y))2.

Replicating this form N times, we set

E1
C(f, f) :=

N∑
i=1

EC(f ◦ ψi, f ◦ ψi),

which defines a quadratic form on RV1 . Now, restrict this form to V0 using the trace
operator, as defined by Tr(E1

C |V 0)(f, f) := inf{E1
C(g, g) : g|V0 = f}. The resulting

operator Tr(E1
C |V 0) is of the form EΛ(C) for a set of non-negative weights (Λ(C)xy)x,y∈V 0,x 6=y

which satisfy Λ(C)xy = Λ(C)yx. It is known that there exists a non-degenerate fixed point
to the map C 7→ Λ(C) which satisfies Λ(C) = λ−1C, for some λ > 0 (see [3], Theorem
6.23 for example). In fact, λ is uniquely determined, so that it is the same for any non-
degenerate fixed point ([3], Corollary 6.20). Moreover, we can also assume that λ > 1
([3], Corollary 6.28).

In the subsequent lemma, we summarise results for the continuous time simple random
walk Y G on the graph G, its transition density (p̃Gt (x, y))x,y∈V (G),t>0 and the resistance
metric RG determined from the corresponding Dirichlet form by the formula at (14). The
constant dw is defined to be equal to ln(Nλ)/ ln α, and df := ln N/ ln α, as above.

Lemma 7.8. Pµ-a.s., there exist (random) constants c1, c2, c3, c4, c5, c6 ∈ (0,∞) such that

p̃Gt (x, y) ≤ c1t
−df /dw exp

(
−c2

(
dG(x, y)dw

t

)1/(dw−1)
)

, ∀x, y ∈ V (G), t > 0, (30)

P̃G
x

(
τG(x, r) ≤ t

) ≤ c3 exp

(
−c4

(
rdw

t

)1/(dw−1)
)

, ∀x ∈ V (G), t, r > 0, (31)

where τG(x, r) := inf{t > 0 : Y G
t 6∈ BG(x, r)} is the exit time of the simple random walk

Y G from the graph ball BG(x, r), and also

c5dG(x, y)κ ≤ RG(x, y) ≤ c6dG(x, y)κ, ∀x, y ∈ V (G), (32)

where κ := ln λ/ ln α.
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Proof. For the discrete time simple random walk on the unweighted nested fractal graph G
(i.e. µGxy = 1 for every {x, y} ∈ E(G)), the parabolic Harnack inequality with exponent dw

is known to hold (see [18], Theorem 3.1 and [19], Corollary 4.13). Hence, by [19], Theorem
5.11, the same is true for any uniformly bounded set of weights µG, Pµ-a.s. Given this
property, the discrete time versions of (30) and (31), as well as (32), are an application
of results appearing in [7]. Similar arguments can be used to prove the corresponding
continuous time results (alternatively, once (32) is established, the arguments of [7] can
be adapted to continuous time directly to yield (30) and (31)).

We can use this lemma to prove a Pµ-a.s. tightness result for the law of the continuous
time simple random walk Y G. Note that, for x ∈ F , we write g̃n(x) to represent the point
in V (G) closest to Lnx.

Lemma 7.9. For every compact interval I ⊂ (0,∞), x, y ∈ F and r > 0, we have that,
Pµ-a.s.,

lim
δ→0

lim sup
n→∞

sup
s,t∈I
|s−t|<δ

∣∣∣P̃G
g̃n(x)

(
L−nY G

(Nλ)ns ∈ BF (y, r)
)
− P̃G

g̃n(x)

(
L−nY G

(Nλ)nt ∈ BF (y, r)
)∣∣∣ = 0.

Proof. Fix a compact interval I ⊂ (0,∞), x, y ∈ F and r, ε > 0, and write B = BF (y, r).
Some elementary analysis allows us to conclude that, for any η > 0,

sup
s,t∈I
|s−t|<δ

∣∣∣P̃G
g̃n(x) (Zn

s ∈ B)− P̃G
g̃n(x) (Zn

t ∈ B)
∣∣∣

≤ 2 sup
s,t∈I

0<t−s<δ

P̃G
g̃n(x) (dF (Zn

s , Zn
t ) > η) + 2 sup

t∈I
P̃G

g̃n(x) (Zn
t ∈ Bη\B) , (33)

where Bη := BF (y, r + η) and we denote L−nY G
(Nλ)nt by Zn

t in this proof. For the second

term, we can apply the heat kernel bound of (30) and the measure convergence of Lemma
7.7 to deduce that, Pµ-a.s., there exists a finite constant c1 such that, for every η > 0

lim sup
n→∞

2 sup
t∈I

P̃G
g̃n(x) (Zn

t ∈ Bη\B) ≤ c1ν(Bη\B).

By Lemma 7.6, this upper bound is less than ε for suitably small η.
For the first term in (33), we apply the Markov property of Y G and the metric ap-

proximation result of (25) to obtain the existence of a (deterministic) non-zero constant
c2 such that

2 sup
s,t∈I

0<t−s<δ

P̃G
g̃n(x) (dF (Zn

s , Zn
t ) > η) ≤ 2 sup

t∈[0,δ)

sup
z∈V (G)

P̃G
z

(
dG(z, Y G

(Nλ)nt) > c2α
nη

)

≤ 2 sup
z∈V (G)

P̃G
z

(
τG(z, c2α

nη) ≤ (Nλ)nδ
)
,

where τG(·, ·) is the exit time defined in Lemma 7.8. Consequently, the upper bound for
the exit time distribution at (31) implies that, Pµ-a.s.,

lim
δ→0

lim sup
n→∞

2 sup
s,t∈I

0<t−s<δ

P̃G
g̃n(x) (dF (Zn

s , Zn
t ) > η) = 0.
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In combination with the conclusion of the previous paragraph, this completes the proof.

We continue by describing how the homogenisation result of [25] can be applied in
our situation. Set, for f ∈ RVn ,

En
µ (f, f) :=

N∑
i1,...,in=1

∑

x,y∈V0,x 6=y

µG(Lnψi1...in(x))(Lnψi1...in(y)) (f(ψi1...in(x))− f(ψi1...in(y)))2 .

(34)
From this, we define Λn(µ) = (Λn(µ)xy)x,y∈V0,x6=y to satisfy EΛn(µ) = Tr(En

µ |V0). It is
proved in [25], Theorem 3.4, that there exists a deterministic Cµ = (Cµ

xy)x,y∈V0,x 6=y such
that

lim
n→∞

λnΛn(µ) = Cµ,

where the limit is an L1-limit in the space of non-negative weights on the complete graph
with vertex set V0. Moreover, Cµ satisfies Cµ

xy > 0 for every x, y ∈ V0, x 6= y, and also
Λ(Cµ) = λ−1Cµ, where Λ is the renormalisation map defined above. We will use the
weights Cµ to construct the diffusion on F that arises as the scaling limit of the random
walk Y G as follows. First, let En

Cµ be a quadratic form on RVn which satisfies (34) with
µG(Lnψi1...in (x))(Lnψi1...in (y)) replaced by Cµ

xy in each summand, then define

EK(f, f) = lim
n→∞

λnEn
Cµ(f |Vn , f |Vn)

for f ∈ FK , where FK := {f ∈ C(K,R) : supn λnEn
Cµ(f |Vn , f |Vn) < ∞}. It is known ([3],

[23]) that (EK ,FK) is a local, regular (non-degenerate) Dirichlet form on L2(K, ν) that
satisfies

EK(f, f) = λ

N∑
i=1

EK(f ◦ ψi, f ◦ ψi), ∀f ∈ F .

For each n ∈ Z, define a renormalisation operator σn by setting σn(f)(x) = f(Lnx) for
x ∈ K and f : Kn → R, where Kn := LnK. If we set FKn := σ−nFK and

EKn(f, f) := EK(σn(f), σn(f)), ∀f ∈ FKn ,

then it is possible to define a local, regular Dirichlet form (EF ,FF ) on L2(F, ν) by setting

EF (f, f) := lim
n→∞

λnEKn(f |Kn , f |Kn), ∀f ∈ FF ,

where FF is the collection of functions f ∈ L2(F, ν) that satisfy f |Kn ∈ FKn for ev-
ery n ≥ 0 and limn→∞ EKn(f |Kn , f |Kn) < ∞, see [17], Theorem 2.7. Finally, the as-
sociated ν-symmetric diffusion X = ((Xt)t≥0,Px, x ∈ F ) admits a transition density
(pt(x, y))x,y∈F,t>0 that is jointly continuous in (t, x, y), see [17], Lemma 4.6, and satisfies

pt(x, y) ≤ c1t
−df /dw exp

(
−c2

(
dF (x, y)dw

t

)1/(dw−1)
)

, ∀x, y ∈ F, t > 0, (35)

where df = ln N/ ln α and dw = ln(Nλ)/ ln α, as before, and c1, c2 are constants taking
values in (0,∞), see [17], Theorem 5.7. Finally, we have the following important scaling
result for the simple random walk Y G.
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Lemma 7.10 ([25], Theorem 7.3). There exists a deterministic constant c ∈ (0,∞) such
that, for every ε > 0, x ∈ F and bounded f ∈ C(D(R+, F ),R), we have

lim
n→∞

Pµ

(∣∣∣ẼG
g̃n(x)(f(L−nY G

c(Nλ)n·))− Ex(f(X·))
∣∣∣ > ε

)
= 0,

where ẼG
g̃n(x) is the expectation under the continuous time simple random walk law P̃G

g̃n(x),
and Ex is the expectation under the law Px of the Markov process X.

Given all the above information, it is straightforward to deduce properties of the
graph G from which a local limit theorem for nested fractal graphs with random weights
can be deduced. We set Gn := L−nG, by which we mean that V (Gn) = L−nV (G),
E(Gn) := {{L−nx, L−ny} : {x, y} ∈ E(G)} and µGn

xy = µG(Lnx)(Lny).

Proposition 7.11. The graphs (Gn)n≥0 satisfy the following assumptions for α(n) = αn,
β(n) = c1N

n and γ(n) = c2(Nλ)n, for some deterministic constants c1, c2 ∈ (0,∞).
(i) Assumption 1(a), 1(b) hold. Assumption 1(c) holds Pµ-a.s. Furthermore, for every
compact interval I ⊂ (0,∞), x, y ∈ F ,

lim
n→∞

Pµ

(
sup
t∈I

∣∣∣P̃Gn

gn(x)

(
Y Gn

γ(n)t ∈ BE(y, r)
)−Px (Xt ∈ BE(y, r))

∣∣∣ > ε

)
= 0. (36)

(ii) The continuous time version of Assumption 2̂ holds Pµ-a.s.
(iii) The transition density of X satisfies

lim
t→∞

sup
x,y∈F

pt(x, y) = 0, lim
r→∞

sup
x∈BF (ρ,R)

sup
y∈F\BF (ρ,r)

sup
t∈I

pt(x, y) = 0,

for any compact interval I ⊂ (0,∞), R > 0. Moreover, Pµ-a.s.,

lim
t→∞

lim sup
n→∞

sup
x,y∈V (Gn)

β(n)p̃Gn

γ(n)t(x, y) = 0,

and, for any compact interval I ⊂ (0,∞), R > 0,

lim
r→∞

lim sup
n→∞

sup
x∈BGn(ρ,α(n)R)

sup
y∈V (Gn)\BGn (ρ,α(n)r)

sup
t∈I

β(n)p̃Gn

γ(n)t(x, y) = 0.

Proof. Assumption 1(a) is a simple consequence of (25) and the scaling relation at (26).
By construction, V (Gn) ⊆ V (Gn+1) for every n ≥ 0 and also ∪n≥0V (Gn) is dense in
(F, dF ), thus Assumption 1(b) holds. The measure convergence of (21) is implied by
Lemmas 7.6 and 7.7. For the remaining claim of (i), we apply Lemma 7.10 to deduce
that there exists a constant c ∈ (0,∞) such that, for any 0 < t1 < · · · < tk, x, y ∈ F ,
r, ε > 0, we have

lim
n→∞

Pµ

(
sup

i=1,...,k

∣∣∣P̃Gn

gn(x)(Y
Gn

c(Nλ)nti
∈ BF (y, r))−Px(Xti ∈ BF (y, r))

∣∣∣ > ε

)
= 0.

In conjunction with Lemma 7.9, this implies (36).
The control on the resistance metric at (32) implies that Assumption 5 is satisfied

Pµ-a.s. Hence, by the continuous time version of Proposition 5.3, the continuous time
version of Assumption 2̂ holds Pµ-a.s. To obtain (iii), we apply the heat kernel bounds
appearing at (30) and (35).
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This proposition allows us to obtain the following local limit theorem.

Theorem 7.12. Fix T1, R > 0. Suppose G is a nested fractal graph with random weights
satisfying uniform boundedness and cell independence, then there exist deterministic con-
stants c1, c2 ∈ (0,∞) such that, for every ε > 0,

lim
n→∞

Pµ

(
sup

x∈BF (ρ,R)

sup
y∈F

sup
t≥T1

∣∣∣c1N
np̃Gc2(Nλ)nt(g̃n(x), g̃n(y))− pt(x, y)

∣∣∣ > ε

)
= 0.

Proof. By adapting the proof of Theorem 5.1 to the case of random weights, using similar
ideas to those applied in Section 6, and considering the continuous time transition density
in place of the discrete time transition density, it is possible to deduce from parts (i) and
(ii) of Proposition 7.11 that there exist deterministic constants c1, c2 ∈ (0,∞) such that,
for every compact interval I ⊂ (0,∞), R, ε > 0,

lim
n→∞

Pµ

(
sup

x,y∈BF (ρ,R)

sup
t∈I

∣∣∣c1N
np̃Gc2(Nλ)nt(g̃n(x), g̃n(y))− pt(x, y)

∣∣∣ > ε

)
= 0.

The theorem easily follows from this by applying the heat kernel decay conditions of
Proposition 7.11(iii).

Finally, we say that a collection of weights C = (Cxy)x,y∈V0,x 6=y is invariant if, for every
map h which is a reflection in a hyperplane of the form Hxy, x, y ∈ V0, the collection
(Ch(x)h(y))x,y∈V0,x6=y is identical to (Cxy)x,y∈V0,x 6=y; and it was proved in [29] that there exists
a unique non-degenerate invariant set of weights, C∗ say, such that Λ(C∗) = λ−1C∗. Thus,
if we assume that (µGxy)x,y∈V0,x 6=y is invariant in distribution (so that (µGh(x)h(y))x,y∈V0,x 6=y

is equal in distribution to (µGxy)x,y∈V0,x6=y for reflections h of the form described), then
it follows that Cµ = C∗. The resulting diffusion is known as the Brownian motion on
the unbounded nested fractal F , and from the above local limit theorem we obtain that
if we have a collection of random weights which are invariant in distribution, uniformly
bounded and cell independent, then the transition densities of the associated random
walk, when rescaled, converge in probability to the transition density of the Brownian
motion on the unbounded nested fractal. See Section 7 of [26] for further discussion of
invariant weights.

7.4 Local homogenisation for tree-like Vicsek sets

In this section, we describe a Pµ-a.s. version of the conclusion of the previous section in
a special case. Continuing to apply the notation for nested fractals introduced in Section
7.3, we now assume that #V0 = 4 and, moreover, if Γn is defined to be the graph with
vertex set {(i1, . . . , in)}N

i1,...,in=1 and edge set

En := {(i1, . . . , in), (j1, . . . , jn)} : ψi1...in(V0) ∩ ψj1...jn(V0) 6= ∅} ,

then Γn is a graph tree for every n ∈ N. This class of nested fractals will be referred
to as tree-like Vicsek sets, and the Vicsek set (see [20], Section 2, for example) is a
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particular example. The homogenisation problem for tree-like Vicsek sets was studied in
[20], where the tree-like nature of the graph G induced by the above assumptions was used
to deduce Pµ-a.s. homogenisation statements, rather than the probabilistic convergence
results obtained in [25] and [26].

In a slight alteration of our earlier notation, for an edge e = {x, y} ∈ E(G), we
now denote µGe := µGxy. The assumptions we will make on the weights are the following:
(µGe )e∈E(G) are independent and identically distributed, have finite second moments and
are bounded uniformly below, by which we mean that there exists a constant c1 > 0 such
that µGe ≥ c1 for every e ∈ E(G), Pµ-a.s. Under these assumptions, in place of Lemma
7.10, we have the following. Note that for tree-like Vicsek sets we have α = λ = L.

Lemma 7.13 ([20], Corollary 1.2). There exists a deterministic constant c ∈ (0,∞) such
that, for every x ∈ F we have, Pµ-a.s., if f ∈ C(D(R+, F ),R) is bounded, then

lim
n→∞

ẼG
g̃n(x)(f(L−nY G

c(NL)n·)) = Ex(f(X·)).

Furthermore, we can verify that the continuous time versions of Assumptions 1̂ and
2̂ hold for tree-like Vicsek sets, where we again consider Gn = L−nG. Note that, unlike
the proof of Proposition 7.11(i), we do not use any transition density estimates.

Lemma 7.14. Pµ-a.s., the graphs (Gn)n≥0 satisfy the continuous time versions of As-
sumptions 1̂ and 2̂ for α(n) = Ln, β(n) = c1N

n and γ(n) = c2(NL)n, for some deter-
ministic constants c1, c2 ∈ (0,∞).

Proof. The proof that Assumptions 1(a) and 1(b) hold remains unchanged from Propo-
sition 7.11. Applying the independence and finite second moments of the weights, it is
an elementary exercise to show that the proof of Lemma 7.7 can be repeated to deduce
Assumption 1(c) in this case. The continuous time version of the convergence at (19)
follows from Lemma 7.13. Thus Assumption 1̂ holds as claimed.

Since the weights are bounded uniformly below, there exists a finite constant c1 such
that RGn ≤ c1dGn for every n (see [7], Lemma 2.1); hence the continuous time version of
Assumption 5 holds with κ = 1. By the continuous time version of Proposition 5.3, the
continuous time version of Assumption 2̂ follows.

This lemma allows us to apply the continuous time version of Theorem 5.1 to deduce
the subsequent local limit theorem.

Theorem 7.15. Fix a compact interval I ⊂ (0,∞) and R > 0. Suppose G is a graph
associated with a tree-like Vicsek set equipped with random weights (µGe )e∈E(G) that are
independent and identically distributed, have finite second moments and are bounded uni-
formly below, then there exist deterministic constants c1, c2 ∈ (0,∞) such that, Pµ-a.s.,

lim
n→∞

sup
x,y∈BF (ρ,R)

sup
t∈I

∣∣∣c1N
np̃Gc2(NL)nt(g̃n(x), g̃n(y))− pt(x, y)

∣∣∣ = 0.
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7.5 Local homogenisation for Sierpinski carpets

To define generalised Sierpinski carpet graphs, we closely follow [6]. Let d ≥ 2, E0 = [0, 1]d

and L ∈ N, L ≥ 3 be fixed. For n ∈ Z, let Sn be the collection of closed cubes of side
L−n with vertices in L−nZd. For A ⊆ Rd, set

Sn(A) := {S : S ⊆ A, S ∈ Sn}.
For S ∈ Sn, let ψS be the orientation preserving affine map which maps E0 onto S.
Now suppose that (ψi)

N
i=1 is a sequence of distinct elements of (ψS)S∈S1 and set E1 =

∪N
i=1ψi(E0). We make the following assumptions on E1.

• (Symmetry) E1 is preserved by all the isometries of the unit cube E0.

• (Connectedness) The interior of E1 is connected, and contains a path connecting
the hyperplanes {x1 = 0} and {x1 = 1}.

• (Non-diagonality) Let B be a cube in E0 which is the union of 2d distinct elements
of S1. Then if the interior of E1 ∩B is non-empty, it is connected.

• (Borders included) E1 contains the line segment

{x : 0 ≤ x1 ≤ 1, x2 = · · · = xd = 0}.

Given the maps (ψi)
N
i=1, we can define a generalised Sierpinski carpet K to be the unique

non-empty compact set satisfying K = ∪N
i=1ψi(K). As in Section 7.3, we denote the

associated unbounded carpet F . With respect to the Euclidean metric, F has Hausdorff
dimension df = ln N/ ln L, and we will denote by ν the df -dimensional Hausdorff measure
on F .

To define the corresponding fractal graph, first set

P :=
∞⋃

n=1

Ln

N⋃
i1,...,in=1

ψi1...in(E0),

which is the pre-carpet (see [28]). Each cube in S0(P ) has a unique vertex closest to the
origin in Rd, let V (G) be the collection of such vertices; in [6], vertices were chosen to be
cube centres, our choice means that L−nV (G) ⊆ F for every n. Define E(G) to be the
collection of pairs {x, y} of elements of V (G) with |x − y| = 1. The graph of interest in
this section will then be G = (V (G), E(G)).

Let us now introduce a geodesic metric dF on F . Note that the following result was
essentially proved in [11] for the “standard” Sierpinski carpet in R2. As in Section 7.3,
for x ∈ F , we write g̃n(x) to represent the point in V (G) closest to Lnx.

Lemma 7.16. For x, y ∈ F , the quantity

dF (x, y) := lim
n→∞

L−ndG(g̃n(x), g̃n(y))

is well-defined. Moreover dF is a shortest-path metric on F satisfying dF (Lx,Lx) =
LdF (x, y) for every x, y ∈ F , and there exists a finite constant c such that

|x− y| ≤ dF (x, y) ≤ c|x− y|, ∀x, y ∈ F.

Finally, dF agrees with dG on V (G).
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Proof. The proof that dF is well-defined shortest-path metric is similar to [17], Theorem
3.5, and is omitted. The remaining claims are straightforward consequences of the self-
similarity and “borders included” property of generalised Sierpinski carpets.

As consequence of this result, if we take (E, dE) = (F, dF ), ρ = 0 and ν as above,
then the properties required on the metric spaces and measure in the introduction are
satisfied. We can also verify that Assumptions 1(a), 1(b) and 1(c) hold Pµ-a.s. when,
as in Section 7.3, we set Gn := L−nG and assume that (using the notation of Section
7.4) the weights (µGe )e∈E(G) are independent, identically-distributed and satisfy uniform
boundedness (as at (28)).

Proposition 7.17. Pµ-a.s., the graphs (Gn)n≥0 satisfy Assumptions 1(a), 1(b) and 1(c)
for α(n) = Ln and β(n) = c1N

n, for some deterministic constant c1 ∈ (0,∞).

Proof. Assumptions 1(a) and 1(b) readily follow from the above lemma. To prove As-
sumption 1(c), we start by demonstrating that NnνG(LnK̃) converges to a deterministic
constant c2 ∈ (0,∞), Pµ-a.s., where K̃ := {x ∈ K : xi 6= 1 for any i = 1, . . . , d}. Let en

equal the number of edges of G that have both end-points in LnK̃, and e′n represent the
number of edges that have exactly one end in LnK̃, then we have

en+1 = Nen + e1σ
n, e′n = dσn,

for every n ≥ 1, where σ is the number of cubes in S1(E0) that lie on a single face of E0.
In particular, σ < N , and so N−ne′n → 0 and N−nen → c3, for some constant c3 ∈ (0,∞).
Applying the same argument as in the proof of Lemma 7.7, it follows that NnνG(LnK̃)
converges as desired. Continuing to imitate the proof of Lemma 7.7, we can extend this
to the result that, Pµ-a.s.,

c4N
nνG(Ln·) → ν (37)

in the vague topology on (F, dF ). Finally, it is possible to check that ν(∂BF (x, r)) = 0
for any x ∈ F and r > 0, exactly as in Lemma 7.6. Hence Assumption 1(c) does indeed
hold.

We continue by considering the continuous time simple random walk Y G on G, which
satisfies the following properties.

Lemma 7.18. There exists a deterministic constant dw > 2 such that, Pµ-a.s., the tran-
sition density p̃G of Y G satisfies (30) and the associated exit time satisfies (31) for some
constants c1, c2, c3, c4 ∈ (0,∞). Furthermore, there Pµ-a.s. exist constants c5, c6 ∈ (0,∞)
such that

p̃Gt (x, y) ≥ c5t
−df /dw exp

(
−c6

(
dG(x, y)dw

t

)1/(dw−1)
)

, ∀x, y ∈ V (G), t ≥ dG(x, y).

(38)

Proof. In the unweighted case (µGxy = 1 for every {x, y} ∈ E(G)), the transition density
bounds of (30) and (38) are [6], Theorem 7.1. The exit time bound of (31) can be proved
in a similar way to [6], Theorem 5.5. The results for the random case follow from these
results using a rough isometry argument (for example, apply [18], Theorem 3.1, and [19],
Theorem 5.11).
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The continuous time version of the tightness condition of Assumption 2 is an easy
consequence of this result.

Proposition 7.19. Pµ-a.s., the graphs (Gn)n≥0 satisfy the continuous time version of
Assumption 2 for α(n), β(n) as in Proposition 7.17 and γ(n) = c2L

dwn, for some deter-
ministic constant c2 ∈ (0,∞).

Proof. The heat kernel bounds of (30) and (38) imply that the continuous time version
of the parabolic Harnack inequality with exponent dw holds for G (see [18], Theorem 3.1,
for the analogous discrete time result), and it follows that the continuous time version
of Assumption 4 holds with κ = dw. We can then apply the continuous time version of
Proposition 3.2 to deduce the proposition.

Unfortunately, for generalised Sierpinski carpets, a weak convergence result for Y G

has not yet been proved, even in the case of deterministic weights. However, the heat
kernel bounds for the simple random walk do imply that if P̃n

ρ is the law of (L−nY G
γ(n)t)t≥0

under P̃G
ρ , considered as a probability measure on D([0, 1], F ), then the sequence (P̃n

ρ)n≥0

is tight. Consequently, it holds that (P̃n
ρ)n≥0 admits a convergent subsequence, and we

will later show that for any convergent subsequence there is a corresponding local limit
theorem.

Lemma 7.20. Pµ-a.s., the sequence (P̃n
ρ)n≥0 is tight in D(R+, F ) and, moreover, if Pρ

is a limit point of (P̃n
ρ)n≥0, then Pρ(C(R+, F )) = 1.

Proof. Let t ≥ 0 and ε > 0, then (31) implies that, Pµ-a.s.,

lim
δ→0

lim sup
n→∞

δ−1P̃G
ρ

(
sup

s∈[t,t+δ]

∣∣∣L−nY G
γ(n)s − L−nY G

γ(n)t

∣∣∣ ≥ ε

)
= 0.

The lemma follows (cf. Theorem 7.3 and the corollary to Theorem 7.4 in [9]).

In view of this result and Propositions 7.17 and 7.19, to apply Theorem 1.1 to deduce
local limit theorems along convergent subsequences of (P̃n

ρ)n≥0, it suffices to show that
any limit point, Pρ say, admits a family of transition densities (qt(x))x∈F,t>0 that is jointly
continuous in (t, x). To prove that this is the case, we first extend Proposition 7.19. We
write p̃n

t (x, y) = p̃Gn

t (x, y) and q̃n
t (x) = p̃Gn

t (ρ, x).

Lemma 7.21. Pµ-a.s., for any compact interval I ⊂ (0,∞) and r > 0,

lim
δ→0

lim sup
n→∞

sup
x,y∈BGn (ρ,α(n)r):
dGn(x,y)≤α(n)δ

sup
s,t∈I:
|s−t|≤δ

β(n)
∣∣q̃n

γ(n)s(x)− q̃n
γ(n)t(y)

∣∣ = 0.

Proof. Given Proposition 7.19, it is enough to demonstrate that Pµ-a.s. for any compact
interval I ⊂ (0,∞) and r > 0,

lim
δ→0

lim sup
n→∞

sup
x∈BGn(ρ,α(n)r)

sup
s,t∈I:
|s−t|≤δ

β(n)
∣∣q̃n

γ(n)s(x)− q̃n
γ(n)t(x)

∣∣ = 0. (39)
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The following argument holds Pµ-a.s. We can write, for s < t,

β(n)
∣∣q̃n

γ(n)s(x)− q̃n
γ(n)t(x)

∣∣ ≤ β(n)

∫

F

∣∣q̃n
γ(n)s(x)− q̃n

γ(n)s(y)
∣∣ p̃n

γ(n)(t−s)(y, x)νn(dy),

where νn := νGn
. Now, for η > 0,

lim
δ→0

lim sup
n→∞

sup
x∈BGn (ρ,α(n)r)

sup
s,t∈I:
|s−t|≤δ

β(n)

∫

BF (x,η)

∣∣q̃n
γ(n)s(x)− q̃n

γ(n)s(y)
∣∣ p̃n

γ(n)(t−s)(y, x)νn(dy),

≤ lim sup
n→∞

sup
x∈BGn (ρ,α(n)r)

sup
y∈BF (x,η)

sup
s∈I

β(n)
∣∣q̃n

γ(n)s(x)− q̃n
γ(n)s(y)

∣∣ .

For any given ε > 0, by Proposition 7.19, we can make this upper bound smaller than ε
by choosing η small enough. Fixing such an η, we also have

lim
δ→0

lim sup
n→∞

sup
x∈BGn(ρ,α(n)r)

sup
s,t∈I:
|s−t|≤δ

β(n)

∫

F\BF (x,η)

∣∣q̃n
γ(n)s(x)− q̃n

γ(n)s(y)
∣∣ p̃n

γ(n)(t−s)(y, x)νn(dy),

≤ lim
δ→0

lim sup
n→∞

(
sup

x∈V (G)

sup
s∈I

2β(n)q̃n
γ(n)s(x)

)(
sup

x∈V (G)

P̃G
x (τ(x, α(n)η) ≤ γ(n)δ)

)

= 0,

where we apply the bounds of Lemma 7.18 to deduce the final equality. The limit result
at (39) follows.

Lemma 7.22. Pµ-a.s., if Pρ is a limit point of the sequence (P̃n
ρ)n≥0, then Pρ admits a

family of transition densities (qt(x))x∈F,t>0 that is jointly continuous in (t, x).

Proof. In this proof, which holds Pµ-a.s., we fix a subsequence (ni)i≥0 such that (P̃ni
ρ )i≥0

converges, and let Pρ be the corresponding limit point. Applying Lemmas 7.16 and 7.21,
it is elementary to define, for every n ≥ 0, a jointly continuous function (fn(t, x))x∈F,t>0,
such that fn(t, x) = β(n)q̃n

γ(n)t(x) for every x ∈ V (Gn), t > 0, in such a way that the

sequence (fn)n≥0 is tight in C(I × BF (ρ, r),R) for any compact interval I ⊂ (0,∞) and
r > 0.

Fix a compact interval I ⊂ (0,∞) and choose r large enough so that K = E0 ∩ F is
contained inside BF (ρ, r). By the conclusion of the previous paragraph, it is possible to
choose a subsequence (nij)j≥0 and jointly continuous f I,r = (f I,r(t, x))x∈BF (ρ,r),t∈I such

that f I,r is the uniform limit of (fnij )j≥0 on I ×BF (ρ, r). Now, suppose S ∈ Sn(E0), for
some n ≥ 0, and write A = S ∩ F . If we define Aε := {x ∈ F : dF (x,A) < ε}, then Aε is
an open subset of F , and consequently (see [9], Theorem 2.1, for example), for t > 0,

lim inf
j→∞

P̃
nij
ρ (Xt ∈ Aε) ≥ Pρ(Xt ∈ Aε).

Moreover, by the definitions of (fn)n≥0 and f I,r, if t ∈ I,

lim inf
j→∞

P̃
nij
ρ (Xt ∈ Aε) ≤ lim sup

j→∞

∫

Aε

fnij (t, x)β(nij)
−1νnij (dx) ≤

∫

Aε

f I,r(t, x)ν(dx),
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where Aε is the closure of Aε and we also apply the measure convergence of (37). Letting
ε → 0, we obtain

∫
A

f I,r(t, x)ν(dx) ≥ Pρ(Xt ∈ A). Similarly, by first considering A−ε :=
{x ∈ A : dF (x, ∂A) ≥ ε}, we are able to prove that the opposite inequality is also true.
An elementary σ-algebra argument ([21], Lemma 1.17, for example) allows this result to
be extended to show that

∫

A

f I,r(t, x)ν(dx) = Pρ(Xt ∈ A), (40)

for every measurable A ⊆ K, t ∈ I. Noting that ν(A) > 0 for every open set A, it follows
that the choice of subsequence is unimportant and f I,r is actually the uniform limit of
(fni)i≥0 in the region I ×K. Repeating the same argument on an increasing sequence of
space-time regions, we can extend the definition of f I,r to deduce the existence of a jointly
continuous function f = f(t, x)x∈F,t>0 that is the point-wise limit of (fni)i≥0 everywhere
in (0,∞)×F , with the limit being uniform on compacts, and, moreover, (40) holds with
f I,r replaced by f for any measurable A ⊆ F and t > 0.

We now can state the main conclusion of this section, which is an application of
Theorem 1.1. Note that the heat kernel bounds of (30) and (38) imply that the densities
defined in the previous lemma satisfy qt(x) 6= 0 for every x ∈ F and t > 0, so the limit is
non-trivial.

Theorem 7.23. For Pµ-a.e. realisation of a Sierpinski carpet graph G with indepen-
dent and identically-distributed edge-weights that satisfy uniform boundedness: if we fix a
compact interval I ⊂ (0,∞) and r > 0, suppose that (P̃ni

ρ )i≥0 converges, and let Pρ and
(qt(x))x∈F,t>0 represent the corresponding limit point and family of transition densities,
then

lim
i→∞

sup
x,y∈BF (ρ,R)

sup
t∈I

∣∣∣c1N
ni q̃G

c2Ldwni t
(g̃ni

(x))− qt(x)
∣∣∣ = 0.

Finally, note that if (a subsequence of) (P̃n
ρ)n≥0 was shown to converge to the Brow-

nian motion on the Sierpinski carpet, as constructed in [4], then the transition density
estimates of Lemma 7.18 and [5], Theorem 1.1, would enable us to apply Theorem 1.2 to
extend the above result to unbounded regions of time and space.
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carpets, Probab. Theory Related Fields 86 (1990), no. 4, 469–490.

[29] C. Sabot, Existence and uniqueness of diffusions on finitely ramified self-similar
fractals, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 5, 605–673.

[30] A. Telcs, The Einstein relation for random walks on graphs, J. Stat. Phys. 122
(2006), no. 4, 617–645.

38


