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Abstract. We develop a relatively simple dynamic structural model for the behaviour of
a mortgage pool. By considering the wealth of individual mortgagors in the pool we model
the process of default and prepayment and, by taking a limit as the pool size goes to infinity,
derive a stochastic partial differential equation (SPDE) to describe the evolution of the pool.
We show the existence and uniqueness of solutions to the SPDE and give a probabilistic
representation of the solution. Mortgage-backed securities (MBS) are functions of the solution
to this SPDE and we show how our model is able to capture in a flexible way the prices of
credit risky tranches of MBS under different market conditions.

1. Introduction

The market for mortgage-backed securities (MBS) was one of the fastest growing and most
important markets in the US financial industry from its launch in the early 1980s until the
financial crisis of 2008. The securitization of mortgages enabled institutions exposed to mort-
gage risk to convert these risky, non-rated individual loans into securities that became liquid
and most of which had (supposedly) low credit risk. This process accelerated after the dot
com bubble of 2000 when the US Federal Reserve lowered interest rates on treasury bills and
investment bankers found better investment opportunities in the housing market, which was
booming. Through buying thousands of mortgage loans, combining them into an MBS and
selling the tranches of the MBS to other investors, many investment banks obtained much
better returns than treasury bills would have provided. The complexities of these products,
the use of overly simplistic models and the rapid development of the market in MBS played
a major role in the subprime mortgage crisis in 2008. Subsequently the market for agency
MBS, those with a government backed guarantee, has rebounded with the market returning
to pre-crisis levels, while for MBS from private financial institutions, the market remains very
small. In the light of the crisis and the recent regrowth of this market, there remains a need
to improve the mathematical models for mortgage-backed securities.

The fundamental underlying structure in an MBS is a pool of mortgages. The particular
type of MBS is determined by how the interest and principal repayments of the loans in this
pool are repackaged for sale to investors. The ‘vanilla’ version is the pass-through MBS, in
which the interest and principal payments from the pool are passed on to investors with the
issuer taking a service charge. A more complicated version is the Collateralized Mortgage
Obligation (CMO) in which the pool is tranched, that is the income streams are packaged
to enable investors with different risk preferences to invest in the MBS. In the pass-through
case the risk of default by a mortgagor in the pool is passed on to all investors, whereas in
the CMO case this risk is borne differently by the different tranches, with the lower tranches
taking the highest risk. It may also be the case that any early principal repayments are given
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preferentially to the senior, low risk, tranches. Our focus in this paper will be on building a
model for a mortgage pool and we will illustrate its performance by pricing CMOs.

When considering an MBS pool, a portfolio of mortgages, it is essential to model not only
the defaults of the mortgagors, which leads to a reduction in the income stream from the
portfolio, but also their prepayment behaviour. A prepayment occurs when the mortgage is
repaid in full before its termination. This event may happen for a number of reasons but
the consequence is that, although the principal is repaid, the corresponding income stream
making up the MBS is removed. There is no accepted standard way to price an MBS due to
the combination of uncertainties in the cash flows due to defaults and prepayments. As in
other credit settings there are reduced form and structural approaches and our aim will be to
develop a flexible dynamic structural approach to the modelling for an MBS.

For an individual mortgage Kau et al. in [30] and [29] discussed the prepayment and default
as the underlying source of uncertainty for the first time. They described the mortgage rate
as a solution to a partial differential equation using option pricing ideas with the underlying
variables being the interest rate and the house price. Other papers that develop structural
models are [28, 13]. The second approach to modelling residential mortgages is intensity or
hazard rate based. Papers following this approach are [52], [29], [20], [21], [45], [22] .

In the early modelling of mortgage-backed securities, researchers considered either of the two
risks involved with these securities separately. They either modelled the right of prepayment by
ruling out the possibility of default or considered default only and overlooked the prepayment
right of the borrower. In the setting of agency pass through MBS the government backing
enables default risk to be ignored and Dunn and McConnell [14] were the first to use option
pricing techniques to model these securities. They considered an agency pass through MBS as
equivalent to a single mortgage consisting of a portfolio of a non-callable mortgage loan and
an American style option.

In their models, Dunn and McConnell (and Kau et al), assume that the borrower’s pre-
payment behaviour is optimal and borrowers refinance whenever it is optimal which may not
be the case in reality, especially when dealing with residential mortgages. An alternative
assumption, discussed in [26], [44], [27], and [43], is that the borrowers make a decision by
looking at the economy and prepay when the mortgage and interest rates reach a certain level
or threshold. We will follow this alternative assumption in our model.

The first model for MBS using hazard rates is due to Schwartz and Torous [49]. This
approach models prepayment and default as a random time that is governed by some hazard
rate process estimated from the actual prepayment and default data in large mortgage pools.
Another model in this category is that of [48].

Our approach will be a dynamic structural one. We will assume that individuals in the pool
have a wealth process which determines if they will default or make an early prepayment. We
will assume that all individuals in the pool are subject to macroeconomic factors as well as
their own idiosyncratic risks. The whole pool can then be modelled as the empirical measure
of the wealth of individuals. By taking a large portfolio limit in a similar way to [3] we
obtain a stochastic partial differential equation (SPDE) which describes the evolution of the
limiting empirical measure. The loss of income from the pool is captured by the behaviour
of the SPDE at the boundary of the domain as well as through a killing term which captures
unexpected termination of the mortgage due to life events as well as the refinancing behaviour
of individuals in the pool. Although this remains a relatively simple model our aim in this
paper is to establish the mathematical framework, showing existence and uniqueness of the
model and extending the results and approach of [3]. We will illustrate our model by giving
examples to show that even with a small number of parameters it has the flexibility to capture
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different types of mortgage pools. A recent alternative dynamic large portfolio model for loans
can be found in [50].

An outline of the paper is as follows. We will begin with a justification of the model that
we set up and then state our main mathematical results in Theorems 2.3 and 2.4. In Sections
3 to 8 we will provide the necessary results and methods in order to prove these theorems.
In Section 9 we will discuss the implementation of the model and illustrate the performance
when pricing CMO tranches.

2. The Model

To understand the evolution of an MBS pool, we must consider the risks that affect the
individual mortgages, as well as the economic factors that affect the whole pool of mortgages.
Any model should capture the default and prepayment risks that can affect MBS cash flows
and comprise a dynamic model of mortgage payers that is flexible enough to capture both
regular and subprime mortgage pools.

We will summarize the significant factors that contribute to the risk of default and prepay-
ment by an individual’s ‘wealth’ (or financial health) and by adding appropriate conditions
for default and prepayment. We therefore consider a wealth process for each individual, which
we take to be a Brownian motion with drift (as in models for distance-to-default in credit
settings [3]). When combining the individual mortgages into a pool, there are macroeconomic
factors that will affect an individual’s wealth, such as an overall decrease in the prices of
houses or baseline interest rates. Thus we will have two Brownian motions driving the indi-
vidual’s wealth process, one for macroscopic factors, common to the whole pool, as well as an
idiosyncratic one for the factors that affect a particular individual.

We now examine the key factors that affect a mortgage pool in order to build our model.
At the time of initialization of an individual mortgage contract important quantities are an
individual’s wealth or credit score, the size of the loan or Loan-to-Value ratio (LTV ratio),
the individual’s income stream, and current interest rates. This will be incorporated into the
initial conditions for the wealth process.

Once a contract is initialized, the events that can cause early termination are defaults and
prepayments. During the life of a mortgage contract, default occurs when there is a shortfall in
the borrower’s income and they are unable to make the scheduled monthly payments for more
than three months. Prepayment, on the other hand, occurs for reasons such as accumulating
enough money to pay all the remaining mortgage principal or because of refinancing due to
changes in interest rates or due to moving house.

The individual’s wealth, the LTV ratio and the income stream at initialization ensure that
the individual has the capability to repay his loan in monthly instalments provided his financial
situation remains the same or improves over time. However, if the individual has taken more
than 95% mortgage on their house, then they are more likely to have difficulties in repaying
the loan over the life of the contract. Also if there is a shortfall in the individual’s income
stream due to unemployment or bankruptcy, for example, then a default may occur. Other
events that typically terminate the contract on default are reduced working hours, reduced
pay, illness, separation or the death of a partner. Empirical studies show that all these events
play a role in default on mortgage contracts [4]. We will summarize all these effects in the
idiosyncratic noise driving the individual’s wealth process and regard default as occurring
when this wealth process hits 0.

Empirical and theoretical studies such as [23], [8] suggest that the interest rates, LTV,
borrower credit worthiness, loan size and other variables have an impact on the prepayment
behaviour. An important example is the case where the mortgage interest rates decrease
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after the initialization of the mortgage giving mortgagors the incentive to prepay their current
mortgages in order to refinance. Prepayments can also occur when the individual has excess
money and is able to prepay all the remaining loan or when they sell the house due to unforeseen
life changing events such as separation, death or unemployment. Thus we will capture these
effects by an individual’s wealth reaching an upper boundary, or through a random hazard
process, that can depend on interest rates, in which the individual is removed from the pool.

We are now in a position to describe the model formally.

The mathematical model. We begin by considering a mortgage pool of N mortgages. We
assume that all mortgages are initiated at the same time and have the same maturity, which
we take to be 30 years. The individual mortgage holder then makes payments until they pay
off the mortgage at maturity or drop out of the pool. For our model the mortgage holder may
drop out of this pool under any of the following three conditions:
(i) The mortgage holder defaults on their repayments (the default time of the ith mortgage

is denoted τdef
i ),

(ii) The mortgage holder fully repays their mortgage (the repayment time of the ith mortgage
is denoted τpay

i ),
(iii) The mortgage holder refinances their mortgage or is forced to sell their house due to

changes in circumstances (the refinancing or house sale time of the ith mortgage is denoted
τ ref
i ),

The time the ith mortgage exits the pool is then defined to be

τi := τdef
i ∧ τpay

i ∧ τ ref
i .

Note that for simplicity we assume that default occurs at the first time that a mortgage
payment cannot be made and that we do not consider the possibility of partial prepayments
where only a part of the mortgage principal is repaid at a given time.

To model default and repayment, assign the ith mortgage an exogenous risk process, Xi,
which will be referred to as the wealth process. This process is modelled as

(2.1) Xi
t := Xi

0 + µt+ σρWM
t + σ

√
1− ρ2W i

t

where:
• W 1,W 2,W 3, . . . are independent Brownian motions representing idiosyncratic risk
factors,

• WM is another independent Brownian motion capturing exposure to market effects,
• The correlation, ρ, is a constant taking values in [0, 1),
• The drift, µ ∈ R, and volatility, σ > 0, are constants,
• X1

0 , X
2
0 , X

3
0 , . . . are i.i.d. (0, 1)-valued random variables with density V0 : (0, 1) →

(0,∞), which is assumed to be bounded and compactly supported in (0, 1). These
random variables are determined by factors such as the LTV ratio, creditworthiness
and the prevailing interest rates.

With these processes, the default time of the ith entity is modelled as the first time Xi hits
level zero,

τdef
i := inf

{
t > 0 : Xi

t ≤ 0
}
,

and the repayment time as the first time Xi hits level one,

τpay
i := inf

{
t > 0 : Xi

t ≥ 1
}
.

(See Figure 2.1.)



A STOCHASTIC PDE FOR PRICING MBS 5

Xi
t

0 t

1

Tdefault

repayment

re�nancing

1

Figure 2.1. Four possible evolutions of Xi and the corresponding time τi.
For the red curve τi = τdef

i , for the blue curve τi = τ ref
i , for the green curve

τi = τpay
i and for the black curve τi > T .

To model the refinancing time, τ ref
i , we specify that

{
τ ref
i

}
i≥1

are conditionally i.i.d. with
common law

Λt := P(t < τ ref
1 |FM )

given some market factors, and that τ ref
i and Xi are also conditionally independent. Here,{

FMt
}
t≥0

denotes the filtration generated by the market factors together with the market
Brownian motion, hence Λ is a FM -random process, which will be referred to as the refinancing
process. It will be further assumed that Λ is continuous, Λ0 = 1 and that there exists a constant
δ > 0 such that

(2.2) E
[(

Λt − Λs
)2]

= O
(∣∣t− s∣∣1+δ)

, uniformly in 0 ≤ s < t ≤ T,

as |t− s| → 0. (This assumption is helpful in the proof of Corollary 3.2, which is then used
to establish Theorem 2.2 in Section 4.) Our approach leaves the user relatively free to specify
a dynamic model for Λ.

Example 2.1 (A possible model for refinancing). A natural choice is to model refinancing
times through an FM -random hazard rate process λ:

Λ := exp

{
−
ˆ t

0
λsds

}
We can then assign dynamics to λ. One choice is to assume that there is a fixed hazard rate
λ̄ (though it will typically be an FM -measurable random variable) to capture the sale of the
house due to job loss or marital breakdown. There is also an underlying market interest rate,
r, evolving according to a FM -measurable CIR process,

(2.3) drt = α(β − rt)dt+ σI
√
rtdW

I
t ,

where α, β and σI are constants and W I is a standard Brownian motion that is typically
correlated with WM and that mortgage holders prefer to refinance to a lower rate when the
current rate has dropped below a threshold K, depending on the initial rate, which could be
captured by setting

λt = λ̄+ constant× (K − rt)+ .
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A CMO is a mortgage-backed security that is an option on the loss from the pool. With
our model established, we are interested in the evolution of the loss process:

LNt :=
1

N

N∑
i=1

1τi≤t

To study the evolution of the spatial distribution of the wealth processes,
{
Xi
}
i≥1

, introduce
the empirical process:

νNt :=
1

N

N∑
i=1

1t<τiδXi
t

where δx is the usual Dirac delta mass of the point x ∈ [0, 1]. The empirical process takes
random values in the space of sub-probability measures on [0, 1]. For time t > 0 and subset
S ⊆ (0, 1), νNt (S) represents the proportion of mortgages that have not left the pool by time
t and have wealth processes taking values in S. Therefore the proportion of mortgages lost
from the pool at time t is

1− νNt (0,∞) = LNt ,

which connects νN and LN .

The limiting system. Observing that
{
1t<τiδXi

t

}
i≥1

is a family of conditionally i.i.d. random
variables (given FM ), Birkoff’s Ergodic Theorem [15] implies that

νNt (S)→ P
(
X1
t ∈ S; t < τ1

∣∣FM ) , with probability 1,

as N →∞. This leads us to define the limit empirical process to be

(2.4) νt (S) := P
(
X1
t ∈ S; t < τ1

∣∣FM )
and the limiting loss process

(2.5) Lt := P
(
τ1 ≤ t

∣∣FM ) = 1− νt (0,∞) .

By construction, the marginals of νN and LN converge to those of ν and L, however the
following result establishes weak convergence at the process level. (See Section 4 for a full
description of the relevant modes of convergence.)

Theorem 2.2 (Law of large numbers). Let M denote the space of finite-measures on [0, 1]
equipped with the toplogy of weak convergence. Then

(
νN
)
N≥1

converges in law to ν as a
sequence of càdlàg processes taking values in M, with respect to the Skorokhod J1 topology.
Hence the sequence of loss processes,

(
LN
)
N≥1

, converges in law to L on the space of càdlàg
real-valued paths, with respect to the Skorokhod J1 topology.

This is a typical result for interacting particle systems. There are numerous examples of
applications of similar models: the modelling of large collections of neurons and threshold
hitting times for membrane potential levels in mathematical neuroscience [19, 11, 41, 12],
the modelling of a large number of non-cooperative agents in mean-field games [24, 37, 5, 6],
filtering theory [1, 7], mathematical genetics [10] and portfolio credit modelling [9, 51], to give
a non-exhaustive list. Here, the interaction term is simple, so Theorem 2.2 is established in
Section 4 through standard estimates together with some specific probabilistic estimates (see
Section 3).

This result justifies the large population approximation

EΨ(LN ) ≈ EΨ(L).
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Thus when pricing an MBS, that is a tranche from the pool, we can use the limiting loss
process L as an approximation to the loss from the pool.

The limit SPDE. Using the notation

ζ (φ) :=

ˆ
(0,1)

φ (x) ζ (dx)

for a general measure ζ and measurable function φ on the unit interval, the following theorem
states that the limit empirical process is characterised as the unique solution to a SPDE on the
unit interval, which we call the limit SPDE. To avoid potential ambiguity caused by assigning
mass to the boundary, solutions will be considered as processes taking values in the space

(2.6) M0 := {ζ ∈M : ζ (S) = ζ (S ∩ (0, 1)) , for all measurable S} .
To encode the Dirichlet boundary conditions, the following test function space is used

Ctest =
{
φ ∈ C2([0, 1]) : φ (0) = 0 = φ (1)

}
.

(We will see in Section 5 why this is the natural space of test functions.)

Theorem 2.3 (The limit SPDE). The limit empirical process, ν, satisfies the limit SPDE:
with probability 1
(2.7)

νt (φ) = ν0 (φ) +µ

ˆ t

0
νs (∂xφ) ds+

σ2

2

ˆ t

0
νs (∂xxφ) ds+σρ

ˆ t

0
νs (∂xφ) dWM

s +

ˆ t

0
νs (φ) Λ−1

s dΛs

for every φ ∈ Ctest and t ∈ [0, T ]. Furthermore, ν is the unique such solution: if ν ′ ∈ M0

satisfies (2.7) and ν ′0 = ν0,

P(ν ′t = νt for every t ∈ [0, T ]) = 1.

The existing literature on stochastic PDEs is extensive. Most relevant to our setting are
[32, 34, 35]. The approach we take is to convolve a candidate solution to produce a smooth
approximate solution, which can then be manipulated classically. This technique is outlined in
Section 6, and applying the method to the limit SPDE leads naturally to the energy estimates
in Section 7. Uniqueness then follows as an immediate corollary in Section 8, however the
following result is also a by-product. It is possible to push the method further than we do
here and to obtain information about higher-order regularity of ν [38]. We will write H1(0, 1)
for the classical Sobolev space of functions in L2(0, 1) with their derivatives also in L2(0, 1).

Theorem 2.4 (Regularity). The limit empirical process, ν, has a density process, V , such
that, with probability 1:
(i) For every t ∈ [0, T ], Vt ∈ L2(0, 1),
(ii) For almost all t ∈ [0, T ], Vt ∈ H1(0, 1),
(iii) For every t ∈ [0, T ] and bounded and measurable φ, νt (φ) =

´ 1
0 Vt (x)φ (x) dx,

(iv) There exists a constant c > 0 depending only on the model parameters such that

E sup
t∈[0,T ]

‖Vt‖2L2 + E

ˆ T

0
‖∂xVt‖2L2 dt ≤ c ‖V0‖2L2 .

Writing (2.7) in terms of the density process V and using integration by parts we can write
the limit SPDE for V as

dVt = (−µ∂xVt +
σ2

2
∂xxVt)dt+ Λ−1VtdΛt − σρ∂xVtdWM

t ,
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with V0 a given initial density. A concrete version of this process is given in (9.2) and will be
used for the numerical work in Section 9.

3. Boundary estimate

The main probabilistic argument in this paper provides control on the decay of ν near the
boundaries at zero and one:

Proposition 3.1 (Boundary estimate). There exists a constant β > 0 such that

E
[
νt (0, ε)2 + νt (1− ε, 1)2] = O

(
ε3+β

)
, uniformly in t ∈ [0, T ] ,

as ε→ 0.

The following proof is a slight extension of the argument in [3, Lemma 3.5], which is appli-
cable to the case of a single absorbing boundary on the half-line. The key to this argument
is the fact that the second moment of the mass near the boundary can be written in terms of
the probability that a two-dimensional correlated Brownian motion is close to the apex of the
positive quadrant, without having exited that domain. Exact formulae are then available for
the law of this process [25, 42]. Similar applications also appear in CVA adjustments [39, 40].

Proof of Proposition 3.1. Begin by defining two new processes, ν0 and ν1

ν0
t (S) := P(X1

t ∈ S; t < τdef
0 |FM ), ν1

t (S) := P(X1
t ∈ S; t < τpay

1 |FM ),

where S ⊆ R and t ∈ [0, 1]. From the definition of ν in (2.4), it is clear that ν ≤ ν0 and
ν ≤ ν1. Now, ν0 is of the form of the corresponding process from [3, Lemma 3.5], hence it
follows that there exists a constant β > 0 such that

(3.1) E
[
νt (0, ε)2] = O(ε3+β), uniformly in t > 0 and ε > 0.

The process ν1 is not of the required form to immediately apply [3, Lemma 3.5], so define
the reflected process

ν1,r
t (S) := ν1

t (1− S), where 1− S := {1− x : x ∈ S} .

Then ν1,r
t (0, ε) = ν1

t (1− ε, 1) and

ν1,r
t (S) = P(X1,r

t ∈ S; t < τ1,r|FM ),

where X1,r = 1−X1 and τ1,r = τpay
1 , so ν1,r is the conditional law of a killed linear Brownian

motion, and therefore is of the form required to apply [3, Lemma 3.5] and so

(3.2) E
[
νt (1− ε, 1)2] = O(ε3+β), uniformly in t > 0 and ε > 0.

By applying (3.1) and (3.2) it follows that for ε < 1

E
[
νt (0, ε)2 + νt (1− ε, 1)2] = O(ε3+β),

which completes the proof. �

A useful corollary of this result, which is used in the next section, is that the boundary
estimate controls the probability of a pair of wealth processes hitting zero or one in a small
time interval:

Corollary 3.2 (Small time killing estimate). There exists a constant η > 0 such that

P
(
s < τ1, τ2 ≤ t

)
= O

(
|t− s|1+η), uniformly in 0 ≤ s < t ≤ T,

as |t− s| → 0.
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Proof. Conditioning on the values of X1 and X2 and the filtration FM gives

P
(
s < τ1, τ2 ≤ t

)
= E

ˆ 1

0

ˆ 1

0
P
(
s < τ1, τ2 ≤ t

∣∣FM, X1
t =x1, X

2
t =x2

)
νs
(
dx1
)
νs
(
dx2
)
.

For a free parameter ε > 0, this integral can be bounded above by considering the range of
integration over the regions (0, ε), (1− ε, 1) and their complement, which gives

P
(
s < τ1, τ2 ≤ t

)
≤ E

[
νs
(
0, ε
)2]

+ E
[
νs
(
1− ε, 1

)2]
+ P

(
sup
u∈[s,t]

∣∣X1
u −X1

s

∣∣ ≥ ε)
+ P

(
s < τ ref

1 , τ ref
2 ≤ t

)
,

where the third term is implied by the fact if X1
s ∈ (ε, 1− ε), then X1 must be displaced by

at least ε in order to reach the boundary. Using Proposition 3.1, the definition in (2.1), the
conditional independence of τ ref

i and the assumption in (2.2)

P
(
s < τ1, τ2 ≤ t

)
≤ cε3+β + P

(
|µ| |t− s|+ σ sup

u∈[0,t−s]
|Bu| ≥ ε

)
+ E

[(
Λt − Λs

)2]
≤ cε3+β + 2Φ

(
−σ−1ε|t− s|−1/2+ σ−1|µ||t− s|1/2

)
+O

(∣∣t− s∣∣1+δ)
,

provided ε > |µ||t− s|, where Φ is the c.d.f. for the standard normal distribution. Setting
ε = |t− s|γ with γ < 1/2 and using the exponential decay of Φ at −∞ gives

P
(
s < τ1, τ2 ≤ t

)
= O

(
|t− s|(3+β)γ + |t− s|1+δ), as |t− s| → 0.

Taking any η satisfying
1

3 + β
< η <

1

2
completes the proof. �

4. Convergence of the system; Proof of Theorem 2.2

This section addresses the convergence of the sequence
(
νN
)
N≥1

to the limit empirical
process, ν. The finite empirical processes, νN , will be considered as measure-valued càdlàg
processes. The space of finite-measures on [0, 1] will be denoted M and the space of càdlàg
functions from [0, T ] toM denoted DM.

Here,M is equipped with the topology of weak convergence, which is metrised by

distBL (ζ1, ζ2) := sup
φ∈BL

|ζ1 (φ)− ζ2 (φ)| ,

[16, Problem 3.11.2], where BL denotes the space

BL := {φ : [0, 1]→ R s.t. |φ (x)| ≤ 1 and |φ (x)− φ (y)| ≤ |x− y| for all x, y ∈ [0, 1]}.
The space DM will be equipped with the Skorokhod J1 topology, and the reader can find a
full description in [16, Chapter 3]. A useful characterisation of convergence in this topology is
given by [16, Theorem 3.8.8], and so for our problem it suffices to check:

Lemma 4.1. Both the following hold:
(i) For all k ≥ 1 and 0 ≤ t1 < t2 < · · · < tk the law of the marginal(

νNt1 , ν
N
t2 , . . . , ν

N
tk

)
∈Mk

converges to the law of (
νt1 , νt2 , . . . , νtk

)
∈Mk

as N →∞,
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(ii) With the constant η > 0 from Corollary 3.2

E
[∥∥νNt+h − νNt ∥∥4

BL

∥∥νNt − νNt−h∥∥4

BL

]
= O

(
h1+η

)
, uniformly in N and t,

as h→ 0.

Before proving this result, the following lemma is helpful.

Lemma 4.2 (Moment calculation). For N ≥ 1 and 0 ≤ s < t ≤ T define

ANs,t :=
1

N

N∑
i=1

∣∣Xi
t∧τ i −X

i
s∧τ i

∣∣.
Then as |t− s| → 0

E
[∣∣ANs,t∣∣4] = O

(
|t− s|2

)
, uniformly in s, t and N.

Proof. By Hölder’s inequality and the fact that the wealth processes are identically distributed

E
[∣∣ANs,t∣∣4] ≤ E

1

N

N∑
i=1

∣∣Xi
t∧τ i −X

i
s∧τ i

∣∣4 ≤ E
[∣∣X1

t∧τ1 −X
1
s∧τ1

∣∣4].
The result then follows immediately from the definition in (2.1) by applying Doob’s maximal
inequality. �

Proof of Lemma 4.1. (i) The Arzela–Ascoli Theorem [2, Theorem 7.2] gives that BL is a com-
pact subset of C ([0, 1] , ‖·‖∞). It therefore follows that the collection of spatial projections{

πφ : DM → DR

}
φ∈BL

, πφ (ζ) := (ζt (φ))t∈[0,T ]

strongly separates points in M, and hence is convergence-determining [16, Theorem 3.4.5].
Hence it suffices to show that(

νNt1 (φ1) , νNt2 (φ2) , . . . , νNtk (φk)
) d→

(
νt1 (φ1) , νt2 (φ2) , . . . , νtk (φk)

)
,

as N →∞, and this follows from the conditional independence of the wealth processes, as in
(2.4).

(ii) For any φ ∈ BL and t, t+ h ∈ [0, T ]

∣∣νNt+h(φ)− νNt (φ)∣∣ ≤ 1

N

N∑
i=1

∣∣φ(Xi
t+h

)
1t+h<τ i − φ

(
Xi
t

)
1t<τ i

∣∣
≤ 1

N

N∑
i=1

∣∣φ(Xi
(t+h)∧τ i

)
− φ

(
Xi
t∧τ i
)∣∣+

1

N

N∑
i=1

1t≤τ i<t+h

≤ 1

N

N∑
i=1

∣∣Xi
(t+h)∧τ i −X

i
t∧τ i
∣∣+
∣∣LNt+h − LNt ∣∣,

where the second line follows from the triangle inequality and the equation

φ
(
Xi
t

)
1t<τi = φ

(
Xi
t∧τi
)
− φ (0)1τi≤t.

This implies ∥∥νNt+h − νNt ∥∥BL
≤ ANt,t+h +BN

t,t+h, where BN
t,t+h :=

∣∣LNt+h − LNt ∣∣,
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with the notation AN from Lemma 4.1. Therefore, using the simple inequality (a+ b)4 ≤
8
(
a4 + b4

)
and the fact that BN is bounded by 1 gives

E
[∥∥νNt+h − νNt ∥∥4

BL

∥∥νNt − νNt−h∥∥4

BL

]
≤ E

[(
ANt,t+h +BN

t,t+h

)4(
ANt−h,t +BN

t−h,t
)4]

≤ 64E
[((

ANt,t+h
)4

+
(
BN
t,t+h

)4)((
ANt−h,t

)4
+
(
BN
t−h,t

)4)]
≤ 64E

[(
ANt,t+h

)4(
ANt−h,t

)4]
+ 64E

[(
ANt,t+h

)4]
+ 64E

[(
ANt−h,t

)4]
+ 64E

[(
BN
t−h,t

)2(
BN
t−h,t

)2]
,

and Cauchy–Schwarz and Lemma 4.1 reduces this to

(4.1) E
[∥∥νNt+h − νNt ∥∥4

BL

∥∥νNt − νNt−h∥∥4

BL

]
≤ 64E

[(
BN
t−h,t

)2(
BN
t−h,t

)2]
+O

(
h2
)
.

The first term on the right-hand side of (4.1) can be expanded as

E
[(
BN
t−h,t

)2(
BN
t−h,t

)2]
=

1

N4

∑
1≤i,j,k,l≤N

E [XiXjYkYl] ,

with the random variables

Xi = 1t<τi≤t+h and Yi = 1t−h<τi≤t.

Noticing thatXiXjYkYl = 0 whenever i = k, l or j = k, l, it is always the case thatXiXjYkYl ≤
XiYk, therefore

E
[(
BN
t−h,t

)2(
BN
t−h,t

)2] ≤ E
[
X1Y2

]
≤ P

(
t− h < τ1, τ2 ≤ t+ h

)
.

Hence the result is proved by (4.1) and Corollary 3.2. �

The first part of Theorem 2.2 now follows by [16, Theorem 3.8.8]. The second part of
Theorem 2.2 then follows from the fact that the map

ζ ∈M 7→ ζ (0, 1) ∈ R

is continuous (since 1[0,1] ∈ BL) and that LNt = 1− νNt (0, 1). �

5. The limit empirical process solves the limit SPDE

In this short section the first half of the statement of Theorem 2.3 is proved:

Proposition 5.1 (Existence). The limit empirical process, ν, satisfies the limit SPDE.

Our strategy is to consider the dynamics of a single wealth process under the action of a
test function and to calculate its conditional law. The following lemma is useful as it allows
us to interchange conditional expectation and stochastic integration:

Lemma 5.2. Let H be a real-valued adapted process with

E

ˆ T

0
H2
sds <∞.

Then, with probability 1,

E
[ˆ t

0
HsdW

M
s

∣∣FMt ] =

ˆ t

0
E
[
Hs

∣∣FMs ]dWM
s and E

[ˆ t

0
HsdW

1
s

∣∣FMt ] = 0.

for every t ∈ [0, T ].
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Proof. By multiplying Hs by 1s<t, it suffices to take t = T . First, suppose that H is a basic
process, that is

Hu = Z1s1<u≤s2 ,

where s1 < s2 ≤ T are real numbers and Z is Fs1-measurable. Then

E
[ˆ T

0
HsdWs

∣∣FMT ] = E
[
Z
(
WM
s2 −W

M
s1

)∣∣FMT ] = E
[
Z
∣∣FMs1 ](WM

s2 −W
M
s1

)
=

ˆ T

0
E
[
Z
∣∣FMs ]1s1<s≤s2dWM

s

=

ˆ T

0
E
[
Hs

∣∣FMs ]dWM
s

and, using the fact that W 1
s2 −W

1
s1 is independent of σ

(
FWT ,Fs1

)
because W 1 and WM are

independent and W 1 has independent increments,

E
[ˆ T

0
HsdW

1
s

∣∣FMt ] = E
[
Z
(
W 1
s2 −W

1
s1

)∣∣FMt ] = E
[
E
[
Z
(
W 1
s2 −W

1
s1

)∣∣σ(FMT ,Fs1
)]∣∣FMt ]

= E
[
ZE
[(
W 1
s2 −W

1
s1

)∣∣σ(FMT ,Fs1
)]∣∣FMt ]

= E
[
ZE
[
W 1
s2 −W

1
s1

]∣∣FMT ] = 0.

So the result holds in this case and immediately extends to linear combinations of basic
processes. The usual density argument extends the result to all required H. �

Proof of Proposition 5.1. Begin by considering the dynamics of φ
(
Xi
t

)
for any φ ∈ Ctest. Since

φ is smooth, Itô’s formula is applicable:

φ
(
X1
t

)
= φ

(
X1

0

)
+ µ

ˆ t

0
∂xφ

(
X1
s

)
ds+

σ2

2

ˆ t

0
∂xxφ

(
X1
s

)
ds+ σρ

ˆ t

0
∂xφ

(
X1
s

)
dWM

s

+ σ
√

1− ρ2

ˆ t

0
∂xφ

(
X1
s

)
dW 1

s .

As φ (0) = 0 = φ (1), stopping the equation at the first exit time from the unit interval,
τ exit

1 := τdef
1 ∧ τpay

1 , gives

φ
(
X1
t

)
1t<τexit1

= φ
(
X1
t∧τexit1

)
= φ

(
X1

0

)
+ µ

ˆ t

0
∂xφ

(
X1
s

)
1s<τexit1

ds+
σ2

2

ˆ t

0
∂xxφ

(
X1
s

)
1s<τexit1

ds(5.1)

+ σρ

ˆ t

0
∂xφ

(
X1
s

)
1s<τexit1

dWM
s + σ

√
1− ρ2

ˆ t

0
∂xφ

(
X1
s

)
1s<τexit1

dW 1
s .

By introducing the process

ν̄t (φ) := E
[
φ
(
X1
t

)
1t<τexit

∣∣FM ]
and taking a conditional expectation over (5.1) with respect to FM (using Lemma 5.2) the
following SPDE for ν̄ is obtained:

(5.2) dν̄t (φ) = µν̄t (∂xφ) dt+
σ2

2
ν̄t (∂xxφ) dt+ σρν̄t (∂xφ) dWM

t .
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Since τ1 = τ exit
1 ∧ τ ref

1 and τ exit
1 and τ ref

1 are conditionally independent given FM , it follows
that

νt
(
φ
)

=E
[
φ
(
X1
t

)
1t<τexit1

1t<τ ref1

∣∣FM]=E
[
φ
(
X1
t

)
1t<τexit1

∣∣FM]P(t < τ ref
1

∣∣FM)=Λtν̄t
(
φ
)
,

and, because Λ is of finite variation, combining this result with the product rule gives

dνt (φ) = Λtdν̄t (φ) + ν̄t (φ) dΛt = Λtdν̄t (φ) + νt (φ) Λ−1
t dΛt.

Substituting the SPDE for ν̄ from (5.2) completes the result. �

The final calculation in the above proof will be used again, so it is helpful to summarise the
result:

Lemma 5.3. If ν̄t (φ) := Λ−1
t νt (φ), then ν̄ satisfies the SPDE

ν̄t (φ) = ν0 (φ) + µ

ˆ t

0
ν̄s (∂xφ) ds+

σ2

2

ˆ t

0
ν̄s (∂xxφ) ds+ σρ

ˆ t

0
ν̄s (∂xφ) dWM

s ,

for every t ∈ [0, T ] and φ ∈ Ctest, with probability 1. (Note, Λ0 = 1.)

6. The kernel smoothing method

This section serves as an overview of the kernel smoothing method which is used in Section
7 to prove Theorem 2.3. The method originated from [36] and [31], where stochastic evolution
equations are considered on the whole space, and was adapted in [3] to incorporate systems
on the half-line with Dirichlet boundary conditions and [38] for weighted spaces. Here, our
approach is to work on the unit interval, hence the relevant smoothing kernel is defined as:

Definition 6.1 (Smoothing kernel). For x, y ∈ [0, 1] and ε > 0, the smoothing kernel is
defined to be

Gε (x, y) :=
1√
2πε

∞∑
n=−∞

[
exp
{
−(x− y + 2n)2

2ε

}
− exp

{
−(x+ y + 2n)2

2ε

}]
,

which is the Green’s function for the heat equation on the unit interval with Dirichlet boundary
conditions. Importantly, Gε (x, 0) , Gε (x, 1) = 0, so that Gε (x, ·) ∈ Ctest, for every fixed
x ∈ (0, 1).

If ζ is a finite measure on the unit interval, then integrating the smoothing kernel in one of
its variables yields a smooth function (recall the definition ofM0 from (2.6)):

Definition 6.2 (Tε). For ζ ∈M0, define Tεζ ∈ C∞ to be the function

Tεζ (x) := ζ (Gε (x, ·)) =

ˆ
(0,1)

Gε (x, y) ζ (dy) , for x ∈ [0, 1] .

It is a standard result that Tεζ approximates ζ in a distributional sense: for any smooth
and compactly supported φ ∈ C∞0 (0, 1)

(6.1)
ˆ

(0,1)
Tεζ (x)φ (x) dx→ ζ (φ) , as ε→ 0.

This fact allows us to prove the following key result. Here, ‖·‖L2 and ‖·‖H1 denote the usual
norms on the unit interval,

‖φ‖L2 :=

(ˆ 1

0
φ (x)2 dx

)1/2

and ‖φ‖H1 :=

(ˆ 1

0
φ (x)2 + ∂xφ (x)2 dx

)1/2

,

and H1
0 denotes the closure of C∞0 (0, 1) under ‖·‖H1 .



14 FERHANA AHMAD, B. M. HAMBLY, AND SEAN LEDGER

Proposition 6.3 (The lim inf Proposition). Let ζ ∈M0 and let ‖·‖2 denote the L2 norm on
[0, 1]. If

lim inf
ε→0

‖Tεζ‖H1 <∞,

then ζ has a density Z ∈ H1
0 (0, 1), that is

ζ (φ) =

ˆ 1

0
Z (x)φ (x) dx, for all φ ∈ C∞0 (0, 1) ,

and Z satisfies
‖Z‖H1 ≤ lim inf

ε→0
‖Tεζ‖H1 .

Proof. It follows from (6.1) and the Cauchy–Schwarz inequality that∣∣ζ (φ)
∣∣ = lim inf

ε→0

∣∣ˆ
(0,1)

Tεζ (x)φ (x) dx
∣∣ ≤ lim inf

ε→0

∥∥Tεζ∥∥L2

∥∥φ∥∥
L2 ,

for any φ ∈ C∞0 (0, 1). Therefore the map φ 7→ ζ (φ) extends uniquely to a map in the dual
of L2 with norm not greater than the above limit infimum, by the Hahn–Banach Theorem
[46, Theorem III.5]. Also, by the Riesz Representation Theorem [17, D.3 Theorem 2], we can
conclude that this map is realised as an integral over the unit interval against some Z ∈ L2.
Combining these results gives that

ζ (φ) =

ˆ 1

0
Z (x)φ (x) dx, for every φ ∈ C∞0 (0, 1) and ‖Z‖L2 ≤ lim inf

ε→0
‖Tεζ‖L2 .

Similarly, but now also integrating by parts,∣∣ζ (∂xφ)
∣∣ = lim inf

ε→0

∣∣ˆ
[0,1]

∂xTεζ (x)φ (x) dx
∣∣ ≤ lim inf

ε→0

∥∥∂xTεζ∥∥L2

∥∥φ∥∥
L2 ,

so by the same reasoning there exists Y ∈ L2 such that

ζ (∂xφ) =

ˆ 1

0
Y (x)φ (x) dx, for every φ ∈ C∞0 (0, 1) and ‖Y ‖L2 ≤ lim inf

ε→0
‖∂xTεζ‖L2 .

However, it is the case thatˆ 1

0
Z (x) ∂xφ (x) dx = ζ (∂xφ) =

ˆ 1

0
Y (x)φ (x) dx, for every φ ∈ C∞0 (0, 1)

so Y = −∂xZ, which suffices to complete the proof. �

This result generalises easily to measure-valued stochastic processes, and the following re-
sult is a simple corollary of Fatou’s lemma, but is in a form that will be convenient in the
forthcoming sections.

Proposition 6.4 (The lim inf Proposition for processes). Suppose that ξ is a càdlàg stochastic
process taking values inM0. If there exists a constant K > 0 such that

lim inf
ε→0

{
E
[

sup
t∈[0,T ]

‖Tεξt‖2L2

]
+ E

ˆ T

0
‖∂xTεξt‖2L2 dt

}
≤ K <∞,

then there exists a process Ξ such that:
(i) For every t ∈ [0, T ], Ξt ∈ L2(0, 1),
(ii) For almost all t ∈ [0, T ], Ξt ∈ H1

0 (0, 1),
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(iii) For every t ∈ [0, T ]

ξt (φ) =

ˆ 1

0
Ξt (x)φ (x) dx,

(iv) E
[
supt∈[0,T ] ‖Ξt‖

2
L2

]
+ E
´ T

0 ‖∂xΞt‖2L2 dt ≤ K.

Remark 6.5. Although Proposition 6.4 is stated for measure-valued proposes, it is also valid
for processes taking values in the space of signed measures, or even the space of distributions,
but with the appropriate modification of (2.6) for test functions, rather than sets.

It is often useful to note that Tε is a contraction on L2:

Proposition 6.6 (Contractivity). Let f ∈ L2(0, 1), then for every ε > 0

‖Tεf‖L2 ≤ ‖f‖L2 ,

with the notation Tεf(x) =
´ 1

0 Gε(x, y) f(y) dy.

Proof. After noticing that
´ 1

0 Gε(x, y) dy ≤ 1 (Gε (x, ·) is a defective density), the proof is a
simple application of Cauchy–Schwarz:

‖Tεf‖2L2 ≤
ˆ 1

0

ˆ 1

0
Gε(x, y) dy ·

ˆ 1

0
Gε(x, y) f(y)2 dydx ≤

ˆ 1

0

ˆ 1

0
Gε(x, y) f(y)2 dxdy ≤ ‖f‖2L2 .

�

7. Energy estimation; proof of Theorem 2.4

In this section the energy estimate in Theorem 2.4 is derived. This result will be used to
show uniqueness in the next section.

It is simpler to consider the evolution equation for the process ν̄ from Lemma 5.3:

ν̄t (φ) = ν0 (φ) + µ

ˆ t

0
ν̄s (∂xφ) ds+

σ2

2

ˆ t

0
ν̄s (∂xxφ) ds+ σρ

ˆ t

0
ν̄s (∂xφ) dWM

s .

Our strategy is to show that the smooth approximation, Tεν̄, satisfies an approximate version
of this SPDE.

For any x ∈ [0, 1] and ε > 0, Gε (x, ·) is a element of Ctest (see Definition 6.1) and so can
be set in the SPDE for ν̄, which gives

Tεν̄t(x) = ν̄t(Gε(x, ·)) = ν0 (Gε(x, ·)) + µ

ˆ t

0
ν̄s(∂yGε(x, ·)) ds

+
σ2

2

ˆ t

0
ν̄s(∂yyGε(x, ·)) ds+ σρ

ˆ t

0
ν̄s(∂yGε(x, ·)) dWM

s(7.1)

The following result is a straightforward calculation, but allows the order of differentiation to
be switched in the above equation:

Lemma 7.1 (Switching derivatives). Let ζ ∈M and define

rε (z) :=
2√
2πε

∞∑
n=−∞

exp
{
−(z + 2n)2

2ε

}
, for z ∈ R

and
Rεζ (x) := ζ (rε (x+ ·)) =

ˆ
(0,1)

rε (x+ y) ζ (dy) , for x ∈ [0, 1] .

The following hold for all x, y ∈ R and ε > 0:
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(i) ∂yGε (x, y) = −∂xGε (x, y)− ∂xrε (x+ y),
(ii) ∂yyGε (x, y) = ∂xxGε (x, y),
(iii) ζ (∂yGε (x, ·)) = −∂xTεζ (x)− ∂xRεζ (x),
(iv) ζ (∂yyGε (x, ·)) = ∂xxTεζ (x).

Applying these results to (7.1) gives the smoothed version of the limit SPDE for Tεν̄:

Tεν̄t (x) = Tεν0 (x)− µ
ˆ t

0
∂xTεν̄s (x) ds+

σ2

2

ˆ t

0
∂xxTεν̄s (x) ds

− σρ
ˆ t

0
∂xTεν̄s (x) dWM

s − (µ+ σρ)

ˆ t

0
∂xRεν̄s (x) dWM

s ,(7.2)

and then Itô’s formula for the square (Tεν̄)2 yields the equation

d (Tεν̄t)
2 = 2Tεν̄tdTεν̄t + d [Tεν̄]t

= −2µTεν̄t∂xTεν̄tdt+ σ2Tεν̄t∂xxTεν̄tdt− 2σρTεν̄t∂xTεν̄tdW
M
t(7.3)

− 2 (µ+ σρ)Tεν̄t∂xRεν̄tdW
M
t + σ2ρ2 (∂xTεν̄t)

2 dt+ (µ+ σρ)2 (∂xRεν̄t)
2 dt,

where the dependency on x has been omitted. The aim is now to integrate over the spatial
dimension. Since Tεν̄t is a smooth bounded function (for fixed ε)

ˆ 1

0

(
E

ˆ T

0
|Tεν̄t∂xTεν̄t|2 dt

)1/2
dx <∞,

hence the stochastic Fubini Theorem [53, (1.4)] implies
ˆ 1

0

ˆ t

0
Tεν̄t (x) ∂xTεν̄t (x) dWM

s dx =

ˆ t

0

ˆ 1

0
Tεν̄t (x) ∂xTεν̄t (x) dxdWM

s = 0,

which vanishes by integrating by parts and using Tεν̄t(0) = 0 = Tεν̄t(1). Therefore, integrating
equation (7.3) over x ∈ (0, 1) gives

‖Tεν̄t‖2L2 = ‖Tεν0‖2L2 − σ2
(
1− ρ2

) ˆ t

0
‖∂xTεν̄s‖2L2 ds+ (µ+ σρ)2

ˆ t

0
‖∂xRεν̄s‖2L2 ds

− 2 (µ+ σρ)

ˆ t

0

ˆ 1

0
Tεν̄s∂xRεν̄sdxdW

M
s ,

where the stochastic Fubini theorem has been used on the final term.
By taking a supremum over t ∈ [0, T ] and an expectation in the above equation, and using

the estimate

E sup
t∈[0,T ]

ˆ t

0

ˆ 1

0
Tεν̄s∂xRεν̄sdxdW

m
s ≤ E

(ˆ T

0

(ˆ 1

0
Tεν̄t∂xRεν̄tdx

)2
dWM

t

)1/2

≤ E
(ˆ T

0
‖Tεν̄t‖2L2 ‖∂xRεν̄t‖2L2 dt

)1/2

≤ E
[

sup
t∈[0,T ]

‖Tεν̄t‖L2

(ˆ T

0
‖∂xRεν̄t‖2L2 dt

)1/2 ]
≤ δE sup

t∈[0,T ]
‖Tεν̄t‖2L2 + (4δ)−1 E

ˆ T

0
‖∂xRεν̄t‖2L2 dt,
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which follows from the Cauchy–Schwarz inequality, Young’s inequality with parameter δ and
the Burholder–Davis–Gundy inequality [47, Theorem IV.42.1], the following inequality is
reached:

c1E sup
t∈[0,T ]

‖Tεν̄t‖2L2 + σ2
(
1− ρ2

)
E

ˆ T

0
‖∂xTεν̄t‖2L2 dt ≤ ‖Tεν0‖2L2 + c2E

ˆ T

0
‖∂xRεν̄t‖2L2 dt

where ci > 0 denotes some numerical constants depending only on the model parameters
and the choice of δ. Since ρ < 1 and ΛtΛ

−1
s < 1 whenever s < t, it is possible to multiply

throughout by Λ2
T and normalise this inequality to obtain a constant c > 0 such that

(7.4) E sup
t∈[0,T ]

‖Tενt‖2L2 + E

ˆ T

0
‖∂xTενs‖2L2 ds ≤ c ‖Tεν0‖2L2 + cE

ˆ T

0
‖∂xRενt‖2L2 dt.

It is now clear that the energy estimate requires control of the remainder term. The following
result connects this problem to the boundary estimate from Section 3.

Lemma 7.2 (Vanishing remainder). Suppose ξ is a càdlàg process taking values in M0 for
which there exists a constant β such that

E
[
ξt (0, ε)2 + ξt (1− ε, 1)2] = O

(
ε3+β

)
, uniformly in t ∈ [0, T ] .

Then

E

ˆ T

0
‖∂xRεξt‖2L2 dt→ 0, as ε→ 0.

Proof. For fixed ε, direct calculation gives

∂xrε (z) = −
∞∑

n=−∞
an,ε (z) , where an,ε (z) :=

z + 2n

ε3/2
√

2π
exp
{
−(z + 2n)2

2ε

}
.

Therefore, if n 6= −1, 0 and z ∈ [0, 2], then

|an,ε (z)| ≤ c1ε
−3/2 (n+ 1) e−n

2
e−1/ε, whenever ε < 1,

uniformly in ε, z and n, where c1 > 0 is a numerical constant, and hence

|∂xrε (z)| ≤ |a0,ε (z)|+ |a−1,ε (z)|+ c2ε
−3/2e−1/ε.

This leads to the inequality

|∂xRεξt (x)| ≤
ˆ 1

0
|a0,ε (x+ y)| ξt (dy) +

ˆ 1

0
|a−1,ε (x+ y)| ξt (dy) + c2ε

−3/2e−1/ε.

It is now possible to split the range of integration in the two above integrals. For the first,
consider the integral over (0, εη) and its complement, where η > 0 is a free parameter. This
gives ˆ 1

0
|a0,ε (x+ y)| ξt (dy) ≤ c3ε

−3/2+ηξt (0, εη) exp{−x2/2ε}+ c3ε
−3/2 exp{−εη−1/2},

where c3 > 0 is a further constant. A similar expression is obtained for the other integral
term, and so if η is chosen such that η < 1/2 then

E
∥∥∂xRεξt∥∥2

L2 ≤ c4ε
−5/2+2η

(
E
[
ξt
(
0, εη

)2]
+ E

[
ξt
(
1− εη, 1

)2])
+ o
(
1
)
, as ε→ 0,

using the fact
´ 1

0 e
−x2/2εdx = O

(
ε1/2

)
. Applying the hypothesis gives

E

ˆ T

0
‖∂xRεξt‖2L2 ds ≤ c4ε

−5/2+(5+β)η + o (1) ,
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which vanishes if η is chosen to satisfy
1

2 (1 + β/5)
< η <

1

2
.

Since β > 0, such a selection is possible and this completes the proof. �

Combining Lemma 7.2 with Proposition 3.1 and applying the result to (7.4) gives

lim inf
ε→0

{
E sup
t∈[0,T ]

‖Tενt‖2L2 + E

ˆ T

0
‖∂xTενs‖2L2 ds

}
≤ c lim inf

ε→0
‖Tεν0‖2L2 ≤ c ‖V0‖2L2 ,

where the superadditivity of the limit infimum has been used. Fatou’s lemma and Proposition
6.4 then completes the result. �

8. Uniqueness; Proof of Theorem 2.3

Here, we complete the proof of the uniqueness result using the methods developed in the
previous chapters. Begin by supposing that ν ′ is a càdlàg process that solves the limit SPDE
and satisfies ν ′0 = ν0. The difference ∆ := ν−ν ′, although not a positive measure, still satisfies
the limit SPDE (by linearity), but with zero initial condition. Likewise, the work from the
previous section applies, so (7.4) reduces to

(8.1) E sup
t∈[0,T ]

‖Tε∆t‖2L2 ≤ cE
ˆ T

0
‖∂xRε∆t‖2L2 dt,

by dropping the derivative term on the left-hand side.
Since

‖∂xRε∆t‖2L2 ≤ 2 ‖∂xRενt‖2L2 + 2
∥∥∂xRεν ′t∥∥2

L2 , for every t ≤ T,
to deduce that the right-hand side of (8.1) vanishes, all that is required is to check that ν ′
satisfies the estimate from Proposition 3.1, since then the result follows by Lemma 7.2.

Proposition 8.1. For the candidate solution, ν ′, there exists β > 0 such that

E[ν ′t (0, ε)2] + E[ν ′t (1− ε, 1)2] = O(ε3+β), uniformly in t ∈ [0, T ] ,

as ε→ 0.

Proof. By applying the product rule to the process defined by

ν̄ ′t (φ) := Λ−1
t ν ′t (φ) ,

it follows that ν̃ ′ satisfies

dν̄ ′t (φ) = µν̄ ′t (∂xφ) dt+
σ2

2
ν̄ ′t (∂xxφ) dt+ σρν̄ ′t (∂xφ) dWM

t , for φ ∈ Ctest.

Since Λ ≤ 1, ν ′ ≤ ν̄ ′, so it suffices to show that ν̄ ′ satisfies the statement of the result.
Our strategy is to consider the following measure on (0, 1)× (0, 1):

mt (φ) := E

ˆ 1

0

ˆ 1

0
φ (x, y) ν̄ ′t (dx) ν̄ ′t (dy) , for φ : (0, 1)× (0, 1)→ R.

First consider φ of the form φ (x, y) = ψ1 (x)ψ2 (y), where ψ1, ψ2 ∈ Ctest . Applying the
product rule and taking expectation gives

(8.2) dmt (φ) = mt (Lφ) dt, where L = µ∇+
σ2

2
∆ + σρ∂xy,
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which then extends to all smooth φ : (0, 1)× (0, 1)→ R that satisfy

φ (∂ ((0, 1)× (0, 1))) = {0} .

Now let G0,1
t : (0, 1)2× (0, 1)2 → R be the Green’s function associated to L on the unit square

with absorbing boundary conditions. Define

Htf (x) :=

ˆ 1

0

ˆ 1

0
G0,1
t (x,y) f (y) dy, for f : (0, 1)2 → R,

and, for a fixed φ ∈ C∞0 ((0, 1)2) and t0 ∈ [0, T ], define

ψt := Ht0−tφ, for t ≤ t0.

Then ψt satisfies ∂tψt + Lψt = 0, so the Itô–Wentzell formula [33] applied to (8.2) gives

dmt (ψt) = mt (∂tψt + Lψt) dt = 0, hence mt0 (φ) = m0 (Ht0φ) .

By a density argument and the assumption that ν̄ ′0 has no atoms at 0 or 1, we can extend to
sets:

E[ν̄ ′t (S)2] = mt0 (S × S) = m0 (Ht01S×S)

=

ˆ 1

0

ˆ 1

0
P
(
X1
t , X

2
t ∈ S; t < τ1 ∧ τ2

∣∣X1
0 = x1, X2

0 = x2
)
νt
(
dx1
)
νt
(
dx2
)
,

The argument in the proof of Proposition 3.1 can then be applied to this final expression to
give the result. �

Proposition 8.1 and inequality (8.1) give

lim inf
ε→0

E sup
t∈[0,T ]

‖Tε∆t‖2L2 = 0,

and this completes the result by Proposition 6.4 and Remark 6.5. �

9. Simulation and pricing examples

In this section we illustrate the flexibility of our model by showing how it can be used to
price options on mortgage pools. The two examples that follow explain the effects of varying
the individual input parameters.

How to simulate the model and standard parameters. In our example, we will use
a semi-analytic Monte Carlo scheme for simulating the processes Ldef , Lpay and Lref , which
represent the proportional loss from the mortgage pool due to default, early repayment and
refinancing. The total loss will be denoted Ltotal = Ldef + Lpay + Lref . We will fix a set of
standard parameters:

• Time horizon: T = 30 (years),
• Parameters for distance-to-default : µ = 0.024, σ = 0.115, ρ = 0.35,
• Initial distance-to-default : Beta distribution, V0(x) ∝ xb1(1 − x)b2 , where b1 = 2.7,
b2 = 3.05,

• Refinancing parameters: Λt = exp{−
´ t

0 λsds}, with

(9.1) λt = max{K − rt, 0}, drt = a(b− rt)dt+ σI
√
rtdW

I
t ,

where r0 = 0.06 K = 0.05, a = 0.6, b = 0.06, σI = 0.25 and W I a standard Brownian
motion with [WM ,W I ]t = 0.35t.
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Figure 9.1. (Standard parameters) The expected annual default rate is presented
on the left. The expected annual repayment rate plus refinancing rate is on the right.

The evolution of the system from an initial density V0 and interest rate r0 is then described
by an SPDE and SDE pair

dVt =

(
−µ∂xV +

σ2

2
∂xxVt −max{K − rt, 0}Vt

)
dt− σρ∂xVtdWM

t(9.2)

drt = a(b− rt)dt+ σI
√
rtdW

I
t .

Our numerical scheme will regard the SPDE for V as a heat equation with a rough drift.
We have chosen this set of parameters as they produce annual conditional default and

prepayment rates, see Figure 9.1, which approximate the standard shapes of the rate curves
used in conventional analyses of MBS. The market convention in assessing prepayment is
to take the Public Securities Association (PSA) prepayment benchmark, a monthly series of
annual prepayment rates. The PSA curve is a piecewise linear function, with the conditional
prepayment rate increasing linearly from 0 to 6% over the first 30 months and then constant
at 6% for the remainder, see [18] for a discussion. Similarly there is a market convention
in assessing default through the Standard Default Assumption (SDA) curve. This is again a
piecewise linear function with an initial increase in annual conditional default rates to 0.6%,
a plateau and then a decrease back to 0.03% at 120 months and then constant thereafter. For
the precise SDA curve see [18]. Naturally our model will not reproduce exactly the PSA and
SDA curves, but we choose a set of parameters so that our annual conditional prepayment and
default curves are broadly similar and hence this choice serves as a reasonable benchmark.

The only source of randomness in each individual simulation is due to WM and W I . Once
these sample paths have been simulated, the system can be generated by pushing the initial
condition forward on the half-line by the heat equation with rough drift. Specifically, the
algorithm we use is:

(i) Fix the number of time points, Ntime. This fixes the corresponding mesh size, ∆t =
T/Ntime,

(ii) SimulateWM andW I for Ntime steps on the uniform grid. UseW I and (9.1) to generate
Λ,

(iii) For step i ∈ {1, 2, . . . , Ntime}, let V i denote the approximation to Vi∆t, the system’s
density process. (In practise, V i will be stored as the interpolation of a fixed number of
grid points.) Let Li,def , Li,pay and Li,ref (all real numbers) denote the approximations to
Ldef
i∆t, L

pay
i∆t and L

ref
i∆t,

(iv) At step i = 0, set V 0 = V0 (ensure V0 is normalised to be a p.d.f.) and L0,def = L0,pay =
L0,ref = 0,
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(v) Fix the maps

shift(f ; a)(x) := f(x− a), scale(f ; a)(x) := af(x), trunc(f)(x) := f(x)1x∈(0,1),

and some quadrature routine (to a given level of precision)

quad(f ; a, b) ≈
ˆ b

a
f(x)dx, gauss(f ; t)(x) = (2π)−

1
2 quad(z 7→ f(x+t

1
2 z)e−z

2/2;−∞,+∞).

The map “gauss” pushes f forward by a Normal(0, t)-density,
(vi) For i ≥ 1, let increment := σρ(WM

i∆t −WM
(i−1)∆t) + µ∆t and

ftemp := shift(gauss(V i−1;σ
√

1− ρ2∆t); increment),

which is the conditional distribution of a representative wealth process, without killing
at the boundaries. Set the default and repayment increments to be the mass that has
passed over the respective boundaries:

Li,def = Li−1,def + quad(ftemp;−∞, 0), Li,pay = Li−1,pay + quad(ftemp; 1,+∞).

Truncate the lost mass and scale the density for the proportion, ∆Λi = Λ(i−1)∆t − Λi∆t,
that has refinanced:

V i = scale(trunc(ftemp; 0, 1), 1−∆Λi), Li,ref = ∆Λi · quad(ftemp; 0, 1).

We will not demonstrate the validity of the algorithm in this paper.

A tranched product. (The figures in this subsection should be viewed in colour.) The MBS
that we will price with our model will be a tranched product. Suppose that there is a recovery
rate of R = 40% and consider tranche (a, d), with a < d the attachment and detachment
points. With the notation

tranchea,d(x) :=


0, if x < a

x− a, if a ≤ x ≤ d
d− a, if x > d,

the product is comprised of two parts:
• Protection leg : At monthly payment dates, Ti, the protection buyer receives the loss
due to default in the tranche:

protectioni := tranchea,d((1−R)Ldef
Ti )− tranchea,d((1−R)Ldef

Ti−1
)

• Fee leg : The protection buyer pays a proportion (the spread), s, of the outstanding
notational in the tranche in each period:

feei := d− a− tranchea,d((1−R)Ldef
Ti−1

).

The spread is fixed to balance the expected cash-flows from the two legs:

(9.3) s :=
discounted protection

discounted fee
=

E
∑

i:Ti<30 years discount(Ti) · protectioni

E
∑

i:Ti<30 years discount(Ti) · feei
,

where discount(Ti) is an appropriate discounting factor, which for this paper we will fix as a
constant compounded annual 1% rate.

To calculate the expectations in (9.3) we will average over a number, Nsims, of independent
simulations:

s ≈
∑Nsims

i=1 discounted protection for simulation i∑Nsims
i=1 discounted fee for simulation i

.
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Figure 9.2. (Standard parameters) The normalised spread value is calculated by
dividing the spread at each number of simulations by the spread at 217 simulations.
The tranches attachment/ detachment points are (0, 0.03), (0.03, 0.06), (0.06, 0.09),
(0.09, 0.12), (0.12, 1). With the standard parameters, relatively few simulations assign
loss to the high tranches, hence the lower stability for these tranches.
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Figure 9.3. (Standard parameters) Each line represents the output for a specific
choice of µ (red = 0, increasing in increments of 0.005 to pink = 0.045), with all other
parameters equal to the standard parameters. Increasing µ decreases the spread for
every tranche.

Figure 9.2 gives an indication of the convergence properties of this approximation. For the
standard parameters, we see stable behaviour around Nsims = 213. The appropriate choice
of Nsims depends on the model and tranche parameters — for example, if we only wish to
price lower tranches then Nsims = 29 might be acceptable. For the remaining examples in this
section we fix Nsims = 212.

Pricing example: Standard market conditions. In this subsection we price the tranched
MBS with the standard parameters capturing the behaviour of prices in non-distressed market
conditions.

In Figure 9.3, we see that increasing the value of µ decreases the spread for every tranche.
This is as expected; increasing µ decreases the probability of a representative wealth process
hitting the default boundary at zero, and hence reduces the probability that the tranche
notional is lost.

The behaviour in Figure 9.4, which gives the change in spread as the correlation ρ is varied,
is not monotone. For senior tranches, increasing ρ increases the spread. This is because larger
values of ρ lead to a higher probability of systemic default, which is necessary to accumulate
losses in these higher tranches. However, increasing ρ also increases the probability that wealth
processes will experience a simultaneous positive move away from the boundary, thus reducing
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Figure 9.4. (Standard parameters) Each line represents the output for a specific
choice of ρ (red = 0, increasing in increments of 0.1 to pink = 0.9), with all other
parameters equal to the standard parameters. For higher tranches, spread increases
with correlation, and for lower tranches this effect is reversed. For high tranches, the
spread is very small for low correlations.
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Figure 9.5. (Standard parameters) On the left, each line represents the output for
a specific choice of β1 (red = 0, increasing in increments of 0.5 to pink = 4.5) in the
initial condition V0(x) ∝ xβ1(1−x)β2 , with all other parameters equal to the standard
parameters (and β2 = 4). The corresponding graph of V0 is presented on the right.
Increasing β1 decreases the spread of every tranche.

the probability of losses in the lower tranches. Hence, increasing ρ decreases the spread for
the junior tranches.

In Figure 9.5, the parameter β1 in the initial density is varied. Decreasing β1 shifts more
of the initial mass towards the default boundary, hence increasing β1 decreases the spreads.

Pricing example: Distressed market conditions. In this subsection we repeat the above
pricing example, except we now fix β1 = 1 and β2 = 10. As seen from Figure 9.6, this moves
most of the initial mass close to the default boundary at zero. With all other parameters set
to the standard parameters, this choice captures distressed or sub-prime market conditions,
which is reflected in the corresponding default rate curve in Figure 9.6.

Increasing the value of µ shows the same behaviour as in the previous example, except now
the spreads are generally higher and more tightly packed (Figure 9.7, left). The explanation
for the tight packing is that altering the drift on the range given in the figure has only a small
influence on the price compared to that of the distressed initial condition. Varying the value
of ρ, however, shows less predictable behaviour (Figure 9.7, right). For all except the most
senior tranche, increasing ρ decreases the tranche spread. Again, this is because increasing the
correlation increases the probability of entities surviving simultaneously. The crossover effect
from Figure 9.4 is no longer observed.
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Figure 9.6. (Distressed parameters) On the left is the initial density for the choice
of distressed parameters β1 = 1 and β2 = 10. The corresponding default rate curve is
on the right. The default rate is extremely high initially and almost all the mass has
been lost from the system after 15 years.
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Figure 9.7. (Distressed parameters) On the left each line represents the output for
a specific choice of µ (red = 0, increasing in increments of 0.005 to pink = 0.045),
with all other parameters equal to the distressed parameters. On the right each line
represents the output for a specific choice of ρ (red = 0, increasing in increments of
0.1 to pink = 0.9), with all other parameters equal to the distressed parameters.
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