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Abstract

Some probabilistic aspects of the number variance statistic are investi-
gated. Infinite systems of independent Brownian motions and symmetric
α-stable processes are used to construct new examples of processes which
exhibit both divergent and saturating number variance behaviour. We de-
rive a general expression for the number variance for the spatial particle
configurations arising from these systems and this enables us to deduce
various limiting distribution results for the fluctuations of the associated
counting functions. In particular, knowledge of the number variance al-
lows us to introduce and characterize a novel family of centered, long
memory Gaussian processes. We obtain fractional Brownian motion as a
weak limit of these constructed processes.

2000 MSC Primary 60G52, 60G15; Secondary 60F17, 15A52.

Key words and phrases: Number variance, symmetric α-stable processes, Gaussian fluc-

tuations, functional limits, long memory, Gaussian processes, fractional Brownian motion.

Introduction

Let (X,F , P) be a point process on R, that is, a collection X := {(xi)∞i=−∞ :
xi ∈ R, ∀i and #(xi : xi ∈ [b, b + L]) < ∞ ∀ b ∈ R, L ∈ R+}, with F the min-
imal σ-algebra generated by these point configurations and P some probability
measure on (X,F). The associated number variance is defined as

V ar(N [b, b + L]) := VarianceP[#(xi : xi ∈ [b, b + L])].

More generally, in order to deal with non-spatially homogeneous cases, it is more
convenient to work with the averaged number variance which we define as

V [L] := Eb[V ar(N [b, b + L])]
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taking an appropriate uniform average of the number variance over different
intervals of the same length. As we increase the length L of the underlying
interval the number of points contained in that interval will also increase. How-
ever, in many situations, it is not immediately clear what will happen to the
variance of this number as the interval length grows. One of the main questions
considered in this paper will be the behaviour of V [L] as L →∞. We shall see
that, somewhat counter-intuitively, in some instances we have

lim
L→∞

V [L] = κ < ∞,

in which case we will say that the number variance saturates to the level κ ∈ R+.
Until recently, interest in the number variance statistic had been confined

to the fields of random matrix theory (see e.g. [19, 12]) and quantum theory
(e.g [3, 17]) where it is commonly used as an indicator of spectral rigidity. In
the study of quantum spectra, the manner in which the number variance (of
eigenvalues) grows with interval length provides an indication of whether the
underlying classical trajectories are integrable, chaotic or mixed. In the large
energy limit, the spectral statistics of a quantum system with strongly chaotic
classical dynamics, should, according to the conjecture of Bohigas, Giannoni
and Schmidt [7], agree with the corresponding random matrix statistics which
are independent of the specific system. However, in reality, for many such sys-
tems, when it comes to the long range “global” statistics, this random matrix
universality breaks down. In these cases, the number variance typifies this tran-
sition to non-conformity in that following an initial random matrix consistent
logarithmic growth with interval length, the number variance then saturates.

Attempts to improve the understanding of the deviations from random ma-
trix predictions have led to convincing explanations for number variance satu-
ration behaviour in terms of periodic orbit theory, see for example [4, 5, 1]. In
[4] there is a heuristic derivation of an explicit formula for the empirical number
variance of the zeros of the Riemann zeta function on the critical line which is
consistent with numerical evidence.

In the last few years, number variance has been considered from a slightly
different viewpoint in relation to determinantal point processes (see [24] for
background on this topic). Results on the growth of the number variance for
these processes are given in e.g. [24, 25]. The emphasis in these cases is on
ascertaining the divergence of the number variance as this, it turns out, is the
key ingredient needed to prove Gaussian fluctuation results for the counting
functions of a large class of determinantal processes, including those arising
naturally in the context of random matrix theory.

Motivated by the Riemann zeta example, Johansson [14] recently introduced
an example of a point process with determinantal structure which demonstrates
the same type of number variance saturation behaviour as conjectured by Berry
([4]) for the Riemann zeroes. This process is constructed from a system of n non-
colliding Brownian particles started from equidistant points uj = Υ + a(n− j)
with Υ ∈ R, a ∈ R+ j = 1, . . . , n. There are a number of approaches to
describing such a system, see [13, 15] for details. In any case, it can be shown
that the configuration of particles in space formed by the process at a fixed
time t, is a determinantal process and as such its correlation functions (or joint

2



intensities) take the form

R(n)
m (x1, x2, . . . , xm) = det

(
K

(n)
t (xi, xj)

)m

i,j=1
. (0.1)

Here and for determinantal processes in general, the determinant may be in-
terpreted as the density of the probability of finding m of the points in the
infinitesimal intervals around x1, x2, . . . , xm.

As the number of particles n → ∞, Johansson shows that the correlation
kernel K

(n)
t converges uniformly to a kernel with leading term (the correction

is of order e−dβ , β > 0)

Kt(ax, ay) =
1
a

( sinπ(x− y)
π(x− y)

+
d cos π(x + y) + (y − x) sinπ(y + x)

π(d2 + (y − x)2)

)
, (0.2)

where d = 2πt
a2 . This limiting kernel defines, at each time t, a limiting, non-

spatially homogeneous determinantal process which may loosely be thought of
as the configuration of particles in space formed by an infinite system of non-
colliding Brownian particles started from an equispaced initial configuration.
When the interval length L is small relative to d, the averaged number variance
for this process computed from the leading part of the correlation kernel (0.2)
has leading term

1
π2

(log(2πL/a) + γEuler + 1). (0.3)

However, if d is held constant, while L is increased, it is deduced that the number
variance saturates to the level

1
π2

(log(2πd) + γEuler + 1). (0.4)

The “small L” expression (0.3) agrees with the number variance of the determi-
nantal point process associated with the sine kernel of density a

K(xi, xj) =
sinπ(xi − xj)/a

π(xi − xj)
. (0.5)

This determinantal process is the universal scaling limit obtained for the eigen-
values of random matrices from e.g. the Gaussian Unitary Ensemble and U(n),
as matrix size tends to infinity (see for example, [19]).

For our purposes it will be convenient to think of the above averaged number
variance as the number variance of the spatial particle configurations arising
from an “averaged model” which we choose to interpret as an infinite system of
non-colliding Brownian motions started from the initial positions

uj = a(j − ε), j ∈ Z, a ∈ R+, ε ∼ Uniform[0, 1]. (0.6)

The two key features of Johansson’s model as just described are the equis-
paced starting positions and the fact that the Brownian particles are conditioned
to not collide. In this work we consider the number variance statistic in the in-
dependent process analogues of Johansson’s model. Since these independent
versions do not have determinantal structure, existing number variance results
no longer apply.
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The paper is organized as follows. We begin by deriving a general formula for
the number variance for the spatial particle configurations arising from infinite
systems of independent Brownian motions and symmetric α-stable processes in
R started from the initial configuration (0.6). This enables us to deduce the
asymptotic behaviour of the statistic as the length of the interval over which
it is defined goes to infinity. We give an explicit formula for the saturation
level for the cases in which saturation does occur. Once this is achieved we
are able to explain the number variance saturation phenomenon in terms of
the tail distribution behaviours of the underlying processes. We provide two
specific illustrative examples as corollaries and briefly discuss how our results
compare to those already existing in the literature. We conclude the first section
by demonstrating the close relationship between the number variance and the
rate of convergence of the distribution of the associated counting function to a
Poisson law.

In the second section we use the number variance to prove Gaussian fluc-
tuation results for the counting functions of our particle configurations in two
different scalings. In the third and final section we add some dynamics to the
fluctuations of the counting functions to construct a collection of processes, each
of which is shown to converge weakly in C[0,∞) to a centered Gaussian pro-
cess with covariance structure similar in form to that of a fractional Brownian
motion. Our earlier results on the behaviour of the number variance allow us
to better characterize these limiting processes. In particular, the long-range
dependence property exhibited by the covariance of their increments is directly
determined by the rate of growth of the associated number variance. In the
cases corresponding to α ∈ (0, 1), a further rescaling of the limiting Gaussian
processes allow us to recover fractional Brownian motions of Hurst parameters
1−α

2 as weak limits.

1 The independent particle cases

1.1 A Poisson process initial configuration

We begin by illustrating the effect of the initial positions on the number vari-
ance of the spatial particle configurations arising from such infinite systems of
processes as those considered in this paper. The following theorem is the well
known result (see for example, [9], Chapter VIII, section 5) that the Poisson
process is invariant for an infinite system of independent particles with the same
evolution.

Theorem 1. Consider an infinite collection of independent, identical in law,
translation invariant real-valued stochastic processes {(Xj(t), t ≥ 0); j ∈ Z}.
Suppose that {Xj(0)}∞j=−∞ is a Poisson process of intensity θ on R. Then
{Xj(t)}∞j=−∞ is a Poisson process of intensity θ for every t.

Consequently, if we begin with a “mixed up” Poisson process initial configu-
ration and allow each particle to move as (say) a Lévy process, independently of
the others then we observe a non-saturating, linearly growing number variance
(V [L] = θL) at the start and for all time.
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1.2 The Brownian and symmetric α-stable cases

This last theorem served to highlight the importance of the regularity or rigid-
ity of the starting configuration (0.6) in determining the number variance be-
haviour. However, it is reasonable to suppose, that in Johansson’s model, the
strong restrictions placed on the movement of the Brownian particles must also
contribute significantly to the saturation behaviour that its number variance
demonstrates. This leads us to ask; what would happen if we started with an
initial configuration such as (0.6) but did not place such strong restrictions on
the movement of the particles? We answer this question for the cases in which
each particle moves independently as a one-dimensional Brownian motion or as
a symmetric α-stable process on R.

Recall (see e.g. [21]) that a symmetric α-stable process is a Lévy process
(Xα,c(t), t ≥ 0) with characteristic function, for each t ≥ 0, given by

φXα,c(t)(θ) := E
[
eiθXα,c(t)

]
= exp

(
− t c |θ|α

)
, c > 0, α ∈ (0, 2). (1.1)

Some of the properties enjoyed by this class of processes are;

• {Xα,c(t), t ≥ 0} with associated transition density pt(x, y) , x, y ∈ R is
temporally and spatially homogeneous.

• {Xα,c(t)} is symmetric and self-similar in the sense that {Xα,c(t)} dist=
{−Xα,c(t)} and {λ−1/αXα,c

(
λt
)
} dist= {Xα,c(t)} for constants λ ∈ R.

The arguments that follow also apply to the α = 2 Gaussian cases. Note that
we have standard Brownian motion when α = 2, c = 1

2 .

Theorem 2. Fix a symmetric α-stable process (Xα,c(t), t ≥ 0) on R with prop-
erties as described above. Suppose we start an independent copy of this process
from each of the starting positions

uj := a(j − ε), j ∈ Z, where a ∈ R+ and ε ∼ Uniform[0, 1]. (1.2)

The configuration of particles in space formed by this infinite system of inde-
pendent symmetric α-stable processes at a fixed time t has number variance

V α,c,a
t [L] =

L

a
+

2
π

∫ ∞

0

e−2ct(θ/a)α

θ2

[
cos
(Lθ

a

)
− 1
]
dθ. (1.3)

Proof. Let {(Xα,c
j (t), t ≥ 0), j ∈ Z} be the independent copies of the chosen

symmetric α-stable process indexed by j ∈ Z. Denote the law of each Xα,c
j

started from x ∈ R by Px, and write P := P0. Now the number of symmetric
α-stable particles in an interval [0, L] ⊂ R at time t is given by the sum of
indicator random variables

Nα,c,a
t [0, L] =

∞∑
j=−∞

I[Xα,c
j (t) + uj ∈ [0, L]], (1.4)

where (uj)∞j=−∞ is given by (1.2). Note that by construction, for this “averaged

model”, for all b ∈ R we have Nα,c,a
t [0, L] dist= Nα,c,a

t [b, b + L]. Thus the number
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variance is given by

V α,c,a
t [L] := Var

[
Nα,c,a

t [0, L]
]

=
∞∑

j=−∞
P[Xα,c

j (t) + uj ∈ [0, L]] P[Xα,c
j (t) + uj /∈ [0, L]]. (1.5)

We can use the self-similarity property and the independence of ε and the Xj

to write the probabilities under consideration as convolutions which then allows
us to deduce

∞∑
j=−∞

P[Xα,c
j (t) + a(j − ε) ∈ [0, L]] =

∫ ∞

−∞

∫ L/a

0

pt/aα(x, y) dy dx.

Hence

V α,c,a
t [L] (1.6)

=
∫ ∞

−∞

∫ L/a

0

pt/aα(x, y) dy dx︸ ︷︷ ︸
T1

−
∫ ∞

−∞

∫ L/a

0

∫ L/a

0

pt/aα(x, y)pt/aα(x, z) dz dy dx︸ ︷︷ ︸
T2

.

By Fubini’s Theorem and symmetry we have

T1 =
∫ L/a

0

∫ ∞

−∞
pt/aα(y, x) dxdy =

L

a
. (1.7)

For the other term we make use of the Chapman-Kolmogorov identity and the
spatial homogeneity before performing an integral switch to obtain

T2 =
∫ L/a

0

∫ (L/a)−y

−y

p2t/aα(0, z) dz dy

=
L

a

∫ L/a

−L/a

p2t/aα(0, z) dz +
∫ 0

−L/a

z p2t/aα(0, z) dz −
∫ L/a

0

z p2t/aα(0, z) dz.

From the symmetry property we know that, for each t, pt(0, z) is an even func-
tion in z and g(z) := z pt(0, z) is an odd function in z. These facts allow us to
conclude, bringing the two terms together,

V α,c,a
t [L] =

2L

a

∫ ∞

L/a

p2t/aα(0, z) dz + 2
∫ L/a

0

z p2t/aα(0, z) dz. (1.8)

Applying Fourier inversion to the characteristic function φXα,c(t)(θ) given at
(1.1), we deduce that the transition density can be expressed as

pt(0, z|α, c) =
1
π

∫ ∞

0

cos(zθ)e−ctθα

dθ.

Using this density, the symmetry property and the expression (1.8) we obtain

V α,c,a
t [L] =

L

a
+

2
π

∫ ∞

0

e−2ct(θ/a)α

θ2

[
cos
(Lθ

a

)
− 1
]
dθ,

as required.
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Having found a general expression for the number variance we are able to
consider its behaviour as the interval length L is increased. Note that given
positive real valued functions g and h we let g ∼ h signify that lim g

h = 1.

Theorem 3. Consider the number variance V α,c,a
t [L] for the system of sym-

metric α-stable processes considered above. We claim that

V α,c,a
t [L] ∼


kα,c,a,t L1−α, for α ∈ (0, 1),
kα,c,a,t log(L), for α = 1,
kα,c,a,t L1−α + κsat(α, c, a, t), for α ∈ (1, 2),
kα,c,a,t e−L2/8ct + κsat(α, c, a, t), for α = 2,

(1.9)

as L →∞, where kα,c,a,t is a constant depending on α, c, a and t, and

κsat(α, c, a, t) =
2
aπ

(2tc)1/αΓ
(
1− 1

α

)
, (1.10)

where Γ(x) :=
∫∞
0

sx−1 e−s ds is the usual Gamma function.

Proof. From (1.8) note that we may re-write the expression for the number
variance as

V α,c,a
t [L] =

L

a
P
[∣∣∣Xα,c

( 2t

aα

)∣∣∣>L/a
]
+EP

[∣∣∣Xα,c
( 2t

aα

)∣∣∣ ; ∣∣∣Xα,c
( 2t

aα

)∣∣∣<L/a
]
,

(1.11)

Now the behaviour of the first term in this expression is well known (see [20],
page 16). For α ∈ (0, 2) we have

L

a
P
[∣∣∣Xα,c

( 2t

aα

)∣∣∣ > L/a
]
∼ kα

2ct

a
L1−α as L →∞,

where kα =
( ∫∞

0
x−α sinxdx

)−1

. We use log(L) when α = 1. In the Gaussian
case (α = 2) we have instead

L

a
P
[∣∣∣X( 2t

a2

)∣∣∣ > L/a
]
∼ a√

2cπt
e−L2/8ct as L →∞.

To deal with the second term of (1.11) observe that we have

EP

[∣∣∣Xα,c(2t/aα)
∣∣∣ ; ∣∣∣Xα,c(2t/aα)

∣∣∣ < L/a
]

L→∞→ EP

[∣∣∣Xα,c(2t/aα)
∣∣∣]

=
∫ ∞

0

P
[∣∣∣Xα,c(2t/aα)

∣∣∣ > λ
]
dλ.

Thus it is clear that the rate of divergence or saturation of the number variance
is determined by the upper tail of the distribution of the underlying symmetric
α-stable process. This may also be seen by differentiating the integral expression
for V α,c,a

t [L] with respect to L

∂V α,c,a
t [L]
∂L

=
1
a

[
P
∣∣∣X( 2t

aα

)∣∣∣ ≥ L

a

]
.
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Consequently, for α ∈ (1, 2] (the saturating cases)

lim
L→∞

V α,c,a
t [L] = EP

[∣∣∣∣∣Xα,c
( 2t

aα

)∣∣∣∣∣
]

=: κsat(α, c, a, t) < ∞.

The exact expression for κsat can be obtained from the moments. By [22], if X
is a symmetric α-stable random variable with 0 < α ≤ 2 and scale σ, then for
−1 < δ < α we have

E
[∣∣X∣∣δ] =

σδ/α 2δ Γ
(

1+δ
2

)
Γ
(
1− δ/α

)
Γ(1/2) Γ(1− δ/2)

.

Applying this theorem with δ = 1, σ = 2ct
aα gives (1.10). To see how this fits in

with the integral expression for V α,c,a
t [L], it may be verified that for α ∈ (1, 2]

κsat(α, c, a, t) = − 2
π

∫ ∞

0

e−2ct(θ/a)α

θ2
dθ.

The saturation result is now a consequence of Theorem 3.

Corollary 1. 1. If α ∈ (0, 1], at each time t > 0, V α,c,a
t [L] diverges as

L →∞.

2. If α ∈ (1, 2], at each time t < ∞, V α,c,a
t [L] saturates to the level

κsat(α, c, a, t) as L →∞.

Remark 1. Even from the simplest equation (1.5) it is clear that the largest
contributions to the number variance come from the activity at the edges of
the interval under consideration. Thus intuitively, the fatter the tails of the
distributions concerned the greater the number of particles that may be in the
vicinity of these edges making these substantial contributions, the slower the
decline in this number as the interval length increases and consequently the
slower the decay in the growth of the number variance.

We now apply Theorems 2 and 3 to two well known examples.

Corollary 2 (Brownian case). Consider an infinite system of Brownian par-
ticles started from the initial configuration (uj)∞j=−∞ as given at (1.2). The
number variance for this process is

V
2, 1

2 ,a
t [L] =

2
a

[
LΦ
( −L√

2t

)
+

√
t

π

(
1− e−L2/4t

)]
,

where
Φ(x) :=

1√
2π

∫ x

−∞
e−y2/2 dy.

As L →∞ this number variance saturates exponentially quickly to the level

2
a

√
t

π
.
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Corollary 3 (Symmetric Cauchy case). Consider an infinite system of symmet-
ric Cauchy processes started from the initial configuration (uj)∞j=−∞ as given at
(1.2). The number variance for this process is

V 1,1,a
t [L] =

L

a

[
1− 2

π
arctan

[ L

2t

]]
+

2t

aπ

[
log
(
1 +

( L

2t

)2)]
. (1.12)

For “large” (relative to 2t) L, we have

V 1,1,a
t [L] ≈ 4t

aπ
log
( L

2t

)
and so the number variance diverges at a logarithmic rate as L →∞.

Remark 2. Coincidentally, in the symmetric Cauchy case, if we set a = 1,
t = 1

4π we have

V 1,1,1
1
4π

[L] ≈ 1
π2

log(2πL)

and so we see similar number variance behaviour as in the sine kernel case (0.3).

Remark 3. In general, the number variance for the sine kernel determinantal
process and for Johansson’s determinantal process described in the introduction,
can be expressed in the form (1.8) with p2t/aα(0, z) replaced by the functions
sin2(πz)

aπ2z2 and sin2(πz)
aπ2z2 + d2−z2

2aπ2(d2+z2)2 respectively. In the latter case the saturation
level is again given by the “expectation” term.

Remark 4. The Cauchy (α = 1) case has the slowest growing non-saturating
number variance amongst all those considered here. Analogously, the sine ker-
nel determinantal process has the slowest growing number variance amongst
all translation invariant determinantal processes whose kernels correspond to
projections (i.e. the Fourier transform of the kernel is an indicator) see [24].

Remark 5. At the other extreme note that as α → 0 we recover Poisson
behaviour in that

lim
α→0

V α,c,a
t [L] =

L

a
(1− e−2ct).

1.3 A Poisson approximation for the counting function

At the beginning of this section we recalled that a system of independent pro-
cesses (satisfying fairly general conditions) started from a Poisson process on R
remains in a Poisson process configuration and hence demonstrates a number
variance linear in L, for all time. Now from (1.6) and (1.7) we deduce that

V α,c,a
t [L] ≤ L/a, ∀ α, c, a, t. (1.13)

From the integral expression for the number variance (1.3), we see that for fixed
L

V α,c,a
t [L] → L/a as t →∞,

and for each t, as L is decreased

V α,c,a
t [L] L→0∼ L/a.
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So in both these limiting cases (as well as in the α → 0 case c.f. Remark 5)
the maximal linear number variance is attained. The balance of the parameters
L, a, α and t, encapsulated by the number variance, determines how “far away”
from being Poisson the distribution of Nα,c,a

t [0, L] actually is. Below we make
this observation precise.

Recall that given a measurable space (Ω,F) we define the total variation
distance dTV (·, ·) between two probability measures µ1, µ2 on Ω by

dTV (µ1, µ2) := sup
F∈F

|µ1(F )− µ2(F )|.

Propostition 1. Let L(Nα,c,a
t [0, L]) denote the law of the random variable

Nα,c,a
t [0, L] defined at (1.4). Let Po(L/a) denote the law of a Poisson random

variable with mean L/a. Then, for L ≥ 1,

L− V α,c,a
t [L]a
32L

≤dTV

(
L(Nα,c,a

t [0, L]),Po(L/a)
)
≤(1− e−

L
a )

L− V α,c,a
t [L]a
L

.

Proof. The result is an application of a theorem of Barbour and Hall [2]. Their
theorem states that if A :=

∑
j Ij is the sum of independent indicator random

variables indexed by j and qj(L) = E[Ij ], λ =
∑

j qj(L) then if we denote the
law of A by L(A) we have

1
32

min(1, 1/λ)
∑

j

qj(L)2 ≤ dTV

(
L(A),Po(L/a)

)
≤ 1− e−λ

λ

∑
j

qj(L)2.

In our specific case we have Nα,c,a
t [0, L] as the sum of independent indicator

random variables given by (1.4), λ = L/a and
∑

j qj(L)2 = L
a − V α,c,a

t [L].

Remark 6. For a fixed t, the Poisson approximation becomes less accurate as
L →∞. The greater the value of α the faster the quality of the approximation
deteriorates. For α > 1, due to the fact that the number variance saturates, the
approximation of the law of Nα,c,a

t [0, L] by a Poisson distribution of mean L/a
becomes very poor with the total variation distance clearly bounded away from
zero.

2 Gaussian fluctuations of the counting function

Thus far we have been concerned with the variance of the counting function
Nα,c,a

t [0, L] (1.4).Of course this variance is, by definition, a description of the
fluctuation of Nα,c,a

t [0, L] around its mean L
a . In this section we will further

characterize these fluctuations.

Propostition 2. Let Nα,c,a
t [0, L], V α,c,a

t [L] denote, as usual, the counting func-
tion and number variance. For the cases with α ∈ (0, 1] we have that

Nα,c,a
t [0, L]− L/a√

V α,c,a
t [L]

(2.1)

converges in distribution to a standard normal random variable as L →∞.
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Proof. Recall that the cumulants ck, k ∈ N of a real valued random variable Y
are defined by

log E[exp(iθY )] =
∞∑

k=1

ck
(iθ)k

k !
.

Using the independence of the individual symmetric α-stable processes and then
applying the Taylor expansion of log(1 + x) about zero, we have

log EP[exp(iθNα,c,a
t [0, L])] =

∞∑
j=−∞

log
[(

eiθ − 1
)
qj(L) + 1

]
=

∞∑
m=1

(eiθ − 1)m

m
(−1)m+1

( ∞∑
j=−∞

qj(L)m
)
,

where qj(L) := P[Xα,c
j (t)+uj ∈ [0, L]] and Xα,c

j (t) denotes as usual the underly-
ing symmetric α-stable process labelled by j with uj the corresponding starting
position. Hence, the cumulants of Nα,c,a

t [0, L] are given by

ck =
dk

dθk

∞∑
m=1

(eiθ − 1)m

m
(−1)m+1

( ∞∑
j=−∞

qj(L)m
)∣∣∣

θ=0
. (2.2)

It is straightforward to see that

c1 = L/a, c2 =
∞∑

j=−∞
qj(L)− qj(L)2 = V α,c,a

t [L]

give the mean and number variance respectively. More generally from the equa-
tion (2.2) it is possible to deduce the following recursive relation

ck =
k−1∑
m=2

βk,mcm + (−1)k(k − 1)!
∞∑

j=−∞
qj(L)− qj(L)k, (2.3)

where βk,m are constant, finite, combinatorial coefficients which will not be
needed here. Now let

Y α,c,a
t :=

Nα,c,a
t [0, L]− L/a√

V α,c,a
t [L]

.

It is easily deduced that the cumulants c̃k, k ∈ N of Y α,c,a
t are given by

c̃1 = 0,

c̃k =
ck

(V α,c,a
t [L])k/2

, for k ≥ 2.

To prove the Proposition it is sufficient to show that in the limit as L →∞, the
cumulants correspond those of a Gaussian random variable. That is, we have
c̃3 = c̃4 = c̃5 = · · · = 0. Equivalently, we need to show

ck = o((V α,c,a
t [L])k/2) = o(ck/2

2 ), for k ≥ 3.

11



We use an induction argument.
Suppose that cm = o(cm/2

2 ) for m = 3, . . . , k − 1. Assume, without loss of
generality, that k is even. We use the inequality

qj(L)− qj(L)k =
k−1∑
l=1

qj(L)l − qj(L)l+1

≤ (k − 1) (qj(L)− qj(L)2) (2.4)

in conjunction with the recursive relation for ck given by (2.3) to deduce

k−1∑
m=2

βk,mcm ≤ ck ≤ (k − 1)!(k − 1)c2 +
k−1∑
m=2

βk,mcm.

From our induction supposition this implies that

o(ck/2
2 ) ≤ ck ≤ o(ck/2

2 ) + (k − 1)!(k − 1) c2. (2.5)

However, from the results of the previous section, we know that, for these cases

with α ∈ (0, 1], for k ≥ 3, c
k−2
2

2 = V α,c,a
t [L]

k−2
2 → ∞ as L → ∞. Thus from

(2.5) ck = o(ck/2
2 ) also. Now using the same arguments as for the inequality

(2.4) we find

− 1
√

c2
≤ c3

c
3/2
2

≤ 1
√

c2
.

Thus we have c3 = o(c3/2
2 ). By the induction argument we can deduce that

ck

(c2)k/2 → 0 as L →∞ for all k ≥ 3 which concludes the proof.

Remark 7. The divergence of the number variance is relied upon in a similar
way to prove the analogous Gaussian fluctuation results for a large class of
determinantal processes, see [8, 25, 24]. In all cases the overall structure of the
proof is the same. We note that the Proposition could also have been proven
by applying the Lindberg-Feller Central Limit Theorem (see e.g. [10]).

Proposition 2 applies to the cases with α ∈ (0, 1]. The following convergence
in distribution result applies to all cases with α ∈ (0, 2] and is obtained by allow-
ing both interval length and time t tend to infinity together in an appropriate
way.

Propostition 3. For any fixed s ∈ [0,∞) we have that

Nα,c,a
t [0, st1/α]− st1/α/a

t1/2α
(2.6)

converges in distribution as t →∞, to a normal random variable with zero mean
and variance fα,c,a(s), where

fα,c,a(s) := V α,c,a
1 [s]

=
4s

aπ

∫ ∞

0

sin2(u/2)
u2

(
1− e−2c(u/s)α)

du. (2.7)
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Proof. Since V α,c,a
t [st1/α] → ∞ as t → ∞, a similar argument as for the proof

of Proposition 2 allows us to conclude that

Nα,c,a
t [0, st1/α]− st1/α/a√

V α,c,a
t [st1/α]

(2.8)

converges in distribution as t → ∞ to a standard normal random variable.
Making the change of variable u = st1/αθ/a in the integral expression for the
number variance (1.3), using

∫∞
0

sin2(u)/u2du = π/2 and a double angle formula
yields

V α,c,a
t [st1/α]

t1/α
=

4s

aπ

∫ ∞

0

sin2(u/2)
u2

(
1− e−2c(u/s)α)

du =: fα,c,a(s).

Note that from (1.13) we know fα,c,a(s) < ∞ for all s < ∞ and so the result
follows from the scaling property of the Gaussian distribution.

3 The fluctuation process

We proceed by adding some dynamics to the fluctuations of the counting func-
tion and define, for each α ∈ (0, 2], c > 0, a ∈ R+, the process

Zα,c,a
t (s) :=

Nα,c,a
t [0, st1/α]− st1/α/a

t1/2α
, s ∈ [0,∞).

3.1 The covariance structure

We begin to characterize these processes by identifying the covariance structure.

Lemma 1. {Zα,c,a
t (s); s ∈ [0,∞)} has covariance structure

Cov
(
Zα,c,a

t (r), Zα,c,a
t (s)

)
=

1
2
(
fα,c,a(s) + fα,c,a(r)− fα,c,a(|r − s|)

)
.

Proof. By construction

Nα,c,a
t [0, (r ∨ s)t1/α]−Nα,c,a

t [0, (r ∧ s)t1/α] dist= Nα,c,a
t [0, |r − s|t1/α].

Hence, from the definition of Zα,c,a
t

Zα,c,a
t (|r − s|) dist= Zα,c,a

t (r ∨ s)− Zα,c,a
t (r ∧ s),

which implies that

Var
(
Zα,c,a

t (|r − s|)
)

=Var
(
Zα,c,a

t (r ∧ s)
)

+ Var
(
Zα,c,a

t (r ∨ s)
)

− 2Cov
(
Zα,c,a

t (r ∧ s), Zα,c,a
t (r ∨ s)

)
.

Rearranging gives

Cov
(
Zα,c,a

t (s), Zα,c,a
t (r)

)
=

1
2

(
Var
(
Zα,c,a

t (r ∧ s)
)

+ Var
(
Zα,c,a

t (r ∨ s)
)
−Var

(
Zα,c,a

t (|r − s|)
))

=
1

2 t1/α

(
V α,c,a

t [st1/α] + V α,c,a
t [rt1/α]− V α,c,a

t [|r − s|t1/α]
)
.

On referring back to the definition of fα,c,a(·) we see that this last statement is
equivalent to the result of the Lemma.

Note that the covariance does not depend on t.
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3.2 Convergence of finite dimensional distributions

Given the covariance structure of Zα,c,a
t and the identification of its Gaussian

one dimensional marginal distributions the natural next step is to consider the
finite dimensional distributions.

Propostition 4. Let {Gα,c,a(s) : s ∈ [0,∞)} be a centered Gaussian process
with covariance structure

Cov
(
Gα,c,a(si), Gα,c,a(sj)

)
=

1
2
(
fα,c,a(si) + fα,c,a(sj)− fα,c,a(|si − sj |)

)
. (3.1)

For any 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn < ∞ we have

(Zα,c,a
t (s1), Z

α,c,a
t (s2), . . . , Z

α,c,a
t (sn)) ⇒ (Gα,c,a(s1), Gα,c,a(s2), . . . , Gα,c,a(sn))

as t →∞.

Proof. As previously noted, the mean and covariance structure of Zα,c,a
t (s) are

not dependent on t. Therefore, all that remains is to show that, in the limit
as t → ∞, the joint distributions are Gaussian. We again make use of the
cumulants.

Recall that given a random vector Y := (Y1, Y2, . . . , Yn) ∈ Rn, the joint cu-
mulants of Y denoted Cm1,m2,...,mn

(Y) are defined via the mj ’th partial deriva-
tives of the logarithm of the characteristic function of Y. That is,

Cm1,m2,...,mn
(Y) :=

(
∂

∂
(
iθ1

))m1
(

∂

∂
(
iθ2

))m2

· · ·

(
∂

∂
(
iθn

))mn

log E
[
exp

( n∑
j=1

iθjYj

)]∣∣∣
θ=0

.

If

C0,0,..., 1︸︷︷︸
i’th

,...,0(Y) = E[Yi] = 0

C0,0,..., 2︸︷︷︸
i’th

,...,0(Y) = Var[Yi] = Σii

C0,..., 1︸︷︷︸
i’th

,...,0,..., 1︸︷︷︸
j’th

,...,0(Y) = Cov[Yi, Yj ] = Σij

and in particular

Cm1,m2,...,mn(Y) = 0, whenever
n∑

i=1

mi ≥ 3,

then Y has a multivariate normal(0,Σ) distribution. To prove the Proposition
it is enough to show that

(Zα,c,a
t (s1), Z

α,c,a
t (s2)) → MultivariateNormal(0,Σα,c,a) (3.2)

in distribution as t →∞, where Σα,c,a is the 2× 2 covariance matrix(
fα,c,a(s1) 1

2

(
fα,c,a(s1)+fα,c,a(s2)−fα,c,a(|s1 − s2|)

)
1
2

(
fα,c,a(s1)+fα,c,a(s2)−fα,c,a(|s1 − s2|)

)
fα,c,a(s2)

)
.
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We begin by computing the characteristic function of(
Nα,c,a

t [0, s1t
1/α], Nα,c,a

t [0, s2t
1/α]

)
.

Using the independence of the individual particles we have

EP

[
exp(iθ1N

α,c,a
t [0, s1t

1/α] + iθ2N
α,c,a
t [0, s2t

1/α])
]

= EP

[
exp i

(
(θ1 + θ2)N

α,c,a
t [0, s1t

1/α] + θ2N
α,c,a
t [s1t

1/α, s2t
1/α]

)]
=

∞∏
j=−∞

(
ei(θ1+θ2)P

[
Xα,c

j (t)+uj ∈ [0, s1t
1/α]
]

+ eiθ2P
[
Xα,c

j (t) + uj ∈ [s1t
1/α, s2t

1/α]
]
+ P

[
Xα,c

j (t)+uj /∈ [0, s2t
1/α]

])
.

For ease of notation we will henceforth let

qj(sl, sr) := P[Xα,c
j (t) + uj ∈ [slt

1/α, srt
1/α]], 0 ≤ sl ≤ sr < ∞.

The joint cumulants are given by

Cm1,m2

(
Nα,c,a

t [0, s1t
1/α], Nα,c,a

t [0, s2t
1/α]

)
=

∞∑
j=∞

( ∂

∂(iθ1)

)m1
( ∂

∂(iθ2)

)m2

log
(
ei(θ1+θ2)qj(0, s1)+eiθ2qj(s1, s2)+1− qj(0, s2)

)∣∣∣
θ=0

.

Now using the fact that( ∂

∂(iθ1)

)m1
( ∂

∂(iθ2)

)m2

ei(θ1+θ2)qj(0, s1) + eiθ2qj(s1, s2) + 1− qj(0, s2)

= ei(θ1+θ2)qj(0, s1) ∀ m1,m2 s.t. m1 ≥ 1

and ( ∂

∂(iθ2)

)m2

ei(θ1+θ2)qj(0, s1) + eiθ2qj(s1, s2) + 1− qj(0, s2)

= ei(θ1+θ2)qj(0, s1) + eiθ2qj(s1, s2) ∀ m2,

along with(
ei(θ1+θ2)qj(0, s1) + eiθ2qj(s1, s2) + 1− qj(0, s2)

)∣∣∣
θ=0

= 1,

we deduce the following generalization of the recursive relation (2.3), with ob-
vious short-hand notation for the joint cumulants

Cm1,m2 =
∑
k,l:

2≤k+l≤m1+m2−1

βk,l,m1,m2 Ck,l

+ (−1)m1+m2(m1 + m2 − 1)!
∞∑

j=−∞
qj(0, s1)−qj(0, s1)m1qj(0, s2)m2 .
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Now suppose that Ck,l = o(t
k+l
2α ) for all k, l such that k + l ∈ {3, 4, . . . ,m1 +

m2 − 1} and without loss of generality assume that m1 + m2 is even. Since

0 ≤ qj(0, s1)− qj(0, s1)m1qj(0, s2)m2 ≤ qj(0, s1),

if we assume that the above induction hypothesis holds, then we have

o(t
m1+m2−1

2α ) ≤ Cm1,m2 ≤ o(t
m1+m2−1

2α ) + (m1 + m2 − 1)!
s1t

1/α

a
, (3.3)

which implies that Cm1,m2 = o(t
m1+m2

2α ) also. We check the third order joint
cumulants directly and deduce that

o(t
3
2α ) ≤ Ck,l ≤ o(t

3
2α ) + 2

(s2t
1/α

a

)
when k + l = 3,

since the variances and covariance of (Nα,c,a
t [0, s1t

1/α], Nα,c,a
t [0, s2t

1/α]) (i.e.
C2,0, C0,2, C1,1) grow at most like t1/α as t → ∞. Therefore, by induction,
whenever m1 + m2 ≥ 3 we have

Cm1,m2(N
α,c,a
t [0, s1t

1/α], Nα,c,a
t [0, s2t

1/α])
t(m1+m2)/2α

→ 0 as t →∞.

In terms of the joint cumulants of Zα,c,a
t this implies

Cm1,m2(Z
α,c,a
t (s1), Z

α,c,a
t (s2)) → 0 as t →∞ whenever m1 + m2 ≥ 3,

from which the claim (3.2) and the Proposition follow.

3.3 A functional limit for the fluctuation process

In order to give a functional limit result we consider a continuous approximation
{Ẑα,c,a

t (s) : s ∈ [0,∞)} to the process {Zα,c,a
t (s) : s ∈ [0,∞)}. Let

Ẑα,c,a
t (s) :=

N̂α,c,a
t [0, st1/α]− st1/α/a

t1/2α
, (3.4)

where N̂α,c,a
t [0, st1/α] is defined to be equal to Nα,c,a

t [0, st1/α] except at the
points of discontinuity where we linearly interpolate. Let C[0, 1] be the space of
continuous real valued functions on [0, 1] equipped with the uniform topology.
We shall denote the measure induced by {Ẑα,c,a

t (s) : s ∈ [0, 1]} on the space
(C[0, 1],B(C[0, 1])) by Qα,c,a

t . To simplify notation we restrict attention to
the interval [0, 1] but note that the ensuing functional limit theorem extends
trivially to any finite real indexing set. The remainder of this section is devoted
to establishing the following weak convergence result.

Theorem 4. Let Qα,c,a be the law of the centered Gaussian process {Gα,c,a(s) :
s ∈ [0, 1]} introduced in the statement of Proposition 4. Then

Qα,c,a
t ⇒ Qα,c,a

as t →∞.
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Proof. Note that by definition

|Ẑα,c,a
t (s)− Zα,c,a

t (s)| ≤ 1
t1/2α

. (3.5)

Thus, as t →∞, the finite dimensional distributions of Ẑα,c,a
t (s) must converge

to the finite dimensional distributions of the limiting process Gα,c,a(s) to which
those of Zα,c,a

t converge. Hence, immediately from Proposition 4 we have that
for any 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn < ∞,

(Ẑα,c,a
t (s1), Ẑ

α,c,a
t (s2), . . . , Ẑ

α,c,a
t (sn)) ⇒ (Gα,c,a(s1), Gα,c,a(s2), . . . , Gα,c,a(sn))

as t → ∞. Therefore, by a well known result of Prohorov’s (see e.g. [6]), the
proposed functional limit theorem holds if the sequence of measures {Qα,c,a

t }
is tight. Indeed this tightness requirement follows from Proposition 5 given
below.

The sufficient conditions for tightness verified below are stated in terms of
the distributions

P(Ẑα,c,a
t ∈ A) = Qα,c,a

t (A) A ∈ B(C[0, 1]),

and the modulus of continuity, which in this case is defined by

w(Ẑα,c,a
t , δ) := sup

|s−r|≤δ

|Ẑα,c,a
t (s)− Ẑα,c,a

t (r)|, δ ∈ (0, 1].

Propostition 5. Given ε, λ > 0 ∃δ > 0, t0 ∈ N such that

P[w(Ẑα,c,a
t , δ) ≥ λ] ≤ ε, for t ≥ t0.

Proposition 5 is proven via the following series of Lemmas.

Lemma 2. Suppose 0 ≤ u ≤ r ≤ s ≤ v ≤ 1, then

|Ẑα,c,a
t (s)− Ẑα,c,a

t (r)| ≤ |Ẑα,c,a
t (v)− Ẑα,c,a

t (u)|+ (v − u)t1/2α.

Proof. Clearly, by construction

0 ≤ N̂α,c,a
t [0, st1/α]− N̂α,c,a

t [0, rt1/α] ≤ N̂α,c,a
t [0, vt1/α]− N̂α,c,a

t [0, ut1/α].

Therefore, using the definition of Ẑα,c,a
t , we have

0 ≤ Ẑα,c,a
t (s)− Ẑα,c,a

t (r) +
(s− r)

a
t1/2α ≤ Ẑα,c,a

t (v)− Ẑα,c,a
t (u) +

(v − u)
a

t1/2α.

The result follows by rearranging, using the facts a ∈ R+, (v− u) ≥ (s− r) ≥ 0
and then considering separately each case

Ẑα,c,a
t (s)− Ẑα,c,a

t (r) ≥ 0 or Ẑα,c,a
t (s)− Ẑα,c,a

t (r) < 0.

Lemma 3.

|Ẑα,c,a
t (s)− Ẑα,c,a

t (r)| ≤ 2
t1/2α

+ |Zα,c,a
t (s)− Zα,c,a

t (r)|. (3.6)
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Proof. Follows from (3.5) and an application of the triangle inequality.

To obtain results on the distribution of the modulus of continuity for our
sequence of processes {Ẑα,c,a

t } we divide the interval [0, 1] into m disjoint subin-
tervals of length approximately δ as follows. Let

0 = r0 < rk1 < · · · < rkm−1 < rkm = 1, (3.7)

where we define

ri :=
i

t1/α
, i ∈ N

kj := jdδt1/αe, j ∈ {0, 1, 2, . . . ,m− 1}

and d·e denotes the ceiling function. We have

δ ≤ rkj − rkj−1 ≤ δ +
1

t1/α
j ∈ {1, 2, . . . ,m− 1},

with the subintervals [ri−1, ri], i ∈ N typically being shorter in length.

Lemma 4.

P
[
w(Ẑα,c,a

t , δ) ≥ λ
]
≤

m−1∑
j=0

P
[

max
kj≤i≤kj+1

|Zα,c,a
t (ri)− Zα,c,a

t (rkj
)| ≥ λ

9
− 7

3 t1/2α

]
.

Proof. Given the partition (3.7), standard methods (see Theorem 7.4 of [6])
yield

P
[
w(Ẑα,c,a

t , δ) ≥ λ
]
≤

m−1∑
j=0

P
[

sup
rkj
≤s≤rkj+1

|Ẑα,c,a
t (s)− Ẑα,c,a

t (rkj
)| ≥ λ

3

]
. (3.8)

By the triangle inequality we have

|Ẑα,c,a
t (s)− Ẑα,c,a

t (rkj )| ≤ |Ẑα,c,a
t (s)− Ẑα,c,a

t (ri)|+ |Ẑα,c,a
t (ri)− Ẑα,c,a

t (rkj )|.
(3.9)

Now if s ∈ [rkj
, rkj+1 ], then either

Ẑα,c,a
t (s) = Ẑα,c,a

t (ri) for some i ∈ N

immediately simplifying (3.9), or ∃i ∈ N such that

rkj
≤ ri−1 < s < ri ≤ rkj+1

in which case from Lemma 2 we have

|Ẑα,c,a
t (s)− Ẑα,c,a

t (ri)|

≤ |Ẑα,c,a
t (ri)− Ẑα,c,a

t (ri−1)|+ (ri − ri−1)t1/2α

= |Ẑα,c,a
t (ri)− Ẑα,c,a

t (ri−1)|+
1

t1/2α

≤ |Ẑα,c,a
t (ri)− Ẑα,c,a

t (rkj
)|+ |Ẑα,c,a

t (ri−1)− Ẑα,c,a
t (rkj

)|+ 1
t1/2α

. (3.10)
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Therefore, using the inequality (3.9) in conjunction with (3.10) and Lemma 3,
we have that for s, ri ∈ [rkj

, rkj+1 ]∣∣∣Ẑα,c,a
t (s)− Ẑα,c,a

t (rkj )
∣∣∣

≤
∣∣∣Ẑα,c,a

t (ri)− Ẑα,c,a
t (rkj )

∣∣∣+ ∣∣∣Ẑα,c,a
t (ri−1)− Ẑα,c,a

t (rkj )
∣∣∣+ 1

t1/2α

+
∣∣∣Ẑα,c,a

t (ri)− Ẑα,c,a
t (rkj

)
∣∣∣

≤ 3 max
kj≤i≤kj+1

∣∣∣Ẑα,c,a
t (ri)− Ẑα,c,a

t (rkj
)
∣∣∣+ 1

t1/2α

≤ 3
[

max
kj≤i≤kj+1

∣∣∣Zα,c,a
t (ri)− Zα,c,a

t (rkj
)
∣∣∣+ 7

3t1/2α

]
.

Thus

P
[

sup
rkj
≤s≤rkj+1

∣∣∣Ẑα,c,a
t (s)− Ẑα,c,a

t (rkj
)
∣∣∣ ≥ λ

3

]
≤ P

[
max

kj≤i≤kj+1

∣∣∣Zα,c,a
t (ri)− Zα,c,a

t (rkj
)
∣∣∣+ 7

3t1/2α
≥ λ

9

]
.

Substituting this last inequality into (3.8) gives the statement of the Lemma.

Now that we have reduced the study of the distribution of the modulus of
continuity to that of the maximum fluctuation over our constructed subintervals
we can progress by introducing a maximal inequality. In order to do this we use
the following known result taken from [6] and paraphrased for use here.

Theorem 5. Consider a sequence of random variables {ξq}q≥1 and the associ-
ated partial sums

Su :=
u∑

q=1

ξq S0 := 0.

Let
Mn := max

1≤u≤n
|Su|.

If

P
[
|Sv − Su| ≥ γ

]
≤ 1

γ2

( ∑
u<l≤v

bl

)2

0 ≤ u ≤ v ≤ n

for γ > 0 and some b1, b2, . . . , bn ∈ R+, then

P[Mn ≥ γ] ≤ κ

γ2

( ∑
0<l≤n

bl

)2

,

where κ is a constant.

Proof. See [6], Theorem 10.2

Lemma 5.

P
[

max
1≤u≤n

|Zα,c,a
t (rkj+u)− Zα,c,a

t (rkj )| ≥ γ] ≤ κ

aγ2

(
nt−1/2α

)2
,

where κ is constant and γ > 0.
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Proof. Let
ξq := Zα,c,a

t (rkj+q)− Zα,c,a
t (rkj+q−1).

Then

Su :=
u∑

q=1

ξq = Zα,c,a
t (rkj+u)− Zα,c,a

t (rkj
) S0 := 0.

In this case, for v, u ∈ N, applying Chebyshev’s inequality and using the defini-
tion of fα,c,a(·) and the upper bound given at (1.13), we have

P
[
|Sv − Su| ≥ γ

]
= P

[
|Zα,c,a

t (rkj+v)− Zα,c,a
t (rkj+u)| ≥ γ

]
≤

fα,c,a(|rkj+v − rkj+u|)
γ2

≤ (v − u)t−1/α

aγ2

≤
[
(v − u)t−1/2α

]2
aγ2

.

Thus we can take bl = t−1/2α

a for l = 1, 2, . . . , n and apply Theorem 5 which
gives the maximal inequality of the Lemma.

Concluding the proof of Proposition 5 is now straightforward.

Proof of Proposition 5. Taking n = kj+1−kj in the statement of Lemma 5 gives

P
[

max
kj≤i≤kj+1

|Zt(ri)− Zt(rkj
)| ≥ γ

]
≤ κ

aγ2

(
rkj+1 − rkj

)2
≤ κ

aγ2

(
δ + t−1/α

)2
.

Substituting this last inequality with γ =
(

λ
9 −

7
3t1/2α

)
(which is strictly positive

for sufficiently large t) into the inequality given by Lemma 4 gives

P
[
w(Zα,c,a

t , δ) ≥ λ
]
≤ 81mκ

a

(
δt1/2α + t−1/2α

)2(
λt1/2α − 21

)2 .

On solving the appropriate quadratic equation we find that we can make this
upper bound less than ε by choosing δ from(

− t−1/2α − cε

(
λ− 21t−1/2α

)
, −t−1/2α + cε

(
λ− 21t−1/2α

))⋂(
0, 1
)
,

where cε =
√

aε
81mκ . Since this interval is non-empty for sufficiently large t this

completes the proof. �

3.4 Properties of the limiting process Gα,c,a(s)

We have constructed a family {(Gα,c,a(s), s ∈ [0,∞)), α ∈ (0, 2], c > 0, a ∈
R+} of centered, continuous, real-valued Gaussian processes with the inherited
covariance structure

Cov(Gα,c,a(s), Gα,c,a(r)) =
1
2
(
fα,c,a(s) + fα,c,a(r)− fα,c,a(|s− r|)

)
. (3.11)
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It is clear that the processes are recurrent for 1 < α ≤ 2 as the number variance
saturates and the stationary distribution is normal with mean zero and variance
κsat(α, c, a, 1). We are able to deduce further properties of these limit processes
by using our earlier results on the number variance for the systems of symmetric
α-stable processes from which they are constructed.

Propostition 6. Gα,c,a(s) is non-Markovian.

Proof. Recall (see e.g. [16], Chapter 13) that a Gaussian process with indexing
set T ⊂ R and covariance function ρ : T 7→ R is Markov if and only if

ρ(s, u) =
ρ(s, r)ρ(r, u)

ρ(r, r)
∀ s, u, r ∈ T.

It is clear that this relationship does not hold in general for the covariance
function (3.11).

From the results of previous sections, since fα,c,a(s) = V α,c,a
1 [s], we know

that

fα,c,a(s) → (1− e−2c)
s

a
as α → 0

and

fα,c,a(s) s→0∼ kα,c,a s.

Therefore, Gα,c,a appears to start out, for small “time” as a scaled Brownian
motion and as α → 0 this initial Brownian character prevails for longer. We
capture this more precisely in the following easily verified proposition.

Propostition 7. 1. {Gα,c,a(s) : s ∈ [0, 1]} converges weakly to a Brownian
motion {B( 1−e−2c

a s) : s ∈ [0, 1]} as α → 0.
2. Let Gα,c,a

ε (s) = ε−1/2Gα,c,a(εs). Then {Gα,c,a
ε (s) : s ∈ [0, 1]} converges

weakly to a Brownian motion {B( s
a ) : s ∈ [0, 1]} as ε → 0.

Remark 8. The covariance structure of Gα,c,a is similar to that of a Brownian
bridge. Recall that the standard Brownian bridge (Bbr(s), s ∈ [0, a]) of length
a, is a centered Gaussian process with covariance structure

Cov(Bbr(s), Bbr(r)) = s ∧ r − sr

a

and arises as a weak limit of many empirical processes. In particular, it may be
obtained from the appropriately scaled counting functions of a Poisson process
on R (see e.g. [16]). We can re-write the covariance (3.1) in the alternative form

Cov(Gα,c,a(s), Gα,c,a(r)) =
s ∧ r

a
−
∫ r

a

0

∫ s
a

0

p2/aα(y, z) dy dz,

but we see that a precise match would require p2/aα(y, z) = 1.

Propostition 8. The process Gα,c,a has stationary increments which are neg-
atively correlated.
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Proof. It is straightforward to see that the increments have zero mean and that
for any s, r ∈ [0,∞)

Var(Gα,c,a(s)−Gα,c,a(r)) = fα,c,a(|s− r|).

In addition, for u ≥ 0 we have

Cov(Gα,c,a(s)−Gα,c,a(0), Gα,c,a(r + s + u)−Gα,c,a(s + u))

=
1
2

(
fα,c,a(s + r + u)− fα,c,a(r + u)−

[
fα,c,a(s + u)− fα,c,a(u)

])
. (3.12)

Since fα,c,a is a concave function

fα,c,a(s + r + u)− fα,c,a(r + u) ≤ fα,c,a(s + u)− fα,c,a(u),

for all s, r, u ∈ [0,∞) so it follows that this covariance is non-positive.

Propostition 9. Gα,c,a is not in general self-similar. For any constant b ∈ R
we have the relationship

Gα,c,a(bs) dist= b1/2 Gα, c
bα ,a(s).

Proof. Both sides of the proposed equation have zero mean and a Gaussian
distribution. It is clear from the expression given for fα,c,a at (2.7) that the
variances/covariances also agree.

Propostition 10. Gα,c,a is a long memory (or long range dependent) process
in the sense that the covariance between increments decays as a power law as
the separation between them is increased. More precisely, for α ∈ (0, 2) we have

Cov
(
Gα,c,a(s)−Gα,c,a(0), Gα,c,a(r + s + u)−Gα,c,a(s + u)

) u→∞∼ k u−(α+1),

where k is a constant depending on α, c, a, s and r.

Proof. The covariance in question is expressed in terms of the function fα,c,a

at (3.12). Note from (1.9) that we already know the asymptotic behaviour of
the individual components of this expression. Applying l’Hopital’s rule twice in
succession yields the given power law.

We have already mentioned a similarity between the covariance structure
of Gα,c,a and that of Brownian motion. More generally we can draw parallels
between our limiting process and fractional Brownian motion. Recall (see for
example [18]) that a fractional Brownian motion (WH(s), s ≥ 0) with Hurst
parameter H ∈ (0, 1) is a centered, self-similar Gaussian process with covariance
function

Cov(WH(s),WH(r)) =
1
2

(
s2H + r2H − |s− r|2H

)
, (3.13)

The case H = 1
2 corresponds to a standard Brownian motion.

Note the resemblance between the form of the covariance functions (3.11)
and (3.13). Heuristically, we can deduce that fα,c,a(s) may be approximated
by a function of the form κα,c,as2Hα,c,a(s) where Hα,c,a : [0,∞) 7→ [0, 1

2 ] is
a monotonically decreasing function with initial value Hα,c,a(0) = 1

2 . Thus
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loosely speaking Gα,c,a can be viewed as a type of fractional Brownian motion
with time varying Hurst parameter. In particular, the long range dependence
property of Proposition 10 may be compared to the analogous statement for
fractional Brownian motion:

Cov
(
WH(s)−WH(0),WH(r + s + u)−WH(s + u)

) u→∞∼ ku2H−2,

where k is a constant depending on H, s and r. We make the link between
the process Gα,c,a and fractional Brownian motion precise with the following
statement.

Propostition 11. For α ∈ (0, 1) let

G̃α,c,a
b (s) :=

Gα,c,a(bs)√
b1−α

, s, b ∈ [0,∞).

Then

{G̃α,c,a
b (s) : s ∈ [0,∞)} ⇒ {k1/2

α,c,a W 1−α
2

(s) : s ∈ [0,∞)} as b →∞

where kα,c,a = 4c
aπ Γ(α− 1) sin

(
− απ/2

)
.

Proof. From (2.7), by applying a Taylor expansion we deduce that

fα,c,a(bs)
b1−α

= s1−α 8c

aπ

∫ ∞

0

sin2(u/2)
u2−α

du

+
4
aπ

∫ ∞

0

sin2(u/2)
∞∑

j=2

(−1)j+1

j !
(2c)js1−2jα ujα−2

bjα−α
du.

Now by the Dominated Convergence Theorem,

lim
b→∞

4
aπ

∫ ∞

0

sin2(u/2)
∞∑

j=2

(−1)j+1

j !
(2c)js1−2jα ujα−2

bjα−α︸ ︷︷ ︸
hb(u)

du

=
4
aπ

∫ ∞

0

sin2(u/2)
∞∑

j=2

lim
b→∞

(−1)j+1

j !
(2c)js1−2jα ujα−2

bjα−α
du,

= 0

since, setting M(u) = sin2(u/2)(1− exp(−2c(u/s)α))/u2 + sin2(u/2)/u2−α, we
have a positive integrable function such that |hb(u)| ≤ M(u) for all b ∈ R. This
implies that

lim
b→∞

fα,c,a(bs)
b1−α

= kα,c,a s1−α

which allows us to conclude

Cov
(
G̃α,c,a

b (r), G̃α,c,a
b (s)

)
= bα−1Cov

(
Gα,c,a(br), Gα,c,a(bs)

)
b→∞→ kα,c,a

2
(
s1−α + r1−α + |s− r|1−α

)
= Cov

(
k1/2

α,c,a W 1−α
2

(s), k1/2
α,c,a W 1−α

2
(r)
)
.
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The processes are Gaussian therefore the convergence of finite dimensional dis-
tributions is implied by the convergence of the covariance functions and tightness
follows easily from, for example, [16] Corollary 16.9 and well known expressions
for the even moments.

Remark 9. We mention that various other long-range dependent Gaussian
processes have recently been found to arise from the fluctuations of spatially
distributed particle systems, see [11] and references within. Notably, in this
context, the spatial particle configurations of infinite systems of symmetric α-
stable processes started from a Poisson process on R have been considered. In
these cases, fractional Brownian motion with Hurst parameter H = 2− 1

α , α ∈
(1, 2] was obtained as a scaling limit of the occupation time process (essentially
scaling the counting function in time rather than in time and space as in this
paper).

Remark 10. It seems natural to ask whether, in the same fashion as we created
Gα,c,a, similar limiting processes could be constructed from Johansson’s systems
of non-colliding Brownian motions. Unfortunately, the formula for the averaged
number variance given for these processes in [14] does not scale in time and
space in the same convenient way as V α,c,a

t [L] in this case. However, as noted by
Johansson, letting t →∞ in his model, one obtains the sine kernel determinantal
process, from which a limiting Gaussian process (parameterized and scaled in a
completely different way) was constructed in [23].
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