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Abstract

Using only a simple principle that states that the class of valid systems for statistical

inference should be closed under a certain data-augmentation process and complete in an

obvious sense, we show how Bayesian and other systems of inferences can be generated

in a direct manner from an initial system of point estimators. Using a generalisation

of Gibbs sampling, we construct refinement operators that act on systems of inference

to transform them into preferable systems. Interest then focuses on systems that are

fixed by these operators. In the one-dimensional setting, we characterise fixed points

obtained from systems of moment estimators. These limiting inferences can be considered
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2to be pseudo-Bayesian in that parameter densities combine a prior with a data-dependent

pseudo-likelihood. They are precisely Bayesian when the model lies in the exponential

family, with the usual conjugate prior arising as a by-product of the construction.

We also show that, given sufficiently strong assumptions on the model, the con-

struction, when applied to an initial system of maximum-likelihood estimators, leads

to Bayesian inference with Hartigan’s maximum likelihood prior as the fixed point, and

consider further generalisations of this. A counter-example is given to show that, for non-

regular models, a Bayesian fixed point may not arise from maximum-likelihood estimation.

Inter alia, the results offer a new perspective on the relationship between classical point

estimation and Bayesian inference, whereby the former is generated from the latter with-

out direct reference to the Bayesian paradigm, and motivate strategies for approximating

Bayesian posteriors or constructing contrast-based pseudo-likelihoods. Approaches to

generalising the results to higher-dimensional settings are discussed.

Keywords: Bayesian inference, dynamical systems, generalised data augmentation, point

estimation.

1 Introduction

Let Y1, Y2, Y3, · · · ∈ Y ⊂ R denote a sequence of independently, identically distributed

(i.i.d.) random variables drawn from a measure νθ with parameter θ ∈ K where K ⊆ R.

For n ∈ N let xn = (y1, ...., yn) denote the outcome of an experiment that records the first

n values. A system of inferences is defined as

Θ = {pxn ∈ P(K) | n ∈ N, xn ∈ Y n},

where P(K) denotes the set of probability measures on K and pxn is a measure representing

the belief about parameter θ given the outcome xn. Systems of point estimators are



3obtained on setting pxn = δθ̂(xn), where θ̂(xn) denotes the point estimate of θ calculated

from data xn and δx is the Dirac measure at x. Bayesian systems have the property

that the measure pxn(dθ) ∝ π(dθ)
∏n
i=1 νθ(dyi) for some prior measure π(dθ). For a given

model, we denote by X the collection of all systems of inference. A system of inferences

is essentially the same as the concept of an inversion as defined in [12].

This paper explores a novel, dynamical-systems approach to investigating the struc-

ture of X and comparing its constituent systems of inferences. Specifically we use a

generalised data-augmentation principle introduced in [9], in order to define mappings,

Ψ and Φ, from X to itself, called refinement operators in Section 2, which map a given

system of inferences to one which is preferable in a sense made explicit in Section 2. Inter-

est then focuses on the fixed points of these operators. These have the property of being

preferable to all systems in their domain of attraction and, arguably, attention should be

restricted to these fixed points when selecting appropriate statistical procedures. More-

over, a refinement operator induces a natural structure on X by partitioning it into the

domains of attraction of the fixed points, with systems lying in distinct domains being

mutually incomparable by our definition of preferability. This structure provides a means

for exploring connections between approaches to inference and estimation. When the do-

main of attraction of a Bayesian fixed point contains a system of point estimators, then

a correspondence between Bayesian and classical approaches is identified.

Connections between classical and Bayesian inference have been sought by identifying a

prior distribution for θ such that the resulting posterior density satisfies certain classical

criteria, at least asymptotically. Examples include reference priors (see [2, 3]), which

maximise, in the large-sample limit, the expected Kullback-Leibler (KL) distance between

prior and posterior, making the data maximally informative in a natural sense. Another

example is the Jeffreys prior [14] which attempts to assign equal prior probability to



4intervals of a given level of confidence. A decision-theoretic approach is taken by Hartigan

[11] where the notion of a risk-matching prior for an estimator is described, this being

the prior for which the corresponding posterior Bayes estimator has the same risk to

order n−2 as the given estimator. Of particular relevance here is the maximum likelihood

prior [12, 10], which is the risk-matching prior corresponding to maximum-likelihood

estimation. When θ is the canonical parameter in a distribution from the exponential

family, the maximum-likelihood prior is uniform on the parameter space. More generally,

for the one-dimensional models considered in this paper, the maximum-likelihood prior

π(θ), for a model where the measure νθ has a density vθ which is a C2 function of θ,

satisfies

∂ log π(θ)

∂θ
=
a(θ)

i(θ)
,

where

a(θ) = E
(
∂ log vθ(Y )

∂θ

∂2 log vθ(Y )

∂θ2

)
and

i(θ) = E
(
−∂

2 log vθ(Y )

∂θ2

)
.

These correspondences are constructed from a Bayesian starting point. By contrast,

our approach attempts to generate ‘internally’ from a system of point estimators new

systems of inference which are invariant under certain data-augmentation operations. In

some cases, when the initial estimators are essentially maximum-likelihood and sufficient

regularity holds, the invariant systems generated are Bayesian and the Bayesian paradigm

arises as a consequence, rather than a premise of the construction. On the other hand our

results demonstrate that non-Bayesian invariant systems can arise from the construction.

In our main result, Theorem 3.4, we characterise, for a broad class of one-parameter

models, those points fixed by Ψ whose domains of attraction contain a system of moment-

based estimators. These limiting inferences can be considered to be pseudo-Bayesian in



5the sense that the ‘posterior’ densities that arise are exhibited as a product of a data-

independent function and data-dependent function, playing the respective roles of a prior

and pseudo-likelihood. In Example 3.7 we give an example to show that that the limiting

inference, when non-Bayesian, may nevertheless approximate a Bayesian analysis of an

experiment in which only the sample mean was observed. For the models in the exponen-

tial family, given an initial system of maximum-likelihood estimators, a Bayesian analysis

using the maximum-likelihood prior arises as the fixed point, with other priors from the

conjugate family arising for other choices of initial estimators. The proof of Theorem 3.4

will be given in Section 4 with some of the technical details postponed to the appendix.

In Section 5 we explore the generalisations of the main theorem to fixed points of Ψ

arising from systems of maximum likelihood estimators. An argument is presented that

suggests that the Bayesian analysis with the maximum-likelihood prior should be obtained

as the fixed point given sufficiently strong regularity. Moreover, a counter-example based

on the uniform distribution is included to demonstrate that the Bayesian limit does not

arise in general, at least when observations are augmented with i.i.d. samples from νθ in

the construction. Potential generalisations of the results to higher-dimensional settings

are discussed in Section 6.

2 Generalised data augmentation, validity and prefer-

ability

Throughout, we take the view that the validity of any statistical procedure is a subjective

judgement on the part of the user or observer. We will say that a system of inferences

Θ = {pxn ∈ P(K) | n ∈ N, xn ∈ Y n},



6is valid in the opinion of a given observer if they consider it appropriate, having observed

xn = (y1, ..., yn), to represent their belief regarding θ via the measure pxn and regarding

any future observation Yn+r, independent of xn given θ, as arising from the measure

qxn(dyn+r) =

∫
νθ(dyn+r)pxn(dθ).

In short, the system is valid if it can be used to form posterior-like distributions for param-

eters or predictive distributions for future observations analogous to Bayesian posteriors

and predictive distributions.

If a system is valid for an observer then, informally, on observing xn, they may be

justified in using pxn to predict their inference on θ given further observations. The gen-

eralised data augmentation principle proposed in [9] states that such predictions them-

selves represent valid inferences. Formally, the generalised data augmentation principle

[9] asserts that the set of all valid systems of inference for θ should be closed under a

data-augmentation operation as described by Principle 2.1.

Augmentation Principle 2.1. Let

Θ = {pxn ∈ P(K)|n ∈ N, xn ∈ Y n},

denote a valid system of inferences. Then for any m ∈ N, the system Θm is valid, where

Θm is obtained from Θ by replacing pxn with

p(m)
xn =

∫
K

∫
Ym

pxn+m

m∏
i=1

νθ′(dyn+i)pxn(dθ′). (1)

For an observer who accepts Principle 2.1, the principle implies that, if Θ is valid,

then so is Θm. However the converse does not hold; consequently the latter system may

be considered more assuredly valid than the former. In this sense Θm is preferable to Θ.

Informally, Principle 2.1 states that a valid inference given xn is obtained by taking

a mixture of valid inferences based on xn+m, in a manner analogous to Bayesian data



7augmentation, where the n samples in xn are augmented by further independent samples

yn+1, ..., yn+m. Of course, when Θ is a Bayesian system of inferences, then Θ and Θm

coincide. Our main interest will be in applying Principle 2.1 in other settings, to transform

(or refine) a valid system of inferences into a preferable one in a systematic manner.

First note that p
(m)
xn = pxnPxn,m,Θ, where Pxn,m,Θ : P(K) → P(K) is the transition

kernel of {θm(k), k ≥ 0}, a Markov chain on K called the generalised data-augmentation

chain. Updates to the current state θm(k) are generated by drawing Yn+1, ..., Yn+m as

i.i.d. samples from the measure νθm(k), appending these to the observed xn to form

xn+m, and then drawing θm(k + 1) from the measure pxn+m . Applying Principle 2.1

sequentially, it follows that a valid system is obtained by replacing pxn with pxnP
k
xn,m,Θ

for any k ∈ N. Moreover, if the generalised data-augmentation chain defined by Pxn,m,Θ

is ergodic with stationary measure, ψ
(m)
xn , then replacing pxn with ψ

(m)
xn yields a valid

system of inferences so long as we allow the class of valid inferences to be complete. This

motivates an additional principle from [9].

Completeness Principle 2.2. Suppose that {Θi, i = 1, 2 . . . }, where Θi = {pxn,i ∈

P(K) | n ∈ N, xn ∈ Y n}, denotes a sequence of valid systems for which

lim
i→∞

pxn,i = ψxn , n ∈ N, xn ∈ Y n,

where convergence is in the sense of weak convergence of measures. Then

Θ∞ = {ψxn ∈ P(K) | n ∈ N, xn ∈ Y n}

is also a valid system. If, for some system of inferences Θ and every i, Θi is preferable

to Θ, then Θ∞ is preferable to Θ.

We motivate Principles 2.1 and 2.2 from the perspective of coherence and the avoidance

of a ‘Dutch book’ (a combination of bets leading to a guaranteed loss [13]). Suppose that

two i.i.d observations Y1, Y2 from νθ are to be observed sequentially, after which the



8(currently unknown) value of θ will be revealed. A bookmaker (A) considers the system

of inferences {px1 , px2} to be valid, where x1 = (y1) and x2 = (y1, y2) but does not accept

Principles 2.1 and 2.2. Suppose that A is obliged to accept any proposal from investor

B for which A’s expected loss is zero. Bets can be placed immediately after observing y1

and again after observing y2, prior to θ being revealed.

First y1 is observed, so that A’s belief regarding θ is now represented by px1(θ). Sup-

pose further that

p(1)
x1

(S) =

∫
K

∫
Y
px2(S)νθ′(dy2)px1(dθ′)

differs from px1(S) for some subset S ⊂ K, so that for some subset ω ⊂ S ⊂ K,

px1(ω) < p(1)
x1

(ω).

B proposes the following wager to be settled when θ is revealed.

Wager 1: B pays A £px1(ω) in return for a pay-off of £1 if θ ∈ ω.

A accepts Wager 1 since, under px1(θ), their expected loss is zero. B then proposes a

further wager to A.

Wager 2: B pays A £(1− p(1)
x1 (ω)) in return for a pay-off of £1 if θ /∈ ω.

As A’s expected loss for Wager 2 is positive under px1 they do not accept the bet as B

is not offering a fair price. Note that Wager 2 and Wager 1 together constitute a ‘Dutch

Book’, with A guaranteed to lose £(p
(1)
x1 (ω) − px1(ω)). B now proposes the following

wager.

Wager 3: B pays A £(1− p(1)
x1 (ω)). On observing y2, A pays B q(y2) where q(y2) is A’s

fair price for Wager 2 on observing y2.

Since A’s expectation of q(Y2) is £(1− p(1)
x1 (ω)) they accept Wager 3. Now, B effectively

holds an option to place Wager 2, once Y2 = y2 is observed, for their originally proposed



9price of £(1 − p(1)
x1 (ω)). A has accepted a Dutch book of bets with guaranteed loss of

£(p
(1)
x1 (ω)−px1(ω)). Had A utilised Principles 2.1 and 2.2 to replace {px1(θ), px2(θ)} with

the preferable system {ψ1
x1

(θ), px2(θ)} (discussed before Principle 2.2) prior to negotiation

with B then A would have been immune to this particular Dutch book. Therefore using

Principles 2.1 and 2.2 to refine the initial system of inferences would have improved the

coherence of A’s system.

We consider how the above arguments might be applied systematically in order to

improve the coherence of a system of inferences more generally. We apply Principles 2.1

and 2.2 to formulate a refinement operator, Ψ, that can be applied to an initial system of

inferences

Θ0 = {pxn,0 ∈ P(K) | n ∈ N, xn ∈ Y n},

to generate a sequence of systems {Θi|i ∈ N} in which Θi+1 = ΘiΨ is preferable to Θi.

The generalised data-augmentation chain, {θ0,m(k), k ≥ 0} has transition kernel Pxn,m,Θ0 ,

when the observation xn is augmented by the next m samples. As above, the state θ0,m(k)

is updated by drawing θ0,m(k + 1) from the measure pxn+m,0 where xn+m is formed by

augmenting the observed xn by i.i.d. draws Yn+1, ..., Yn+m from νθ0,m(k). We construct a

preferable inference for xn by taking the stationary distribution of the chain for each m,

appealing to Principle 2.2, and then taking the limit of these stationary distributions as

m→∞, again by Principle 2.2, to remove dependence on m. This is carried out for each

n in ascending order to generate the new system Θ1 = Θ0Ψ.

Generally, we construct

Θi+1 = {pxn,i+1 ∈ P(K)|n ∈ N, xn ∈ Y n} = ΘiΨ

from Θi = {pxn,i ∈ P(K)|n ∈ N, xn ∈ Y n} recursively by setting

pxn,i+1 = lim
m→∞

lim
k→∞

pxn,i[Pxn,m,Θi ]
k, (2)



10where the limits are taken in the sense of weak convergence of measures. We denote by

{θi,m(k), k ≥ 0} the generalised data-augmentation chains that arise in the construction

of Θi+1 from Θi. Suppose now that limi→∞Θi = Θ∞ exists. Then Θ∞ is preferable to

Θi, for all i. Moreover, in the situations that we consider here, Θ∞ is invariant under Ψ

and is, in a natural sense, maximally preferable.

Denote by C ⊂X the collection of those systems of inference Θ0 for which the limiting

system Θ∞ exists, and denote by CF ⊂ C the corresponding set of fixed points.

It is clear that any Bayesian system Θ, for which

pxn(dθ) ∝ π(dθ)

n∏
i=1

νθ(yi)

for some prior measure π, lies in CF . Here the generalised data-augmentation chain with

transition kernel Pxn,m,Θ is a Gibbs sampler and the measure pxn is fixed by this kernel

for any m > 0 and, hence, by Ψ. As discussed later, CF contains non-Bayesian systems.

Therefore the property of invariance under Ψ may be seen as a weak form of coherence.

In the rest of the paper we will be particularly interested in systems Θ∞ ∈ CF that

arise as fixed points when Ψ acts on an initial system of point estimators Θ0. When

Θ∞ is Bayesian, then a link is made between classical point estimation and Bayesian

inference and we may consider how such linkages relate to connections established using

decision theory and the construction of Bayes estimators. When Θ∞ is non-Bayesian we

can consider how it may relate to other non-Bayesian approaches to forming posterior-like

distributions, or may approximate a Bayesian inference.

In the following section, we characterise for a general class of models the elements of

CF whose basins include systems of moment-based point estimators. As a corollary, we

show that for the case of the one-dimensional exponential family with the mean-value

parametrisation, Bayesian analysis with the maximum-likelihood prior of [10] is obtained

as the limiting system of inferences.



11We define a second refinement operator, and corresponding constructions, by taking

limits with respect to m and k in a different manner. If we first take the limit with respect

to m and speed up the Markov chain, we may have weak convergence of the chain to a

limiting stochastic process. If we then let time for the limiting process go to infinity we

may see a stationary distribution. Thus, in a formal sense we can define the new operator

Φ for which the measures comprising Θi+1 = ΘiΦ are given by

pxn,i+1 = lim
t→∞

lim
m→∞

pxn,i[Pxn,m,Θi ]
mt. (3)

We may expect, given sufficiently strong conditions on the model, that the same sequence

of systems of inference will arise from the above construction if Ψ or Φ is used; this is the

case for the class of models considered in Theorem 3.4. At some points in the paper, it

will be convenient to work with the operator Φ defined by (3). Figure 1 gives a schematic

depiction of the operators Φ and Ψ and the way in which limits are taken in the respective

cases.

3 Moment-based estimators and fixed points

We retain the notation of the previous section and let {Yi : i ≥ 1}, where Yi ∈ Y ⊂ R, de-

note a sequence of i.i.d random variables drawn from a measure νθ with a one-dimensional

parameter θ ∈ K = (l, r) (where l, r ∈ [−∞,∞] ) and we write xn = (y1, ...., yn) for the

first n observations. As our parameter space is an interval, there is an increasing family

{Ku : u > 0} of compact subsets of K with ∪uKu = K. For instance, if the boundaries

are finite, we can set Ku = [l + 1/u, r − 1/u], when u ≥ 2/(r − l), and Ku = ∅ otherwise.

We will always assume that x̄n ∈ K to rule out possible degeneracies if our data lies on

the boundary of the parameter space. We suppose that νθ has mean θ, is continuous in

θ (in the sense that νθ(A) is continuous in θ for each Borel set A ⊂ K), and has variance
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Figure 1: Schematic depiction of operators Ψ and Φ, as applied to a measure pxn,i, highlighting

the difference in how limits of measures are taken in the two cases. The strategy of the proof

of Theorem 3.4 is to first characterise pxn,iΦ using the properties of limiting diffusions, before

demonstrating the correspondence with pxn,iΨ via Theorem 4.2.

σ2(θ). We will write f(θ) =
∫
σ−2(θ)dθ, g(θ) =

∫
θσ−2(θ)dθ for θ ∈ (l, r) and for a fixed

c ∈ K define

S(x) =

∫ x

c
exp(−2n(x̄nf(θ)− g(θ))dθ, ∀x ∈ K.

We now give our main assumptions on the properties of the underlying measure.

Assumption 3.1. We assume that the following conditions hold:

1. The function σ2 is locally Lipschitz continuous in that for each U > 0 there is a

constant KU such that

|σ2(θ)− σ2(θ′)| ≤ KU |θ − θ′|, ∀θ, θ′ ∈ KU .



132. The function σ is non–degenerate and satisfies a linear growth condition, in that

there exists a constant Cl such that

0 < σ2(θ) ≤ Cl(1 + θ2), ∀θ ∈ K.

3. For each Ku, there exists an εu > 0 such that

sup
θ∈Ku

∫
Y

(x− θ)2+εuνθ(x)dx <∞.

4. S(l) = −∞ and S(r) =∞.

Remark 3.2. 1. We note that by the Lipschitz continuity and non-degeneracy (σ(θ) > 0)

the functions f(θ), g(θ) are locally integrable.

2. These conditions are satisfied by a wide range of distributions and are not particu-

larly restrictive. This is discussed further in Remark 3.9.

3. The function S is the scale function for the limiting diffusion and the fourth condi-

tion ensures that the boundaries of the parameter space play no role.

We will need one further assumption to ensure that our generalized data augmentation

chain is well behaved. We write ν∗mθ for the m-fold convolution of the measure νθ with

itself.

Assumption 3.3. The Markov chain {θm(k) : k ≥ 0} with transition function

P (θm(1) ∈ A|θm(0) = θ) = ν∗mθ ((n+m)A− nx̄n), θ ∈ K, A ⊂ K

is ψ-irreducible and aperiodic for large enough m.

We note that an easy sufficient condition for this assumption is the existence of a

density for the measure νθ or indeed that there exists a density for the m-fold convolution

of νθ. It is also easy to see that discrete measures, such as the Poisson distribution, will

also satisfy this condition.



14We now investigate those Θ ∈ CF whose basins of attraction contain moment-based

point estimators. The next result generalises [9], Example 2.3, which considered the special

case of the Normal distribution with mean θ and unit variance. For this case, when the

initial measures were specified as pxn,0(θ) = δx̄n , repeated application of Ψ resulted in

a sequence of densities pxn,i(θ), i ≥ 1 where the density pxn,i(θ) was N(x̄n,
1−2−i

n ) with

pxn,∞(θ) being N(x̄n,
1
n) - the Bayesian posterior using an improper uniform prior on θ.

Theorem 3.4. Suppose that νθ satisfies Assumptions 3.1 and 3.3. Let

Θ0 = {pxn,0(θ) = δx̄n | n ∈ N, xn ∈ Y n}.

For i = 1, 2, 3, . . . , let ci = 2 − 2−(i−1). Then, for n > Cl/
√

2 the measures pxn,i in the

systems Θi, i = 1, 2, 3, ... exist, where Θi = Θi−1Ψ is given by

Θi = {pxn,i(dθ) ∝
1

σ2(θ)
exp{ 2

ci
n(f(θ)x̄n − g(θ))dθ} | n > Cl/

√
2, xn ∈ Y n}.

Moreover, the limiting system Θ∞ is specified by

Θ∞ =

{
pxn,∞(dθ) ∝ 1

σ2(θ)
exp{n(f(θ)x̄n − g(θ))}dθ | n > Cl/

√
2, xn ∈ Y n

}
.

The proof is given in Section 4. It exploits the property that, as m→∞ the generalised

data-augmentation chains that arise converge weakly to solutions to stochastic differential

equations whose stationary measures can be identified.

We now consider the conditions for Θ∞ to be a Bayesian system, and the nature of

the corresponding prior.

Corollary 3.5. Under Assumption 3.1, Θ∞ is Bayesian if and only if νθ has a density

or mass function, vθ, which is a member of the one-parameter exponential family with

sufficient statistic x̄n.

Proof. Clearly Θ∞ is Bayesian only if the likelihood vθ(xn) =
∏n
i=1 vθ(yi) satisfies

vθ(xn) = K1(xn)K2(θ) exp{n(f(θ)x̄n − g(θ))}.



15identifying it as a member of the 1-parameter exponential family with sufficient statistic

x̄n.

Conversely, if vθ(x) is a density or mass function from the one-parameter exponential

family with sufficient statistic x, mean θ and canonical parameter a(θ), then

νθ(x) = K(x) exp{a(θ)x− c(θ)}.

From the score function a′(θ)x − c′(θ), we obtain the Fisher information function i(θ) =

σ−2(θ) = a′(θ) implying that a(θ) =
∫
σ−2(θ)dθ = f(θ) and c′(θ) = a′(θ)θ in which case

c(θ) =
∫
θσ−2(θ)dθ = g(θ). It follows that pxn,∞(θ) ∝ 1

σ2(θ)
exp (n(f(θ)x̄n − g(θ)}; hence

Θ∞ represents a Bayesian analysis with prior density π(θ) ∝ σ−2(θ). Note that π(θ) ∝

σ−2(θ) induces a uniform measure on the canonical parameter a(θ). This corresponds to

the maximum-likelihood prior distribution of [10]. �

Although the maximum-likelihood prior arises from the construction we note that its

use may not be recommended due to its implication in paradoxes - such as the marginal-

isation paradox [5] - that can arise. Other constructions that yield Bayesian posteriors

without the direct use of Bayes’ Theorem, such as those based on fiducial arguments, e.g.

[20] may result in alternative prior specifications such as the Jeffreys prior. Nevertheless,

our construction can be generalised to yield a range of possible priors.

For the one-parameter exponential family with mean-value parameterisation and suf-

ficient statistic x̄n, Bayesian analyses with alternative priors from the conjugate family

are obtained by specifying Θ0 appropriately in the construction. Given prior experience

of a sample of size k with mean value a, then a natural system of point estimators is

Θ0 = {pxn,0 = δnx̄n+ka
n+k

| n ∈ N, xn ∈ Y n}.

In this case Θ∞ corresponds to a Bayesian analysis using the conjugate prior

π(dθ) ∝ σ−2(θ) exp{k(f(θ)a− g(θ)}dθ.



16This demonstrates a 1-1 correspondence between systems of ‘shrinkage’ estimators (which

estimate θ as a weighted average of a specified value and the observed sample mean) and

Bayesian analyses using conjugate prior distributions.

We now discuss distributions outside the 1-parameter exponential family and for which

the observation x̄n is not sufficient for θ. In this case, Theorem 3.4 demonstrates that

CF must contain both Bayesian and non-Bayesian systems of inference that are fixed by

Ψ. As in the exponential-family case, Theorem 3.4 predicts that the general system of

estimators for which

pxn,0 = δnx̄n+ka
n+k

lies in the basin of attraction of the fixed point for which

pxn,∞(dθ) ∝ σ−2(θ) exp{k(f(θ)a− g(θ)} × exp{n(f(θ)x̄n − g(θ))}dθ.

The first and second factors play roles analogous to a ‘prior’ density and a pseudo-

likelihood respectively. In particular, the pseudo-likelihood exp{n(f(θ)x̄n − g(θ))} may

be considered to approximate the true likelihood with one of exponential-family form.

Since x̄n is not generally sufficient for θ, then pxn,∞(dθ) may not coincide with π(dθ|xn)

for any prior π(dθ). Nevertheless, it is plausible that pxn,∞(dθ) may give a reasonable

approximation to a Bayesian posterior distribution obtained from an experiment in which

x̄n is observed with corresponding likelihood L(θ; x̄n) - that is π(dθ|x̄n) ∝ π(dθ)L(θ; x̄n)

for some π(dθ). We illustrate this in the following examples.

Example 3.6. The double exponential distribution has density given by

vθ(x) =
1

2
exp{−|x− θ|}, x ∈ R

with mean given by θ and constant variance 2. In this case, Theorem 3.4 states that when

pxn,0 = δx̄n ,

pxn,∞(dθ) ∝ exp{−n
4

(x̄n − θ)2}dθ.



17For large sample sizes where the observation is the sample mean x̄n, this is ‘close’ to a

Bayesian analysis with improper uniform prior, since the likelihood νθ(x̄n) can be approx-

imated by the density of N(θ, 2
n).

Example 3.7. The Uniform(0, 2θ) distribution has mean θ and variance σ2(θ) = θ2

3 ,

and satisfies Assumption 3.1. In this case, Theorem 3.4 states that when pxn,0(θ) = δx̄n ,

writing pxn,∞(θ) for the density

Θ∞ = {pxn,∞(dθ) ∝ θ−3n−2 exp(−3nx̄n/θ)dθ|n ∈ N, xn ∈ Y n},

so that pxn,∞ ∼ IGamma(3n + 1, 3nx̄n). We compare the density pxn,∞(dθ) with the

Bayesian posterior density π(dθ|x̄n) for the prior π(dθ) ∝ σ−2(θ) ∝ θ−2dθ.

The likelihood L(θ; x̄n) is not convenient to work with directly being proportional to

θ−n multiplied by the (n− 1)-dimensional volume V (A) of the set

A =
{

(y1, y2, , ..., yn) ∈ Rn |
∑

yi = nx̄n

}
∩ [0, 2θ]n.

Therefore we estimate π(θ|x̄n) using Gibbs sampling, treating the unobserved y1, ...yn as

additional unknown parameters.

From Figure 2 we see that the density for pxn,∞ approximates the Bayesian posterior

π(θ|x̄n) in the case where n = 30. Thus, although not precisely Bayesian, Θ∞ represents

a system which makes use of knowledge of the sample mean in an approximately Bayesian

manner.

Remark 3.8. The form of pxn,∞(dθ) highlights a connection with an approach to ap-

proximate Bayesian inference using contrasts, where the ‘true’ data likelihood is replaced

by exp(−nU(xn, θ)) where U is some function of the data and the parameter, leading to

a contrast-based posterior density proportional to π(θ) exp(−U(xn, θ)) [19]. In our case,

the contrast which is implicitly constructed is

U(xn, θ) = g(θ)− f(θ)x̄n



18which, when minimised with respect to θ, recovers the point estimate specified by Θ0.

The limiting inferences also share some similarity with those constructed using Gibbs

posteriors [15] where the usual likelihood is replaced with exp(−nαR(xn, θ)) where α is

a constant playing the role of a temperature and R denotes a risk measure. We further

note that the form of pxn,∞(dθ) is determined from the relationship between the sampling

mean and variance as given by σ2(θ). Thus limiting inferences will be robust to model

mis-specification so long as this aspect of the model νθ is specified correctly.

θ

Figure 2: Comparison between π(θ|x̄n = 10) as estimated by Gibbs sampling and pxn,∞(θ) for

sample size n = 30.

Remark 3.9. We briefly discuss some of the conditions and assumptions used in Theo-

rem 3.4.

1. The assumption that x̄n ∈ K = (l, r) may appear stringent. Nevertheless, for models



19in which x̄n ∈ [l, r] then it is automatic that if x̄n ∈ (l, r) then so must be x̄n+m for

any outcome xn+m obtained from xn by augmenting it with m additional samples,

and the constructions in Theorem 3.4 are valid so long as the observed sample mean

x̄n does not lie on the boundary of the parameter space. In instances where this does

not hold, the nature of the resulting degeneracy of the distribution pxn,∞ specified

in Theorem 3.4 may be consistent with the behaviour of the Markov chains in the

construction. For example, in the case of the Poisson distribution with x̄n = 0,

pxn,∞(θ) ∝ θ−1e−nθ whose integral blows up on (0, ε). This is consistent with the

behaviour of the level-m data augmentation chains in the construction of pxn,1(.)

from pxn,0(.) which have an attracting state at θ = 0 when x̄n = 0.

In cases where x̄n may not lie in [l, r] it may nevertheless be possible to modify

the arguments used to prove Theorem 3.4 so that the result holds. Example 3.10

provides one such example.

2. The requirement that n > Cl/
√

2 places a restriction on the sample sizes for which

the proof of Theorem 3.4 is valid. For many models this is satisfied for n = 1. In

some situations where Cl/
√

2 ≥ 2, Theorem 3.4 may be extendable to all sample

sizes through appropriate modification of the constructions. For example, when νθ(.)

lies in the exponential family the limiting inferences are Bayesian. Having obtained

the (Bayesian) limiting inferences for n > Cl/
√

2 we apply the operator Ψ to the

system

Θ∗ = {p∗xn(θ)| n ∈ N, xn ∈ Y n},

where p∗xn = pxn,0 if n ≤ Cl/
√

2, and p∗xn = pxn,∞ otherwise. It is now immediate

that Θ∗Ψ is the limiting system from Theorem 3.4 with no restriction on the value

of n since, for sufficiently large values of m, the chains in the construction will be

standard Gibbs samplers.



20We also note that the proof of Theorem 3.4 holds whenever σ2(θ) ≤ Cl(a + θ2) for

any a > 0. To see this, we consider scaled observations y∗ = y/
√
a and parameter

θ∗ = θ/
√
a noting that the variance for the measure ν∗θ∗ satisfies σ∗2(θ∗) ≤ Cl(1+θ∗2).

Using quantile matching of updates to couple the generalised data augmentation

chains in the construction of Theorem 3.4 for the unscaled system with the cor-

responding chains for the scaled system, we can apply Theorem 3.4 to the scaled

system and deduce that Theorem 3.4 holds for the unscaled system. Details are not

shown here. Thus, for Example 3.6, Theorem 3.4 holds for all sample sizes n despite

the fact that σ(θ) = 2 would strictly imply a minimum value of Cl = 2 requiring

n ≥ 2 in Theorem 3.4.

Example 3.10. The case of the Pareto distribution, where we try to estimate the tail

parameter, provides a further example where assumptions may break down but the result

of Theorem 3.4 remains valid.

Consider the setting where νθ has the Pareto density with a variance, so that for α > 2

we have

νθ(dx) = αx−α−1dx, x ≥ 1.

Parametrising by the mean gives α = θ/(θ − 1) so that E(Y ) = θ and we have

σ2(θ) =
θ(θ − 1)2

2− θ
, θ ∈ (1, 2).

Note that this function only satisfies two of the conditions in Assumptions 3.1 in that it

is locally Lipschitz and satisfies the moment condition. However it does not satisfy linear

growth or the condition for the boundaries of the interval. The fact that both S(1), S(2)

are finite shows that they can be reached by the associated diffusion. Indeed they can be

reached in finite time. In this case we do need to make an adjustment when considering

the Markov chains as it is possible to choose a sample for which the parameter moves
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ensures that 2 acts as a reflecting boundary for the diffusion. By modifying our arguments

and using the explicit form of the variance we can still establish the weak convergence of

the chains to the diffusion. This diffusion is unique up until the first exit time from (1, 2).

However by reflecting at the end points we can extend the solution uniquely to all times.

Using scale and speed measures for the diffusion shows that the boundaries are regular

and there is a limiting stationary distribution for the diffusion which should be the limit

of the stationary distributions for the Markov chains. The limiting system of inference is

thus given by

Θ∞ = {pxn,∞(dθ) ∝ (2−θ)θ2nx̄n−1(θ−1)n−2−2nx̄n exp

(
−n(x̄n − 1)

θ − 1

)
dθ|n ∈ N, xn ∈ Yn}.

4 Proof of Theorem 3.4

We retain the notation of earlier sections and consider the family of probability measures

νθ where the parameter space is a (not necessarily strict) subset K of R. Recall that θ is

the distribution mean and σ2(θ) the variance. Under the conditions of Assumption 3.1,

we will show, using an induction argument, that the construction of Theorem 3.4 indeed

converges to the system Θ∞ given in the statement of the theorem. In Section 4.1 we

consider the first step whereby Θ1 is constructed from Θ0, before considering the inductive

step in Section 4.2. We begin by giving some key auxiliary results required for the proof.

Suppose that we have already constructed the systems Θ0, ...,Θi−1. Now fix n, and

the observed sample xn, and consider the Markov chain {θi,m(k) : k ≥ 0} with transition

kernel Pxn,m,Θi−1 as described after Principle 2.2. We will assume that, for all possible

observed samples xn, the sample mean x̄n will lie in the allowable parameter space K. If

this is not the case we may have degeneracies and we therefore avoid such situations. We
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k ≥ 0} by interpolation, setting θmi (t) = θi,m(bmtc), noting that the chain θi,m and the

process θmi are identical so far as the existence and nature of the stationary distribution

are concerned.

The main work in proving Theorem 3.4 lies in establishing the following theorem. We

will write σi(θ) =
√

2− 2−(i−1)σ(θ).

Theorem 4.1. For i = 1, 2, . . . , under Assumption 3.1, there exists a pathwise unique

strong solution θi = {θi(t); t ≥ 0} to the one-dimensional stochastic differential equation

dθi = n(x̄n − θi)dt+ σi(θi)dW
i. (4)

θi(0) = ξ

where W i is a standard Brownian motion and ξ ∈ K.

For each i, we have that the sequence of Markov chains θmi , with θmi (0) = ξ, converges

weakly to the diffusion process θi as m→∞.

Note that it would be enough to have a unique weak solution to the equation (4) for

our purposes but our assumptions give us the existence of a strong solution. This result

in essence enables one to demonstrate that the second refinement operator Φ, introduced

in Section 2, has Θ∞ in Theorem 3.4 as a fixed point. With a little more work we can

deduce the following version of Theorem 3.4 to show that Θ∞ is the fixed point of Ψ as

required by the Theorem.

Theorem 4.2. Under Assumptions 3.1 and 3.3 the Markov chains {θi,m(k) : k ≥ 0} have

stationary distributions πmi , the diffusion process θi has a stationary distribution πi and

πmi → πi, weakly as m→∞.

A consequence of Theorem 4.1 is that we can characterise the limiting systems arising
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diffusion processes. Concerning these properties we have the following results.

Lemma 4.3. Under Assumption 3.1:

(1) There exists a pathwise unique strong solution to the SDE (4), {θi(t) : t ≥ 0} which

can be written in integral form as

θi(t) = x̄n + (ξ − x̄n)e−nt +

∫ t

0
e−n(t−s)σi(θi(s))dWs, t ≥ 0. (5)

(2) The moments of θi(t) are bounded up to a level depending on n in that there exist

constants Cκ such that E|θi(t)|κ ≤ Cκ(1 ∨ |x̄n|κ ∨ |ξ|κ) for all t ≥ 0 and 1 ≤ κ ≤

(2n+ Cl)/Cl.

(3) If
√

2n > Cl, there is a unique stationary distribution of (4) and it is given by the

density function

pi(θ) ∝
1

σi(θ)2
exp(2n(fi(θ)x̄n − gi(θ))),

where

fi(θ) =

∫
σ−2
i (θ)dθ, gi(θ) =

∫
θσ−2

i (θ)dθ.

The proof of this lemma can be found in the Appendix. Together Theorems 4.1, 4.2

and Lemma 4.3 lead to the following result.

Corollary 4.4. In the construction of Theorem 3.4 the limiting system of inferences has

a density given by

pxn,∞(θ) ∝ 1

σ(θ)2
exp(n(f(θ)x̄n − g(θ))),

where

f(θ) =

∫
σ−2(θ)dθ, g(θ) =

∫
θσ−2(θ)dθ.

A key tool in establishing Theorem 4.1 is Corollary 7.4.2 of [7], which specifies con-

ditions sufficient for the existence of a diffusion approximation to a sequence of Markov



24chains. We state a version of the result suited to our purposes. For a stochastic process

X we write T∂K(X) = inf{t ≥ 0 : X(t) /∈ K} for the exit time from K. We will abuse

notation by using the same symbol for an exit time when the time parameter is discrete.

For the diffusion this time will coincide with the hitting time of the boundary ∂K. For

the discrete case it is the exit time from K.

Theorem 4.5 (Ethier and Kurtz). Let X = {X(t); 0 ≤ t ≤ T∂K(X)} be the diffusion

process taking values in K satisfying the SDE

dX(t) = b(X(t))dt+ σ(X(t))dW (t), X(0) ∼ φ,

up until first exit from K, where b is a continuous function and σ is also continuous and

X(0) is drawn according to a measure φ ∈ P(K). Let Ym = {Ym(k); 0 ≤ k ≤ T∂K(Ym)} be

a discrete time Markov chain taking values in K with law Pm and set Xm(t) = Ym([mt]).

Let

µm(x) = mExm(Ym(1)− x)

σ2
m(x) = mExm(Ym(1)− x)2

where Exm denotes expectation for the Markov chain Ym started from the point x ∈ K.

Suppose that the law of Xm(0) converges weakly to φ and that for each u > 0 and ε > 0

we have

lim
m→∞

sup
x∈Ku

|µm(x)− b(x)| = 0, (6)

lim
m→∞

sup
x∈Ku

|σ2
m(x)− σ2(x)| = 0, (7)

and

lim
m→∞

sup
x∈Ku

mPm(|Ym(1)− x| ≥ ε) = 0. (8)

Then Xm converges weakly to X.

We are now in a position to proceed with the inductive proof of Theorem 3.4.



254.1 The case i = 1.

We note that here and throughout the paper the notation c, c′ will be used to denote

arbitrary constants which may change from line to line, whereas labelled constants with

an upper case C will be fixed. When i = 1 and our observation xn is augmented by a

further m samples we obtain a generalised data-augmentation chain with updates specified

by

θ1,m(k + 1) =
nx̄n +mȲ

(k)
m

n+m
, k = 0, 1, 2, . . .

where Ȳ
(k)
m = 1

m

∑m
j=1 Y

(k)
j , with Y

(k)
j samples from the measure νθ1,m(k). To simplify the

notation we suppress the subscript i = 1 and write θ1,m(k) as θm(k). We now establish

the conditions of Theorem 4.5 for the Markov chain {θm(k) : k ≥ 0} where the limiting

diffusion process is given by (4).

Suppose now that θm(0) = x, then

θm(1) = x+
n

n+m
(x̄n − x) +

Rm(x)

n+m
,

where Rm(x) =
∑m

j=1(Y
(0)
j − x), with Y

(0)
j independent and identically distributed with

mean x. Thus

µm(x) = mEm(θm(1)− x) =
nm

n+m
(x̄n − x),

and hence with µ(x) = n(x̄n − x) we have

sup
x∈Ku

|µn(x)− µ(x)| = sup
x∈Ku

∣∣∣∣n2(x̄n − x)

n+m

∣∣∣∣→ 0, as m→∞,

which establishes (6).



26By construction we have

σ2
m(x) = mEm(θm(1)− x)2

= mEm
(

n

n+m
(x̄n − x)− 1

n+m
Rm(x)

)2

= m

((
n

n+m

)2

(x̄n − x)2 +
1

(n+m)2
EmRm(x)2

)

=
mn2

(n+m)2
(x̄n − x)2 +

(
m

n+m

)2

σ2(x).

Thus σ2
m(x)→ σ2(x) as m→∞. We establish our condition (7) as

sup
x∈Ku

|σ2
m(x)−σ2(x)| ≤ sup

x∈Ku

(
mn2

(n+m)2
(x̄n − x)2 +

(
2mn+ n2

(n+m)2

)
σ2(x)

)
→ 0, as m→∞.

To handle the tail condition (8) we observe that by Assumption 3.1 for each x ∈ Ku

there is an ε > 0 such that, writing E for the expectation with respect to νx, E(Y
(0)

1 −

x)2+ε <∞. Letting p = 2 + ε we see that for all x ∈ Ku

Em|θm(1)− x|p ≤ 2p−1

((
n

n+m

)p
|x̄n − x|p +

EmRm(x)p

(n+m)p

)
.

As Rm(x) is the value at time m of a discrete martingale, we can apply the Burkholder-

Davis-Gundy inequality to see that

Em|Rm(x)|p = E

∣∣∣∣∣
m∑
i=1

(Y
(0)
i − x)

∣∣∣∣∣
p

≤ cpE

∣∣∣∣∣
m∑
i=1

(Yi − x)2

∣∣∣∣∣
p/2

≤ cpm
p/2−1E

m∑
i=1

|Yi − x|p

= cpm
p/2E|Y (0)

1 − x|p = Cpm
p/2. (9)

Thus we have, by Markov’s inequality and (9),

sup
x∈Ku

mPm(|θm(1)− x| ≥ ε) ≤ sup
x∈Ku

m
Em|θm(1)− x|p

εp

≤ sup
x∈Ku

(
2p−1mnp

(n+m)p
|x̄n − x|p +

2p−1mp/2+1Cp
(n+m)p

)
≤ C1m

1−p + C2m
1−p/2,



27which tends to 0 as m→∞ since p > 2.

Thus we have satisfied the conditions of Theorem 4.5 and we have proved

Proposition 4.6. Under Assumption 3.1 the process θm1 converges weakly to θ1, the

pathwise unique strong solution to

dθ1 = n(x̄n − θ1)dt+ σ(θ1)dW.

with θ1(0) = ξ ∈ K.

Using this with Theorem 4.2 and Lemma 4.3 (3) we have established the form of Θ1

as given in Theorem 3.4. Note that by Assumption 3.1(4) the boundaries of the domain

K are natural and therefore cannot be reached in finite time, so T∂K =∞ almost surely.

4.2 The inductive step

To complete our induction we need to consider the general case. We assume that we

have generated the system of inferences up to i. Again we fix n, and the observed sample

xn, and consider the Markov chain {θi+1,m(k) : k ≥ 0} with transition kernel Pxn,m,Θi

as described after Principle 2.2, where θi+1,m(k + 1) is drawn from pxn+m,i where the

augmented sample xn+m = (xn, yn+1, . . . , yn+m) is obtained by drawing (yn+1, . . . , yn+m)

from νθi+1,m(k).

We have established that the limit as m → ∞ of the chain is a diffusion process

and that the i-th system of inferences is obtained from the stationary distribution of the

diffusion process θi. In order to generate the k + 1-th sample from pxn+m,i(θ) we take

θn,m,ki , a copy of the diffusion process given by (4) with n+m and x̄n+m replacing n and

x̄n respectively. Thus the draw θi+1,m(k+ 1) from pxn+m,i is a sample from the stationary

distribution pxn+m,i(θ) of the diffusion θn,m,ki . We will show that it is enough to use

an approximate sample θn,m,ki (τm), obtained by running the diffusion with initial value



28θn,m,ki (0) = x̄n+m, for a sufficiently long time τm (determined in Proposition 4.9). This

gives us a sequence of approximate chains for each (m, τm), where if we let τm = ∞ we

recover the exact sampling distribution. We also note that

x̄n+m =
nx̄n +mȲm(k)

n+m
,

where Ȳm(k) = 1
m

∑m
i=1 Yi and the Yi are i.i.d. samples with mean θi+1,m(k).

Thus we have our approximate Markov chain and the transition to the new state can

be expressed as

θi+1,m(k + 1) = x̄n+m +

∫ τm

0
e−(n+m)(τm−t)σi(θ

n,m,k
i (t))dW k

t ,

= θi+1,m(k) +
n

n+m
(x̄n − θi+1,m(k)) +

1

m+ n
Rm(θi+1,m(k))

+

∫ τm

0
e−(n+m)(τm−t)σi(θ

n,m,k
i (t))dW k

t ,

where the first three terms in the expression appeared in the previous case (i = 1) and

for each k, W k is an independent Brownian motion. The last term gives our approximate

sample from the stationary distribution.

For the one-step evolution of our Markov chain, from initial state x, we can write (10)

as

θi+1,m(1) = x+
n

n+m
(x̄n − x) +

1

m+ n
Rm(x) +Nm(0)(τm),

where

Nm(0)(τm) =

∫ τm

0
e−(n+m)(τm−t)σi(θ

n,m,0
i (t))dWt.

We will write θn,mi for θn,m,0i and Nm(t) for Nm(0)(t). We also note that exp((n +

m)t)Nm(t) is a continuous local martingale and in the proof of the moment estimates

in Lemma 4.3 we showed that it is in fact an L2 bounded martingale under our assump-

tion 0 ≤ t ≤ τm. Abusing notation we will use E both for expectation with respect to the

probability measure governing the diffusion as well as that for the augmented sample. We



29note that the Brownian motion driving Nm(τm) is independent of Rm(x) so that we can

treat the term Nm(τm) separately. The quadratic variation process for Nm(t) is given by

〈Nm〉t =

∫ t

0
e−2(n+m)(t−s)σ2

i (θ
n,m
i (s))ds.

Thus we note ENm(t) = 0 and

ENm(t)2 = E〈Nm〉t =

∫ t

0
e−2(n+m)(t−s)Eσ2

i (θ
n,m
i (s))ds. (10)

Lemma 4.7. For the augmented sample for the chain started from x, for each p ≥ 2 there

exists a constant Cp such that

E|x̄n+m|p ≤ Cp

(
|x|p +

mp/2(1 ∨ |x̄n|p ∨ |x|p)
(n+m)p

)
.

Proof. This follows the proof for the i = 1 case. We have

E|x̄n+m|p = E
∣∣∣∣x+

n

n+m
(x̄n − x) +

1

m+ n
Rm(x)

∣∣∣∣p
≤ cp|x|p + cpE

∣∣∣∣ n

n+m
(x̄n − x)

∣∣∣∣p + cpE
∣∣∣∣ 1

m+ n
|Rm(x)|

∣∣∣∣p
≤ cp|x|p + c′p

|x̄n|p ∨ |x|p

(m+ n)p
+ cpE

(
1

m+ n
|Rm(x)|

)p
.

From the argument for (9) we have that E|Rm(x)|p ≤ cmp/2 for all p ≥ 1 and this gives

the result. �

Lemma 4.8. Under Assumption 3.1, for each 1 ≤ p ≤ 2 + ε, there is a constant cp such

that

E|Nm(t)|p ≤ cp
1 ∨ |x̄n|p ∨ |x|p

(n+m)p/2
, ∀t ≥ 0, m ≥ 1.

Proof. For this we note that by Burkholder-Davis-Gundy and Hölder’s inequality,



30when p ≥ 2,

E|Nm(t)|p ≤ cpE〈Nm〉p/2t

= cpE
(∫ t

0
e−2(n+m)(t−s)σ2

i (θ
m,n
i (s))ds

)p/2
≤ cp

(∫ t

0
e−p(n+m)(t−s)/(p−2)ds

)p/2−1 ∫ t

0
e−p(n+m)(t−s)/2Eσpi (θ

m,n
i (s))ds

= cp

(
p− 2

p(n+m)

)p/2−1

(1− e−p(n+m)t/(p−2))p/2−1

∫ t

0
e−p(n+m)(t−s)/2Eσpi (θ

m,n
i (s))ds

≤ cp

(
p− 2

p(n+m)

)p/2−1 ∫ t

0
e−p(n+m)(t−s)/2Eσpi (θ

m,n
i (s))ds. (11)

As we have a linear growth condition for σ and, by Assumption 3.1(3), the moments of

the process θm,ni exist, at least up to p = 2 + ε, we have

Eσpi (θ
m,n
i (s)) ≤ cp(1 ∨ E|x̄n+m|p), ∀s ≥ 0, m ≥ 1. (12)

By Lemma 4.7,

E|x̄n+m|p ≤ c(1 ∨ |x̄n|p ∨ |x|p), ∀m ≥ 1.

Thus

∫ t

0
e−p(n+m)(t−s)/2Eσpi (θ

m,n
i (s))ds ≤ c′p

2

p(m+ n)
(1− e−p(m+n)t/2)(1 ∨ |x̄n|p ∨ |x|p),

and hence, replacing this in (11), for a constant C we have

E|Nm(t)|p ≤ C(1 ∨ |x̄n|p ∨ |x|p)
(m+ n)p/2

.

For 1 ≤ p < 2 we can follow a similar, slightly easier argument where we replace the use

of Hölder’s inequality with the concavity of the function xp/2 to enable us to bring the

expectation inside the integral in a similar calculation to that leading to (11). �

Proposition 4.9. Under Assumption 3.1 and for τm > logm
2(m+n) , n > Cl/

√
2, the process

{θmi (t) : t ≥ 0} converges weakly to {θi(t) : t ≥ 0}, the pathwise unique strong solution to

dθi = n(x̄n − θi)dt+ σi(θi)dW.



31with θi(0) = ξ ∈ K.

Proof. We establish the conditions of Theorem 4.5. Firstly the mean is given by

µm,i+1(x) = mE(θi+1,m(1)− x) =
mn

m+ n
(x̄n − x).

This is the same as in the i = 1 case and it therefore satisfies condition (6).

For the variance we have by independence and the fact that Rm and Nm are mean 0,

σ2
m,i+1(x) = mE

(
n

n+m
(x̄n − x) +

1

m+ n
Rm(x) +Nm(τm)

)2

=
mn2

(n+m)2
(x̄n − x)2 +

m

(n+m)2
ER2

m(x) +mEN2
m(τm).

Recall that σ2
i+1(x) = σ2(x) + 1

2σ
2
i (x). Thus we can write

|σ2
m,i+1(x)−σ2

i+1(x)| ≤ n2m

(n+m)2
(x̄n−x)2+| m

(m+ n)2
ERm(x)2−σ2(x)|+|mEN2

m(τm)−1

2
σ2
i (x)|.

From the calculations in the i = 1 case we can control the first two terms to show that

they go to 0 as m→∞ on the region where x ∈ Ku.

For the last term we need to do some more work. Firstly we observe that

|EmN2
m(τm)− σ2

i (x)

2
|

=
m

2(m+ n)
|
(
E
∫ τm

0
2(n+m)e−2(n+m)(τm−t)σ2

i (θ
n,m
i (t))dt− m+ n

m
σ2
i (x)

)
|

≤ m

2(n+m)

∫ τm

0
2(m+ n)e−2(n+m)(τm−t)E

∣∣σ2
i (θ

n,m
i (t))− σ2

i (x)
∣∣ dt

+
n

2(m+ n)
σ2
i (x) + e−2(n+m)τmσ2

i (x). (13)

Now, by Asssumption 3.1(1), as σ2
i (x) is locally Lipschitz, we have for a fixed x ∈ K that

there is a constant KU such that for x ∈ KU ,

E|σ2
i (θ

n,m
i (t))− σ2

i (x)| ≤ KUE (|θn,mi (t)− x|; θn,mi (t) ∈ KU )

+E
(
|σ2
i (θ

n,m
i (t))− σ2

i (x)|; θn,mi (t) /∈ KU
)
. (14)

We can estimate the first term on the right hand side using

θn,mi (t)− x =
n

n+m
(x̄n − x) +

1

m+ n
Rm(1) +Nm(t).



32Taking p-th moments and using previous estimates, we have

E|θn,mi (t)− x|p ≤ cp|
n

n+m
(x̄n − x)|p + cpE(

1

m+ n
|Rm(1)|)p + E|Nm(t)|p

Under our assumptions, by Lemma 4.8, and the expression for E|Rm(x)|p in (9), there

will be a constant c such that

E|θn,mi (t)− x|p ≤ c

mp/2
, ∀t ≥ 0. (15)

Thus for p = 1 we have the required bound.

For the second term on the right hand side of (14) we have that, as x ∈ KU , for

θn,mi (t) /∈ KU there is a u > 0 such that |θn,mi (t)− x| > u. By the linear growth bound on

σ, Hölder’s and Markov’s inequalities, we have

E
(
|σ2
i (θ

n,m
i (t))− σ2

i (x)|; θn,mi (t) /∈ KU
)
≤ E

(
|σ2
i (θ

n,m
i (t))− σ2

i (x)|; |θn,mi (t)− x| ≥ u
)

≤ C(1 + x2 + σ2
i (x))P(|θn,mi (t)− x| ≥ u)

+C ′E
(
|θn,mi (t))− x|2I{|θn,mi (t)−x|≥u}

)
≤ (C(1 ∨ |x|2)u−p + C ′u2−p)E|θn,mi (t)− x|p,

for 2 < p < 2 + ε. Using (15) we have, for such a p, that

E
(
|σ2
i (θ

n,m
i (t))− σ2

i (x)|; θn,mi (t) /∈ KU
)

= O(m−p/2).

Thus, substituting into (13) and using our condition on τm we have e−2(m+n)τm ≤ 1/m,

which gives

E|mN2
m −

σ2
i (x)

2
| ≤ c/m+ c′/mp/2

and we have the result.

To show the last condition of Theorem 4.5, as in the i = 1 case, we need a little more



33than second moments. By Markov’s inequality, and an application of Lemma 4.8, we have

sup
x∈Ku

mP(|θ(1)
i − x| > ε) ≤ sup

x∈Ku

mE|θ(1)
i − x|p

εp

= sup
x∈Ku

mE
∣∣∣ n
n+m(x̄n − x) + 1

m+nRm(x) +Nm(τm)
∣∣∣p

εp

≤ sup
x∈Ku

cpm
(

np

(n+m)p |x̄n − x|
p + 1

(m+n)pE|Rm(x)|p + E|Nm(τm)|p
)

εp

≤ C1

εpmp−1
+

C2

εpmp/2−1
+

C3

εpmp/2−1
.

As p > 2, this tends to 0 as m→∞ and we have the third condition of Theorem 4.5. �

Proof of Theorem 4.1. We have established all the conditions of Theorem 4.5 and

hence the weak convergence is proved. �

Proof of Theorem 4.2. In order to prove this theorem we show that under our assump-

tions there exist invariant distributions for the data augmentation chains. Our estimates

on the moments in Lemma 4.3 shows that these distributions are tight and hence there is

a limit stationary distribution for the diffusion. By the uniqueness of the invariant mea-

sure for the diffusion we recover the weak convergence of the whole sequence of stationary

distributions to this limit.

The details are given using Theorem A.4 and Corollary A.5 in the appendix. �

Finally we note that these results combine to give the proof of Theorem 3.4.



345 Fixed points arising from maximum-likelihood

estimation

5.1 The regular case

We consider the application of refinement operators to systems of maximum-likelihood

rather than moment estimators, noting the coincidence of the two in the exponential-

family setting. In particular we ask whether the construction leads to a Bayesian analysis

beyond the exponential-family case and, if so, whether the maximum-likelihood prior

is recovered. We find it convenient to work with the operator Φ rather than Ψ and to

consider the fixed points of the former as the limiting - and maximally preferable - systems

of inference. This avoids the need to derive any correspondence between these and the

fixed points of Ψ as was done via Theorem 4.2 and Lemma 4.3 when proving Theorem 3.4.

We will also make some stronger assumptions than in the moment-estimator case.

In this section we assume the existence of a density for our measure and hence

consider the model νθ(dy) = vθ(y)dy and let l(θ, y) = log vθ(y), i(θ) = EY
(
− ∂2l
∂θ2

)
,

a(θ) = EY
(
∂2l
∂θ2

∂l
∂θ

)
, and c(θ) = EY

(
− ∂3l
∂θ3

)
. Suppose that νθ satisfies regularity condi-

tions that allow the interchange of the order of integration with respect to y and differ-

entiation with respect to θ. We can then easily verify the identity

∂i(θ)

∂θ
+ a(θ) + c(θ) = 0. (16)

Now let

Θ0 = {pxn,0(θ) = δθ̂(xn) | n ∈ N, xn ∈ Y n}.

where θ̂(xn) denotes the maximum-likelihood estimate. For observations xn = (y1, ..., yn)

denote by ln(θ) and Ln(θ) the resulting log-likelihood and likelihood respectively. Consider

the data-augmentation chain {θ1,m(k) | k = 0, 1, 2, ...} arising in the construction of



35Θ1 from Θ0, where m is large. Denote the log-likelihood function for the additional

m samples, generated when updating θ1,m(k), by lm(θ) which is maximised by θ̂m. As

in the proof of Theorem 3.4 we are interested in the case where θm1 (t) = θ1,m(bmtc)

converges to a diffusion process as m→∞ and where pxn,1(θ) can then be derived as the

stationary distribution of this process. We identify a candidate for this limiting diffusion

by considering the increment θ1,m(k+1)−θ1,m(k) in the augmented chain. From standard

results on the asymptotic mean, variance and normality of maximum-likelihood estimators

for sufficiently regular models, (see e.g. [4]), we have

E(θ̂m − θ1,m(k)) =
1

i2(θ1,m(k))m

(
a(θ1,m(k)) +

c(θ1,m(k))

2

)
+ o(1/m)

and

E(θ̂m − θ1,m(k))2 =
1

i(θ1,m(k))m
+ o(1/m).

Since

θ1,m(k + 1)− θ̂m = l′n(θ1,mk))i(θ1,m(k)) + o(1/m),

the form of the candidate limiting diffusion is given by

dθ1 =
1

i2(θ1)

(
a(θ1) +

c(θ1)

2
+ l′n(θ1)i(θ1)

)
dt+

√
1

i(θ1)
dB. (17)

We assume the following conditions hold.

Assumption 5.1.

1. The stochastic differential equation

dθ1 =
1

i2(θ1)

(
a(θ1) +

c(θ1)

2
+ l′n(θ1)i(θ1)

)
dt+

√
1

i(θ1)
dB,

where B is a Brownian motion and θ1(0) = ξ ∈ K, has a unique solution.



362. The Markov chain θ1,m satisfies

Exm(θ1,m(1)− x) =
1

i2(x)m

(
a(x) +

c(x)

2
+ l′n(x)i(x)

)
+ o(1/m)

Exm(θ1,m(1)− x)2 =
1

i(x)m
+ o(1/m)

E(θ1,m(1)− x)2+ε ≤ C

m1+ε′

By [6] Theorem (4.53) conditions for the existence and uniqueness of a weak solution

are that i(x) < ∞ for x ∈ K and the quantities a(x)
i(x) + c(x)

2i(x) + l′n(x) and i(x) are locally

integrable in K.

Theorem 5.2. 1. Under Assumption 5.1, the interpolated chain θm1 converges weakly

to θ1.

2. The associated system of inferences, obtained from the stationary measure of the

diffusion in (17), is given by

Θ1 = {pxn,1(θ) ∝ π(θ)Ln(θ;xn)2 | n ∈ N, xn ∈ Y n}

where ∂
∂θ log π = a(θ)

i(θ) .

Proof. Under Assumption 5.1 we can satisfy the conditions of Theorem 4.5 and hence

we can deduce the i = 1 case, in a manner analogous to the Proof of Theorem 3.4 given

in Section 4. To verify the form of Θ1 we solve the associated Fokker-Planck equation to

show that the stationary measure, p(θ), satisfies

p(θ) ∝ i(θ) exp

(
2

∫
a(θ)

i(θ)
+

c(θ)

2i(θ)
+ l′n(θ)dθ

)
,

From (16) this can be written as

p(θ) ∝ i(θ) exp

(
2

∫
a(θ)

2i(θ)
− i′(θ)

2i(θ)
+ l′n(θ)dθ

)
∝ exp

(∫
a(θ)

i(θ)
dθ

)
L2
n(θ).



37It follows that

Θ1 = {pxn,1(θ) ∝ π(θ)L2
n(θ;xn) | n ∈ N, xn ∈ Y n}.

where ∂
∂θ log π = a(θ)

i(θ) , so that π(θ) is the maximum-likelihood prior. �

We proceed to the inductive step. Suppose now that

Θj−1 = {pxn,j(θ) ∝ π(θ)L
γj−1
n (θ;xn) | n ∈ N, xn ∈ Y n},

where γj = 1/(1− 2−j), j = 1, 2, . . . , and consider the construction of Θj from Θj−1. Let,

xn, Ln(θ) and ln(θ) be as above and let πL = π(θ)L
γj−1
n (θ).

Consider the chain {θj,m(k) : k ≥ 0} and the continuous-time interpolation {θmj (t) :

t ≥ 0} determined by setting θmj (t) = θj,m(bmtc). We seek the form of a limiting diffusion

for this process and consider, therefore, the increment to θj,m(k) when m is large. As

before θ̂m denotes the MLE for θ given the m additional samples generated using the

current value θj,m(k), and Lm(θ) denotes the likelihood function for these samples. We

appeal to standard results regarding the asymptotic Bayesian posterior distribution of θ

about the MLE, θ̂m for regular models.

From Chapter 5 of [8] it follows that, using prior density πL(θ), and given observations

y1, ..., ym, then, the posterior π(θ|y1, ..., ym) ∝ πL(θ)Lm(θ) satisfies

E(θ − θ̂m|y1, ..., ym) =

[
−∂

2lm
∂θ2

]−2

θ̂m

(
1

2

[
∂3lm
∂θ3

]
θ̂m

−
[
∂2lm
∂θ2

]
θ̂m

[
∂ log πL
∂θ

]
θ̂m

)
+ o(1/m)

(18)

and has variance
[
−∂2lm

∂θ2

]−1
+ o(1/m). Replacing Lm(θ) with Lm(θ)γj−1 , so that θ̂m is

unaffected, the corresponding expectation for the ‘posterior’ with density proportional to

πL(θ)Lm(θ)γj−1 becomes

E(θ − θ̂m|y1, ..., ym) =
1

γj−1

[
−∂

2lm
∂θ2

]−2

θ̂m

(
1

2

[
∂3lm
∂θ3

]
θ̂m

−
[
∂2lm
∂θ2

]
θ̂m

[
∂ log πL
∂θ

]
θ̂m

)
(19)

with approximate variance is 1
γj−1

[
−∂2lm

∂θ2

]−1
.



38Started from the point x we discern two components to the increment θj,m(1)−x - one

given by θ̂m−x and the other arising when we sample θj,m(1) from a density proportional

to πL(θ)Lm(θ)γj−1. We approximate expectations over y1, ..., ym in (19) by setting the

derivatives of lm to their expected values at θ = θj,m(k), and combine the two increments

to show that

E(θj,m(1)− x) =
1

i2(x)

(
a(x) +

c(x)(γj−1 + 1)

2γj−1
+
i(x)

γj−1

[
∂ log πL
∂θ

]
x

)
1

m
+ o(1/m)

and

Var(θj,m(1)|x) =
γj−1 + 1

i(x)γj−1

1

m
+ o(1/m).

We can now discern the candidate for the limiting diffusion to be

dθj =
1

i2(θj)

(
a(θj) +

c(θj)(γj−1 + 1)

2γj−1
+
i(θj)

γj−1

∂ log πL
∂θj

)
dt+

√
γj−1 + 1

γj−1i(θj)
dB. (20)

We make the following assumptions for j ≥ 2.

Assumption 5.3.

1. The stochastic differential equation

dθj =
1

i2(θj)

(
a(θj) +

c(θj)(γj−1 + 1)

2γj−1
+
i(θj)

γj−1

∂ log πL
∂θj

)
dt+

√
γj−1 + 1

γj−1i(θj)
dB,

where B is a Brownian motion and θj(0) = ξ ∈ K, has a unique weak solution.

2. The Markov chain θj,m(k) satisfies

Exm(θj,m(1)− x) =
1

i2(x)

(
a(x) +

c(x)(γj−1 + 1)

2γj−1
+
i(x)

γj−1

[
∂ log πL
∂θ

]
x

)
1

m

+o(1/m)

Exm(θj,m(k + 1)− x)2 =
γj−1 + 1

i(x)γj−1

1

m
+ o(1/m)

Exm(θj,m(k + 1)− x)2+ε ≤ C

m1+ε′



39Theorem 5.4. Under Assumption 5.3, for j ≥ 2, the process θmj converges weakly to θj,

the solution to (20). The associated system Θj exists and is given by

Θj = {pxn,j(θ) ∝ π(θ)Ln(θ;xn)γj | n ∈ N, xn ∈ Y n}

and the limiting system is given by

Θ∞ = {pxn,∞(θ) ∝ π(θ)Ln(θ;xn) | n ∈ N, xn ∈ Y n}

Proof. Since Assumption 5.3 implies that the conditions of Theorem 4.5 hold, it suffices

to confirm that form of the stationary density, p(θ), which is given by

∂ log p

∂θ
=

i′(θ)

i(θ)
+

2a(θ)γj−1

(γj−1 + 1)i(θ)
+
c(θ)

i(θ)
+

2

γj−1 + 1

∂ log πL
∂θ

=
i′(θ)

i(θ)
+

2a(θ)γj−1

(γj−1 + 1)i(θ)
+
c(θ)

i(θ)
+

2

(γj−1 + 1)

(
a(θ)

i(θ)
+ γj−1l

′
n(θ)

)
=

a(θ)

i(θ)
+

2γj−1l
′
n(θ)

γj−1 + 1

by (16). It follows that

Θj = {pxn,i(θ) ∝ π(θ)Ln(θ;xn)
2γj−1

(γj−1+1) | n ∈ N, xn ∈ Y n},

and the result follows since
2γj−1

(γj−1 + 1) = γj . In the limit we obtain

Θ∞ = {pxn,∞(θ) ∝ π(θ)Ln(θ;xn) | n ∈ N, xn ∈ Y n},

where ∂
∂θ log π = a(θ)

i(θ) . �

We note that alternative priors to the maximum-likelihood could be obtained in the

limiting system by initialising the construction with a ‘bias-adjusted’ system of the form

Θ0 = {pxn,0(θ) = δ
θ̂(xn)− b(θ̂(xn))

n
)
| n ∈ N, xn ∈ Y n}.



40The construction can be treated as above on replacing l′(θ) with a term l′(θ) + i(θ)b(θ)

when specifying the drift term in diffusions such as (17), leading to a limiting system in

which

pxn,∞(θ) ∝ πb(θ)Ln(θ;xn),

where b(θ) and π(θ) are related by

∂

∂θ
log πb =

a(θ)

i(θ)
+ i(θ)b(θ).

5.2 An irregular model

We give an example to show that a Bayesian limiting system may not arise when Ψ is

applied to an initial system based on maximum-likelihood estimation if the model is not

sufficiently regular. Consider again the uniform distribution of Example 3.7 reparame-

terised for convenience so that νθ(y) = θ−1, 0 < y < θ and the system of (maximum

likelihood) estimators

ΘMLE = {pxn,i(θ) = δx(n)
| n ∈ N, xn ∈ Rn0},

where x(n) is the maximum of the observations. Now ΘMLE is trivially a fixed point of

Ψ. Therefore consider a more general system of MLE-based estimators of the form

Θa = {pxn,i(θ) = δanx(n)
| n ∈ N, xn ∈ Rn0},

with an = n+1
n giving an unbiased system of estimators. We now investigate whether a

Bayesian limit arises when Ψ is applied to Θa for suitably chosen a = (a1, a2, ....). For

simplicity we restrict attention to sequences a for which limn→∞ an = 1, so that the

system of estimators is consistent. Subject to this assumption we make the following

claim:

(i) If, for all n ≥ 1, m log an+m < 1 for all but finitely many m then

Θ∞ = lim
k→∞

ΘaΨk = ΘMLE .



41(ii) Otherwise Θ∞ does not exist.

Proof. We will make use of the following standard result on random walks from [17].

Lemma 5.5. Let Xi, i = 1, 2, 3... denote a sequence of i.i.d. random variables with mean

0 and variance 1, such that X1 has an exponential moment. Let S
(a)
r =

∑r
i=1Xi − ra,

where a > 0, and let M (a) = supr≥1 S
(a)
r . Then

lim
a→0

Pr(aM (a) > z) = e−2z,

so that aM (a) converges weakly to an Exp(2) distribution as a→ 0.

Set Θ0 = Θa and consider the construction of Θ1 = Θ0Ψ. Fix n, suppose we have

data xn and suppose without loss of generality that x(n) = max(y1, .., yn) = 1. Consider

the generalised data augmentation chain {θ0,m(k) : k ≥ 0} when we augment xn with m

additional observations. For this chain, for k = 1, 2, 3, . . .

θ0,m(k) = an+m sup{1, ηkθ0,m(k − 1)},

where {ηk} are i.i.d. Beta(m, 1), and ηkθm(k − 1) represents the supremum of the m

additional samples imputed during the update process. The corresponding chain for

λ0,m = log θ0,m has update

λ0,m(k) = log an+m + sup{0, λ0,m(k − 1)− ξk}

= sup{log an+m, λ0,m(k − 1)− ξk + log an+m}

where the {ξk} are i.i.d. Exp(m). Set cm = m log an+m, ν0,m(k) = mλ0,m(k) − cm and

write the update as

ν0,m(k) = sup{0, ν0,m(k − 1) + ζm(k)} (21)

where the ζm(k) = cm−mξk, are i.i.d. with mean and variance cm− 1 and 1 respectively.

Now let

Sr =

r∑
i=1

ζm(i), (22)



42It follows from standard results that ν0,m ∼ supr≥1 Sr = M (m) where ν0,m denotes the

stationary distribution of the Markov chain (21).

If cm ≥ 1 then the random walk Sr is not positive recurrent and proper stationary

distributions do not exist for the Markov chains {ν0,m(k)} and {λ0,m(k)}. Therefore we

must assume that cm < 1 for all but finitely many m for Θ0 = Θa ∈ C . Part (ii) of

the claim follows. Assuming this condition, we identify distinct cases according to the

limiting behaviour of cm.

(1) If limm→∞ cm < 1 then, for sufficiently large m, ν0,m(k) → ν0,m in distribution

as k → ∞, where ν0,m is stochastically dominated by some random variable, τ ,

independent of m. It is then immediate that λ0,m(k) → λ0,m and that λ0,m must

tend to 0 in probability as m→∞.

(2) Suppose now limm→∞ cm = 1. By Lemma 5.5 it follows that, as m→∞,

(1− cm)M (m) ∼ (1− cm)ν0,m →M

where M ∼ Exp(2).

Now consider the large-m behaviour of

λ0,m ∼
cm
m

+
ν0,m

m
∼ cm

m
+

(1− cm)ν0,m

m(1− cm)
,

which in turn is determined by that of m(1− cm). Writing this as

m(1− cm) =
m

m+ n
(n+m(1− (m+ n) log an+m)) ,

we see that limm→∞m(1− cm) = n+ limm→∞m(1−m log am) ≥ n. There are two

cases to consider

(a) If limm→∞m(1−m log am) =∞, then λ0,m → 0 weakly.

(b) If limm→∞m(1−m log am) = µ, where 0 ≤ µ <∞, then

λ0,m → Exp(2(n+ µ)).
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is Λ(1) = {pxn,i(λ) = δ(λ) | n ∈ N, xn ∈ Rn0} with corresponding system for θ, for the case

of general x(n), given by

Θ1 = {pxn,1(θ) = δx(n)
| n ∈ N, xn ∈ Rn0} = ΘMLE.

Thus a single application of Ψ maps Θ0 = Θa to the fixed point ΘMLE.

In case (2)(b) it can be shown that

Θ1 = {pxn,1(θ) ∝ θ−2nθ−2µ−1 | n ∈ N, xn ∈ Rn0}. (23)

In particular, if an = n+1
n , then µ = 1/2 and

Θ1 = {pxn,1(θ) ∝ σ(θ)−2L(θ;xn)2 | n ∈ N, xn ∈ Rn0},

as was the case for models in the exponential family.

However, any hopes of ultimate convergence to a Bayesian solution are dashed by

further applications of Ψ. We show that for case (2)(b) Ψ maps Θ1 to ΘMLE. Working

in the λ parameterisation we apply Ψ to the system

Λ1 = {pxn,1(λ) ∝ 2(n+ µ)e−2(n+µ)(λ−log x(n)), λ > x(n) | n ∈ N, xn ∈ Rn0},

Assuming x(n) = 1, the level-m data-augmentation chain is defined by

λ1,m(k) = sup{η1,k, λ1,m(k − 1)− η2,k + η1,k},

where the {η1,k} are i.i.d. Exp(2(m+n+µ) and the {η2,k} are i.i.d. Exp(m). For common

initial value λ1,m(0), this process is stochastically dominated by a process

ζm(k) = sup{η′1,k, ζm(k − 1)− η2,k + η′1,k},

where the {η′1,k} are i.i.d. Exp(2m). It is clear that {mζm(k)} has the same proper

stationary distribution for all m, so ζm → 0 in distribution as m → ∞ where ζm follows

the stationary distribution of the unscaled chain {ζm(k) : k ≥ 0}. The result is then

immediate.



446 Discussion

In this paper we have shown how the generalised data augmentation principles intro-

duced in [9] can be applied to elicit connections between classical point estimation and

Bayesian (or Bayesian-like) inference where the latter is constructed from the former using

refinement operators. This contrasts with other approaches to constructing connections,

for example, by defining point estimators from Bayesian analyses using decision-theoretic

ideas. A key notion in our treatment is that of preferability of one system of inferences

over another with fixed points of refinement operators representing maximally preferable

inferences. Our results show that, in the 1-dimensional case, for sufficiently regular mod-

els parameterised by their mean, the limiting systems of inferences is Bayesian when the

model lies in the exponential family and otherwise takes the form of a pseudo-Bayesian

analysis in which the true model likelihood is replaced by one with an exponential-family

form. More generally, subsequent investigations suggest that limiting systems derived

from initial systems of maximum-likelihood estimators correspond to Bayesian inference

using Hartigan’s maximum-likelihood prior specification, given sufficiently strong regular-

ity conditions on the model.

We consider how the results of the paper might be extended to higher-dimensional

models. One natural generalisation of the moment-based constructions (Theorem 3.4) con-

cerns the case where the samples remain one-dimensional but θ ∈ K ⊂ Rd parameterises

the sampling model in terms of the first d moments of vθ(dy) and the initial system of point

estimators Θ0 is formed from measures, pxn = δs(xn) where s(xn) = (s1(xn), ..., sd(xn))

and si(xn) denotes the ith sample moment of xn = (y1, ..., yn). Under regularity conditions

that guarantee s(xn) ∈ K for any observed xn, then the generalisation of the construction

of the refinement operator Ψ to the d-dimensional setting is clear. The data augmentation



45chain will have for i = 1

θ1,m(k + 1) =
ns(xn) +

∑m
j=1 Y

(k)
j

n+m
,

where the Y
(k)
j = (Y

(k)
j , (Y

(k)
j )2, ..., (Y

(k)
j )d) and the values Y

(k)
j are i.i.d. draws from the

distribution νθ1,m(k). By rewriting this and applying a multidimensional version of the

technique in Section 4 we will obtain a limiting SDE of the form

dθ1 = n(x̄n − θ1)dt+ Σ(θ1)dW,

where W is a d-dimensional Brownian motion and A(θ1) = Σ(θ1)Σ(θ1)T is the covariance

matrix of (Y, Y 2, ..., Y d) under νθ. Then our putative stationary distribution would be

the solution to the PDE

A∗p1 = −
∑
j

∂

∂θj
(n ((x̄n)j − θj) p1) +

1

2

d∑
j=1

d∑
k=1

∂2

∂θj∂θk
(Ajk(θ1)p1) = 0.

Challenges inherent in generalising Theorem 3.2 to this setting include the identification

of appropriate conditions on the moments of the distribution Σ(θ1). We note a potential

link between the results of this paper and Approximate Bayesian Computation (ABC)

[1]. Under this approach parameters in models with intractable likelihoods are inferred

by replacing the observed data xn with a (possibly mutivariate) summary statistic T (xn)

and exploring the posterior π(θ|T (xn)). The need to compute a likelihood is avoided

by drawing samples of T from its sampling distribution given θ and comparing with the

observed T (xn). Our methods may have potential for constructing appropriate approx-

imations to π(θ|T (xn)) without the need for extensive simulation (cf Example 3.7) and

this may be worthy of further investigation.

More straightforward may be the derivation of higher-dimensional results that demon-

strate that Bayesian inferences arise as limiting, preferable systems for initial systems

of maximum likelihood estimators to provide an alternative motivation for the use of
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justifies Bayesian procedures in terms of insensitivity of posteriors with respect to prior

choice and consistency of estimates derived from the posterior as the sample size increases

while the justification in terms of preferability would apply to any sample size. In the

settings we consider, imputed observations are sequences of i.i.d samples from the model

νθ(y). This approach reflects classical asymptotic analysis and elicits connections with

concepts, such as the maximum-likelihood prior, developed using classical asymptotics.

Extending this approach to higher-dimensional models would however be challenging given

the need to understand the distributions of MLEs in large-sample settings and to develop

multi-dimensional diffusion approximations to the generalised data-augmentation chains

arising. Alternatively we can note that imputed observations arise from ‘thought exper-

iments’. These can be designed in an arbitrary manner so long as the model for the

observed data, xobs ∼ νθ(.) where θ ∈ Rd, is preserved. Now consider the sequence of

experiments xn, n = 1, 2, ... where xn = (xobs, y1, ..., yn−1) and y1, ..., yn−1 is a random

sample (independent of xobs) from a multivariate normal distribution MVN(θ, Id). Start-

ing from an initial system Θ0 of maximum likelihood estimators and applying the operator

Ψ recursively it should be feasible to demonstrate, subject to modest conditions on the

likelihood L(θ;x0), that a Bayesian limiting system is reached, thanks to the simplifica-

tions arising from the normality of the augmenting data when demonstrating diffusion

limits.

The results of the paper offer a fresh perspective on established approaches to infer-

ence. It is arguably surprising that, by applying principles that require only that the class

of acceptable inferences be closed under a certain data augmentation operation and that it

be complete in a natural sense, the Bayesian paradigm can be constructed from a starting

point that considers only point estimators. The property that a system of inferences is



47invariant under Ψ or Φ, though not necessarily by the transition kernels in the finite-m

data-augmentation chains involved in the formulation of these operators, may be seen as

a weak form of coherence. Our results show that when we attempt to construct weakly

coherent systems by seeking fixed points of Φ or Ψ, then these fixed points may never-

theless be strongly coherent Bayesian systems when their basin of attraction contains the

system of maximum-likelihood point estimators.
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A Proofs of Lemma 4.3 and Theorem 4.2

We recall the scale and speed measure approach to one-dimensional diffusions. The scale

function for our diffusion satisfying (4) is given by fixing a c ∈ K and setting

S(x) =

∫ x

c
exp(−2

∫ y

c

n(x̄n − z)
σ2(z)

dz)dy,∀x ∈ K.

By our definitions of f, g this is the same form as given before the statement of Assump-

tion 3.1. The speed measure is then given by

m(dx) =
2dx

σ2(x)S′(x)
.

We now recall Lemma 4.3 and provide a proof.

Lemma A.1. Under Assumptions 3.1 we have:

(1) There exists a pathwise unique strong solution to the SDE (4), {θi(t) : t ≥ 0} which



48can be written in integral form as

θi(t) = x̄n + (ξ − x̄n)e−nt +

∫ t

0
e−n(t−s)σi(θi(s))dWs.

(2) The moments of θi(t) are bounded up to a level depending on n in that there exist

constants Cκ such that E|θi(t)|κ ≤ Cκ(1 ∨ |ξ|κ ∨ |x̄n|κ) for all t ≥ 0 and 0 ≤ κ ≤

(2n+ Cl)/Cl.

(3) If
√

2n > Cl, there is a unique stationary distribution of (4) given by

pi(θ) ∝
1

σi(θ)2
exp(2n(fi(θ)x̄n − gi(θ))),

where

fi(θ) =

∫
σ−2
i (θ)dθ, gi(θ) =

∫
θσ−2

i (θ)dθ, θ ∈ (l, r).

Proof.

(1) The local Lipschitz condition for σ2 can be used to establish that σ satisfies the

condition of [7] Theorem 5.3.8. As σ > 0 we have for θ, θ′ ∈ KU

|σ(θ)− σ(θ′)|2 ≤ |σ(θ)− σ(θ′)|
(
σ(θ) + σ(θ′)

)
≤ |σ2(θ)− σ2(θ′)|

≤ K̃U |θ − θ′|

where K̃U is a finite constant. This gives pathwise uniqueness by [7] Theorem 5.3.8.

We recall [6] Theorem (4.53). We consider N := {x ∈ R : σ(x) = 0} and observe

that, if σ(x) = 0 for x /∈ K, and as f, g are locally integrable, we have the conditions for

the theorem. Thus existence of a weak solution follows if S := {x ∈ R :
∫ x+
x− σ−2(y)dy =

∞} ⊂ N . As σ2 is (Lipschitz) continuous we see that for any point x such that σ2(x) > 0

we have that σ−2 is locally integrable at x and hence S ⊂ N giving the existence of a weak

solution. Coupled with pathwise uniqueness we have the existence of strong solutions up

until exit from K.



49The Assumption 3.1(4) is the definition for the boundaries of K to be natural, so the

exit time is infinite almost surely, see [16] Section 5.5. Hence we have a pathwise unique

strong solution for all time.

It is a simple exercise to establish the integral form.

(2) In order to show the moment bounds we first need to establish some crude estimates

to ensure that the stochastic integral in the integral representation for θ is a martingale.

The stochastic integral is a local martingale and thus if we define the stopping times

TM := inf{t : |θ(t)− x̄n| > M} we have for κ ≥ 2 using (5),

φM,κ
t := E|en(t∧TM ) (θ(t ∧ TM )− x̄n) |κ = E

∣∣∣∣(θi(0)− x̄n) +

∫ t∧TM

0
ensσi(θi(s))dWs

∣∣∣∣κ .
Applying the Burkholder-Davis-Gundy inequality, Hölder’s inequality and the linear growth

condition on σi we see that for 0 ≤ t ≤ T for a fixed T > 0,

φM,κ
t ≤ 2κ−1|θi(0)− x̄n|κ + 2κ−1E|

∫ t∧TM

0
ensσi(θi(s))dWs|κ

≤ cκ + 2κ−1c′κE|
∫ t∧TM

0
e2nsσi(θi(s))

2ds|κ/2

≤ cκ + C ′κET
κ/2−1

∫ t∧TM

0
eκnsσκ(θ(s))ds

≤ c′κ + cκT
κ/2−1E

∫ t

0
eκn(s∧TM )(C ′κ + Cκ(θ(s ∧ TM )− x̄n)κ)ds

≤ c′′κT
κ/2−1enκt + cκT

κ/2−1

∫ t

0
φM,κ
s ds.

A simple application of Gronwall’s inequality gives that for 0 ≤ t ≤ T

φM,κ
t ≤ c′′κT κ−2 exp(cκT

κ/2−1t) ≤ c′′κT κ−2 exp(cκT
κ/2).

As this bound is independent of M we can apply the dominated convergence theorem and

let M →∞ to see that, by modifying the constants, for κ ≥ 2

E|θ(t)|κ ≤ c′κT κ−2 exp(CκT
κ/2), 0 ≤ t ≤ T.

Equipped with this we can improve the estimates on the moments. Using Ito’s formula
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dθκ = (κn(x̄n − θ)θκ−1 +
1

2
κ(κ− 1)θκ−2σ2(θ))dt+ κθκ−1σ(θ)dW.

Applying the moment estimates above we can see that for 0 ≤ t ≤ T

E(

∫ t∧TM

0
θκ−1σ(θ)dW )2 ≤ E

∫ t∧TM

0
θ2κ−2σ2(θ)ds

≤ E

∫ t∧TM

0
Clθ

2κ−2 + Clθ
2κds

≤
∫ t

0
ClEθ

2κ−2 + ClEθ
2κds

≤ cκT
2κ−2ecT

κ

independent of M . Again letting M →∞ we see that the stochastic integral term is a true

martingale and hence we have the following expression for the moments φκt = E|θ(t)|κ,

φκt = φκ0 + E

∫ t

0
(κn(x̄n − θ(s))θ(s)κ−1 +

1

2
κ(κ− 1)θ(s)κ−2σ2(θ(s)))ds. (24)

We will proceed by induction noting that φ0
t = 1 and Eθt = x̄n+ (ξ− x̄n)e−nt and so that

using κ = 2 and the linear growth bound we have

φ2
t ≤ φ2

0 + (Cl − 2n)

∫ t

0
φ2
sds+

∫ t

0
(2nx̄2

n + Cl + 2nx̄n(ξ − x̄n)e−ns)ds.

Assume that n is large enough so that 2n > Cl, then in differential form we have

dφ2

dt
≤ (Cl − 2n)φ2 + (2nx̄2

n + Cl + 2nx̄n(ξ − x̄n)e−nt).

By taking ψt = e(2n−Cl)tφ2
t , we have

dψ

dt
= e(2n−Cl)t

(
dφ2

dt
+ (2n− Cl)φ2

)
≤ e(2n−Cl)t(2nx̄2

n + Cl + 2nx̄n(ξ − x̄n)e−nt).

Integrating gives

φ2
T ≤

2nx̄2
n + Cl

2n− Cl
+

2nx̄n(ξ − x̄n)

n− Cl
e−nT +

(
ξ2 − 2nx̄2

n + Cl
2n− Cl

− 2nx̄n(ξ − x̄n)

n− Cl

)
e−(2n−Cl)T .

Thus we have the uniform bound for all T > 0,

φ2
T ≤ C2(1 ∨ ξ2 ∨ x̄2

n).



51For the general case, using the linear growth of σ, we have

φκt ≤ |ξ|κ +

∫ t

0
(κnx̄nφ

κ−1
s + (

1

2
κ(κ− 1)Cl − κn)φκs +

1

2
κ(κ− 1)Clφ

κ−2
s ds. (25)

Now assume that φpt ≤ Cp(1 ∨ |ξ|p ∨ |x̄n|p) for all p ≤ κ − 1 and t > 0. Using this in

(25) we get

φκt ≤ |ξ|κ+κCκ−1nx̄n(1∨|ξ|κ−1∨|x̄n|κ−1)t+

∫ t

0
κ(

1

2
(κ−1)Cl−n)φκsds+ClCκ−2(1∨|ξ|κ−2∨|x̄n|κ−2)t.

For n > 1
2(κ − 1)Cl we have, by solving the associated differential inequality, that there

is a Cκ such that

φκt ≤ Cκ(1 ∨ |ξ|κ ∨ |x̄n|κ).

Thus we have the general case provided that (κ− 1)Cl < 2n as required.

(3) Under the condition that
√

2Cl < 2n we can see that we have finite moment

bounds independent of T . Thus there will exist a stationary distribution. There is a finite

invariant measure when the speed measure is integrable and it is proportional to the speed

measure. This gives the result. �

Remark A.2. We can also obtain the invariant measure by solving an ODE. The gener-

ator of the diffusion acting on a function u ∈Dom(A) is given by

Au = n(x̄n − θ)
∂u

∂θ
+

1

2
σ2
i (θ)

∂2u

∂θ2
.

The stationary distribution then has a density pi which is the solution to

A∗pi = − d

dθ
(n(x̄n − θ)pi) +

1

2

d2

dθ2
(σ2
i (θ)pi) = 0. (26)

We can check that the solution as given satisfies equation (26).

As a consequence of the moment estimates for the diffusion and the fact that it will

converge to a stationary distribution, we have immediately that



52Corollary A.3. The stationary distribution of the SDE has moments of order up to

2n+Cl
Cl

.

We now give the estimates needed to establish that each Markov chain in the sequence

has a stationary distribution and that these converge to the stationary distribution for

the diffusion. In fact we show a much stronger result than required for our main theorem

in that we also establish geometric ergodicity.

Theorem A.4. Under Assumption 3.3 for each i,m ∈ N, the Markov chain {θi,m(k) :

k ≥ 0} is ergodic with a unique stationary distribution πmi . There exists ri < 1 and

Ri <∞ independent of m such that for any Borel set A and all t > 0

sup
x

|Px(θmi (bmtc) ∈ A)− πmi (A)|
1 + x2

≤ Rirti .

Proof. We begin with the case i = 1.

In order to establish the positive recurrence we use the Lyapunov function technique.

Let V (x) = 1 + x2. From our earlier estimates and linear growth assumption we have

ExV (θm(1)) = 1 + E
(
x+

n(x̄n − x)

n+m
+
Rm(x)

n+m

)2

= V (x) + 2x(
n(x̄n − x)

n+m
) + E

(
n(x̄n − x)

n+m
+
Rm(x)

n+m

)2

= V (x) +
2nx(x̄n − x)(n+m) + n2(x̄n − x)2 +mσ2(x)

(n+m)2

≤ V (x)− n2 + (2n− C)m

(n+m)2
x2 +

2nmx̄n
(n+m)2

x+
n2x̄2

n +mC

(n+m)2

∆V (x) ≤ −αx2 + βx+ γ

with

α =
n2 + (2n− C)m

(n+m)2
, β =

2nm|x̄n|
(n+m)2

, γ =
n2x̄2

n +mC

(n+m)2
.

Thus, provided 2n > C, we have that α > 0 and

∆V (x) ≤ −1

2
αV (x) + γ + βx− 1

2
αx2 +

1

2
α.



53A simple calculation gives

∆V (x) ≤ −1

2
αV (x) + (γ +

1

2
α+

β2

2α
)IC .

where

C = {x : |x− β

α
| ≤

√
2γ

α
+ 1 +

β2

α2
}.

By our Assumption 3.3 the chain θ1,m is ψ-irreducible and hence there exists at least

one petite set. In fact by [18] Proposition 5.5.5, there exists a sequence {Cj}j of petite

sets such that ∪jCj = K. Hence our interval C is contained in some petite set Cj∗ . The

geometric drift condition of [18] (V4) is satisfied with the petite set Cj∗ . Thus as the

chain is also aperiodic we will have existence of a unique invariant measure and geometric

convergence towards it.

We now note that the Markov process θm(t) is the original chain sped up by a factor

m. Thus, its generator ∆m = m∆ and as C is invariant under the time change, we have

∆mV (x) ≤ −1

2
mαV (x) +m(γ +

1

2
α+

β2

2α
)IC .

By the definition of α, β, γ we see that, for our sped-up process, we have the existence of

constants α0, β0, γ0 > 0, independent of m, such that

∆mV (x) ≤ −1

2
α0V (x) + (γ0 +

1

2
α0 +

β2
0

2α0
)IC .

We can now apply the result on V -uniform ergodicity in [18] Theorem 16.0.1, to deduce

the estimate, with coefficients independent of m.

The general case where i > 1 is a simple extension of the i = 1 case. For this we

note that the Markov chain transitions are selected from the density determined by the

limiting distribution of the diffusion arising in the case i − 1. We know that this has a

density with respect to Lebesgue measure for all parameter choices and hence the chain

is Lebesgue-irreducible and will be a T-chain as defined in [18] Chapter 6. In this case we

know that every compact set is petite.



54We keep the same Lyapunov function and, using Lemma 4.8, and the fact that σi(x) ≤
√

2σ(x), we have a minor modification of the i = 1 case in that

ExV (θi(1)) = 1 + E
(
x+

n(x̄n − x)

n+m
+
Rm(x)

n+m
+Nm(τm)

)2

≤ 1 +

(
x+

n(x̄n − x)

n+m

)2

+
σ2
i (x)

n+m
+ c

1 ∨ |x|2 ∨ |x̄n|2

n+m

∆(i)V (x) ≤ −αix2 + βix+ γi

where, for suitable positive constants,

αi =
2n− c1

m
+O(

1

m2
), βi =

c2

m
+O(

1

m2
), γi =

c3

m
+O(

1

m2
).

Thus, incorporating the time change, and provided 2n > c1, we have that αi, βi, γi > 0,

independent of m (and i), and

∆(i)
m V (x) ≤ −1

2
αiV (x) + γi + βix−

1

2
αix

2 +
1

2
αi.

The same calculations as before give

∆(i)
m V (x) ≤ −1

2
αiV (x) + (γi +

1

2
αi +

β2
i

2αi
)ICi ,

for a petite set Ci and we can proceed along exactly the same lines as the i = 1 case to

deduce the result as there is no dependence on m. �

Corollary A.5. The sequence of stationary distributions πmi for the sped up Markov

chains θi,m converges to πi, the stationary distribution for the solution θi to the SDE.

Proof. Consider the Markov chain θi,m started according to πmi . By assumption this is

a stationary Markov chain and we have for any finite collection of times k1, . . . , kj , l ∈ N

that

P(θi,m(k1) ∈ A1, . . . , θi,m(kj) ∈ Aj) = P(θi,m(k1 + l) ∈ A1, . . . , θi,m(kj + l) ∈ Aj). (27)



55Now we know that the sped up chains θi,m(t) converge weakly to a limit diffusion θi

as m → ∞. Hence, using this scaling, and the convergence of the finite dimensional

distributions, if mki → t1, . . .mkj → tj ,ml → s, then applying the convergence to both

sides of (27), we have

P(θi(t1) ∈ A1, . . . , θi(tj) ∈ Aj) = P(θi(t1 + s) ∈ A1, . . . , θi(tj + s) ∈ Aj).

Hence the diffusion is also stationary. As the diffusion has a unique stationary measure

we must have that the stationary distributions for the chain converge to it. �
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