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Abstract

The Multifractal Embedded Branching Process (MEBP) process and Canonical Embed-
ded Branching Process (CEBP) process were introduced by Decrouez and Jones (2012). The
CEBP is a process in which the crossings of dyadic intervals constitute a branching process.
An MEBP process is defined as a multifractal time-change of a CEBP process, where the
time-change is such that both it and the CEBP can be simulated simultaneously in an on-line
fashion. In this paper we investigate the scaling properties of the CEBP, the time-change,
and the MEBP. Under various moment conditions, we show that CEBP processes have a
constant modulus of continuity, obtain the Hausdorff spectrum of the time-change, and thus
obtain the Hausdorff spectrum an an MEBP process.

Keywords: multifractal processes, Hausdorff spectrum, multifractal spectrum, singularity
spectrum, branching processes

1 Introduction

Recently Decrouez and Jones [8] described a new class of multifractal processes, called Mul-
tifractal Embedded Branching Process (MEBP) processes. MEBPs are stochastic processes
defined using a crossing tree. A crossing tree can be defined for any continuous one dimensional
process. For such a process we define a sequence of stopping times—which we call crossing
times—by looking at the process when it crosses points on the dyadic lattice 2−nZ. Any cross-
ing from 2−nk to 2−n(k ± 1) can be decomposed into a sequence of crossings from 2−(n+1)j to
2−(n+1)(j±1), for j ∈ {2k−1, 2k, 2k+1}. Accordingly any sample path can be decomposed into
a labelled tree—the crossing tree—with labels giving the durations and directions of crossings
on the dyadic lattice 2−nZ, for all n.

An MEBP has a Galton-Watson branching process describing its crossing tree. For any
suitable branching process there is a family of processes—identical up to a continuous time
change—for which the spatial component of the crossing tree coincides with the branching
process. We identify one of these as the Canonical Embedded Branching Process (CEBP), and
then construct an MEBP from it using a multifractal time change. To construct the time change
we use a multiplicative cascade on the (spatial component of) the crossing tree. The cascade
defines a measure on the boundary of the tree, which we map onto R+ using the so called
“branching measure” (in contrast to the way this is usually done, using a “splitting measure”).
Taking partial integrals of the cascade measure gives us the time change process.

Multifractal processes find numerous applications in many diverse fields, including the study
of natural phenomena in physics (hydrodynamic turbulence, the solar magnetic field), biology
(human heart rate and gait), geology (earthquakes and fault repartitioning), but also man-made
applications, such as signal and image processing (texture characterisation), financial markets
(modelling of volatility) or computer network traffic, to cite but a few. See for example the
reviews [16, 11], and the references therein. Multifractal processes have complex local dynamics.
The dynamics of a process X = {X(t); t ∈ [0, T ]} at time t can be described using the local
Hölder exponent hX(t), defined as

hX(t) := lim inf
ε→0

1

log ε
log sup
|u−t|<ε

|X(u)−X(t)| 0 ≤ t ≤ T.

1Department of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
2Mathematical Institute, University of Oxford, Oxford, UK.

1



When hX(t) is constant all along the sample path with probability 1, X is said to be monofrac-
tal. In contrast, there exist processes whose Hölder exponent behaves erratically, whereby in
any interval of positive length we find a range of different exponents. For such processes the
behaviour of hX(t) can be captured by the multifractal/singularity/Hausdorff spectrum DX , a
global description of the local fluctuations. DX(h) is defined as the Hausdorff dimension of the
set of points with a given Hölder exponent h. For monofractal processes, DX(h) degenerates to
a single point at some h = H (so DX(H) = 1, and the convention is to set DX(h) = −∞ for
h 6= H). When the spectrum is non trivial for a range of values of h, the process is said to be
multifractal.

As our time change is obtained by integrating a multifractal measure, we will also need a
definition of the multifractal spectrum of a measure. Let B(x, r) be a ball centred at x ∈ Rn
with radius r. The local dimension of a finite measure µ at x ∈ Rn is defined, when the limit
exists, as

dµ(x) = lim
r→0

logµ(B(x, r))

log r
(1)

The multifractal or Hausdorff spectrum of µ at scale α, Dµ(α), is defined as the Hausdorff di-
mension of the set of points with a given local dimension α. Measures for which the multifractal
spectrum does not degenerate to a point are called multifractal measures. The term multifractal
was originally used by Mandelbrot [17] as a description of measures arising in turbulence.

For many multifractal processes the local dynamics, as described by the multifractal spec-
trum, can be related to the global scaling. In such cases we say that a multifractal formalism
holds. Let ∆X(a, t) summarise the spatial displacement of X at time t and at a temporal scale
a. For example we might just take ∆X(a, t) = |X(t+a)−X(t)|. If the expected time averages of
|∆X(a, t)|q scale like cqa

ζX(q), then we call ζX a partition function. The multifractal formalism
holds if we can write the multifractal spectrum in terms of the Legendre-Fenchel transform of
ζX . Partition functions can be constructed, for example, using wavelets [3, 20, 2], or related
multiresolution quantities such as wavelet leaders [12]. In what follows we introduce a novel set
of multiresolution quantities, defined in terms of the crossing tree, which in our context can be
viewed as a path-adapted multiresolution decomposition of the process. Using these we obtain
a partition function for the time change process, and establish that a multifractal formalism
holds.

Our principle aim in this paper is to describe the Hausdorff spectrum for a large class of
MEBPs. This will involve two steps. We firstly show that the CEBP is a monofractal and
calculate its Hölder exponent. This is done by obtaining a modulus of continuity result for the
process in the style of Barlow and Perkins (1988), who obtained such a result for Brownian
motion on the Sierpinski gasket. Some modifications are required however, as the process is
not necessarily Markov. We then compute the Hausdorff spectrum of the time change, with
methodology based on Biggins, Hambly and Jones (2011) for the lower bound, and Riedi (2003)
for the upper bound. A simple transformation of this spectrum combined with the modulus of
continuity result for the CEBP gives the Hausdorff spectrum for the MEBP.

A description of the construction of CEBP and MEBP is given in Sections 2 and 3. We work
with a simpler subset of processes to those considered in [8], which allows us to streamline the
construction. The modulus of continuity for CEBP processes is derived in Section 2.1, which
tells us that they are monofractal. The multifractal spectrum of the time change is derived
in Section 4, and a multifractal formalism established. Finally in Section 5 we put everything
together to get the multifractal spectrum for MEBP processes.
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Figure 1: A section of sample path and levels 3, 4 and 5 of its crossing tree. In the top frame
we have joined the points Tnk at each level, and in the bottom frame we have identified the k-th
level n crossing with the point (2n, Tnk−1) and linked each crossing to its subcrossings.

2 The Canonical Embedded Branching Process (CEBP) pro-
cess

Let X : R+ → R be a continuous process, with X(0) = 0. For n ∈ Z we define level n passage
times Tnk by putting Tn0 = 0 and

Tnk+1 = inf{t > Tnk | X(t) ∈ 2nZ, X(t) 6= X(Tnk )}.

The k-th level n (equivalently scale 2n) crossing Cnk is the sample path from Tnk−1 to Tnk . That
is, Cnk = {(t,X(t)) | Tnk−1 ≤ t < Tnk }.

When passing from a coarse scale to a finer one, we decompose each level n crossing into a
sequence of level n− 1 crossings. To define the crossing tree, we associate nodes with crossings,
and the children of a node are its subcrossings. The crossing tree is illustrated Figure 1, where
the level 3, 4 and 5 crossings of a given sample path are shown.

In addition to indexing crossings by their level and position within each level, we will also
use a tree indexing scheme. Let ∅ be the root of the tree, representing the first level 0 crossing.
The first generation of children (which are level −1 crossings, of size 1/2) are labelled by i,
1 ≤ i ≤ Z∅, where Z∅ is the number of children of ∅. The second generation (which are level −2
crossings, of size 1/4) are then labelled ij, 1 ≤ j ≤ Zi, where Zi is the number of children of i.
More generally, for n ≥ 0, the index i of a level −n crossing is a sequence of n positive integers,
giving the offspring number of the level k crossing containing i, for k = −1, . . . ,−n. Note that
generation k of the tree corresponds to level −k crossings. The length of an index i = i1 . . . in
is denoted |i| = n, and the k-th element is i[k] = ik. If |i| > m, i|m is the curtailment of i after
m terms. Conventionally |∅| = 0 and i|0 = ∅.
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A tree Ψ is a set of crossing indices, or nodes, such that: (a) ∅ ∈ Ψ; (b) if a node i belongs to
the tree then every ancestor node i|k, k ≤ |i|, belongs to the tree; and (c) if u ∈ Ψ, then uj ∈ Ψ
for j = 1, . . . , Zu and uj 6∈ Ψ for j > Zu, where Zu is the number of children of u. Let Υ∅
be the tree described by the crossing indices. Define Υi = {j ∈ Υ∅ | |j| ≥ |i| and j||i| = i}. The

boundary of the tree is given by ∂Υ∅ = {i ∈ NN | ∀m ≥ 0, i|m ∈ Υ∅}. Let ψ(i) be the position

of node i within generation |i|, so that crossing i is just C
−|i|
ψ(i). The nodes to the left and right

of i, corresponding to the crossings C
−|i|
ψ(i)−1 and C

−|i|
ψ(i)+1, will be denoted i− and i+.

In general when we have quantities associated with crossings we will use tree indexing and

level/position indexing interchangeably. So Zi = Z
−|i|
ψ(i), Ti = T

−|i|
ψ(i), etc.

At present our tree indexing only applies to crossings contained within the first level 0
crossing. We extend the tree indexing to the whole process by indexing crossings relative to
a spine, defined by the first crossing at each level. Clearly any crossing is contained in some
super-crossing on the spine. For any n let n:∅ be the index for Cn1 , which is the first crossing
on level n of the spine. As before, the sub-crossings of Cn1 define a tree, which we denote Υn:∅.
Nodes in the tree Υn:∅ will be labelled n:i, where i is the tree index relative to n:∅. Thus n:i
is in level n − |i| of the crossing tree, and a crossing previously labelled i is now labelled 0:i.

Our definition of ψ also generalises, so node n:i corresponds to crossing C
n−|i|
ψ(n:i). If we omit the

prefix, as will often be the case, then it is assumed that we are descending from the first level
0 crossing.

Note that this labelling is not unique, as n:i = (n+ 1):1i. To define the doubly infinite tree,
consisting of the spine and all its descendants, we need to choose a unique index for each node.
For nodes descended from 0:∅ we use an index starting from level 0 on the spine, otherwise we
take the level at which the line of descent leaves the spine. That is, our doubly infinite tree is
given by

Υ = {n:i : Cn:i is a crossing and either n = 0 or n ≥ 1 and i[1] 6= 1}.

We will write Υ(m) for all the level m nodes of the tree. That is Υ(m) = {n:i ∈ Υ : n−|i| = m}.
Similarly, for m ≤ n− |i|, Υn:i(m) = {n:j ∈ Υn:i : n− |j| = m}.

Let αnk ∈ {+,−} be the orientation of Cnk , + for up and − for down. A level n up crossing
is from k2n to (k + 1)2n, a down crossing is from k2n to (k − 1)2n, for some k. Subcrossing
orientations have a particular structure. The level n − 1 subcrossings that make up a level n
parent crossing consist of excursions (up-down and down-up pairs) followed by a direct crossing
(down-down or up-up pairs), whose direction depends on the parent crossing: if the parent
crossing is up, then the subcrossings end up-up, otherwise, they end down-down.

Let Dn
k = Tnk − Tnk−1 be the duration of Cnk . Clearly, to reconstruct the process we only

need αnk and Dn
k for all n and k. The αnk encode the spatial behaviour of the process, and the

Dn
k the temporal behaviour.

For any given crossing Cn:i there is a branching process embedded in its nested subcrossings.
We define Wn:i(k) = |{n:j ∈ Υn:i : |j| = |i| + k}| to be the number of level n − |i| − k level
crossings which are sub-crossings of Cn:i. If the subcrossing family sizes Zmk are i.i.d. then
{Wn:i(k)} is clearly a Galton-Watson process, supercritical since Zmk ≥ 2. In this case we call
the process X an Embedded Branching Process (EBP) process.

For an EBP, let Z stand for a generic Zmk , let p be its probability mass function, and let
µ = EZ. We make the following assumption

Assumption 2.1. Z ∈ 2N, Z is nontrivial (so µ = EZ > 2), and E(Z logZ) <∞

Assuming that the Zmk are i.i.d. and that Assumption 2.1 holds, standard results for super-
critical Galton-Watson processes give us limk→∞ µ

−kWn:i(k) = Wn:i exists a.s. and in mean,
is continuous and strictly positive, and has mean 1. We have the following result from [8]
Theorems 2.1 and 2.2.
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Theorem 2.2. For any offspring orientation distribution p satisfying Assumption 2.1, there
exists a continuous process X defined on R+, such that, almost surely:

1. the Zmk are i.i.d. with distribution p;

2. given the number of subcrossings, the excursions are independent and equally likely to be
up-down and down-up;

3. Dm
k = µmWm

k for all m and k;

4. for each m the crossing durations Dm
k are all mutually independent, and Dm

k is independent
of all Znj for n > m;

5. let H = log 2/ logµ, then for all c ∈ {µn : n ∈ Z},

X(t)
fdd
= c−HX(ct), (2)

where
fdd
= denotes equality for finite dimensional distributions (H is known as the Hurst

index, and X is said to be discrete scale-invariant).

We call X the Canonical EBP (CEBP) process with offspring distribution p.

Remark 2.3. (1) The construction of a CEBP can be generalised to allow the distribution of
Zmk and the pattern of excursions, to depend on the crossing orientation αmk .
(2) If we restrict ourselves to EBP processes whose crossing durations have the correct means
and independence structure, then the CEBP is unique up to finite dimensional distributions.
(3) Brownian motion is a CEBP, with p(2k) = P(Z = 2k) = 2−k.

2.1 The modulus of continuity of a CEBP

The goal of this section is to establish that CEBP are monofractal processes with Hölder expo-
nent H = log 2/ logµ ∈ (0, 1). We can motivate this result using a simple heuristic argument.
For any m:i ∈ ∂Υm:∅ we have

|X(Tm:i|n− + µm−nWm:i|n)−X(Tm:i|n−)|
= |X(Tm:i|n)−X(Tm:i|n−)|
= 2m−n

= (µm−nWm:i|n)(m−n) log 2/((m−n) log µ+logWm:i|n )

But, for suitable Z, we have from Liu [15] (see Lemma 4.8) that logWm:i|n/(m − n) → 0,
suggesting that the local Hölder exponent at Tm:i := limn→∞ Tm:i|n is log 2/ logµ.

Our approach is based on that used by Barlow & Perkins [4] to obtain the modulus of
continuity of Brownian motion on the Sierpinski gasket, though complications arise because
CEBP are not in general Markovian.

The basic idea is to use bounds on the crossing durations Dn
k to control how fast the process

can move away from a given point. We will suppose throughout that X is a CEBP defined by
the subcrossing number distribution p, which satisfies Assumption 2.1.

Let W stand for a generic Wn
k . We have the following from Biggins & Bingham [5].

Lemma 2.4. Suppose that Assumption 2.1 holds. There exists strictly positive constants c1,
c2, and c3 such that for all x > 0

exp
(
−c1x

−H/(1−H)
)
≤ P(W < x) ≤ c2 exp

(
−c3x

−H/(1−H)
)
.
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Let Tnk (s) be the k+1-st level n crossing time greater than or equal to s, for k ≥ 0. So if s is
a level n crossing time then Tn0 (s) = s. The previous lemma gave us a bound on the duration of
a crossing. The next lemma gives a lower bound on the time remaining in the current crossing.
To establish this result we will need to make a further modest restriction to the class of CEBP
we consider.

Assumption 2.5. We assume that the subcrossing number distribution Z is such that there
exists a ζ such that for all y

Z + ζ ≥st Z − y |Z > y.

Here ≥st denotes stochastic domination. That is, for all y and z,

P(Z − y > z |Z > y) ≤ P(Z + ζ > z).

This condition clearly holds for Z bounded, and for Z that are NBU (New Better than Used,
in which case ζ = 0 suffices). Examples of NBU distributions include the negative binomial
with shape ≥ 1 and the Poisson.

Lemma 2.6. Let {Fs}s≥0 be the filtration generated by X.
Suppose that Assumptions 2.1 and 2.5 hold, then there exists constants c4, c5 > 0 such that

for all x > 0 and n ∈ Z,

P(Tn0 (s)− s ≤ x | Fs) ≥ c4 exp
(
−c5(µ−nx)−H/(1−H)

)
.

Proof. Note first that

Tn+1
0 (s) = Tn0 (s) +

Zn+1(s)∑
i=1

µnW (i),

where Zn+1(s) ≥ 0 is the number of level n crossings from Tn0 (s) to Tn+1
0 (s), and the W (i) are

independent and distributed as W . If Zn+1(s) is not zero then, conditioned on Fs, it will be
distributed as Z− y |Z > y, where Z has the subcrossing number distribution, and y ≥ 0 is the
number of level n crossings from the current level n+ 1 crossing which have already happened
by time Tn0 (s), including the current level n crossing. Our notation is illustrated in Figure 2.

Thus, from our assumption on Z, conditioning on Fs we have

Tn+1
0 (s)− Tn0 (s) ≤st

Z+ζ∑
i=1

µnW (i)

d
= µn+1W (0) +

ζ∑
i=1

µnW (i).

As n ↓ −∞ we have Tn0 (s) ↓ s (this follows directly from [21] Theorem 1), whence

Tn0 (s)− s ≤st µnW (0, n) +

n−1∑
k=−∞

ζ∑
i=0

µkW (i, k),

where the W (i, k) are i.i.d. with distribution W . Thus, for any θ > 0 we have

E(e−θ(T
n
0 (s)−s) | Fs) ≥ Ee−θµ

nW
n−1∏
k=−∞

(
Ee−θµ

kW
)ζ
. (3)
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0 s
T0 T1 T2 T3 T4 T5 T6

n n n n n n n

T0(s) T1(s) T2(s) T3(s)n n n n

T0
n+1 T1

n+1 T2
n+1

T0     (s)n+1

2n

2n+1

Figure 2: Notation from Lemma 2.6. The current level n crossing at time s is in bold. The
first level n crossing time greater than s, denoted Tn0 (s), corresponds to Tn3 , and the first level
(n+ 1) crossing time greater than s is Tn+1

0 (s) = Tn6 . There are Zn+1(s) = 3 level n crossings
from Tn0 (s) to Tn+1

0 (s), and y = 1 level n crossing from the current level (n + 1) crossing that
has already happened at time s, including the current crossing in bold.

Using the lower bound in Lemma 2.4 for the left tail of W , it follows that for any x > 0

Ee−θµ
kW ≥ e−θxP(µkW < x)

≥ exp
(
−θx− c1(xµ−k)−H/(1−H)

)
.

For x = (c1/θ)
1−HµkH we get Ee−θµkW ≥ exp

(
−c2(θµk)H

)
. Plugging this into (3) yields the

bound
E(e−θ(T

n
0 (s)−s) | Fs) ≥ exp

(
−c3(µnθ)H

)
.

Applying Lemma 4.1 in [4] with θ = (c4/x)1/(1−H)2(2+k)/(1−H), and readjusting the constants,
gives the result.

Lemma 2.7. Suppose that Assumptions 2.1 and 2.5 hold, then there exist constants c6, . . . , c9 >
0 such that for all λ > 0 and any s, t ≥ 0,

c6 exp
(
−c7(λ1/H/t)H/(1−H)

)
≤ P(|X(s+ t)−X(s)| > λ | Fs)

≤ P
(

sup
0≤u≤t

|X(s+ u)−X(s)| > λ | Fs
)
≤ c8 exp

(
−c9(λ1/H/t)H/(1−H)

)
.

Proof. We start with the last inequality. Define n ∈ Z by 2n ≤ λ < 2n+1. If the maximum
variation of X in the interval [0, t] is at least λ, then necessarily there exists a k such that
s ≤ Tn−1

k−1 < Tn−1
k ≤ s+ t. Thus, using Lemma 2.4,

P
(

sup
0≤u≤t

|X(s+ u)−X(s)| > λ | Fs
)
≤ P(Dn−1

k < t)

= P(W < µ−(n−1)t)

≤ c2 exp
(
−c3(t/µn−1)−H/(1−H)

)
(4)
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s
T0(s) T1(s) T2(s)T-1(s) n n nn

level n
s+t

T1    (T1(s))n-1 n

D0(s) D1(s) D1    (T1(s))n-1nn

level n-1

n

Figure 3: The points considered in case (a) of the proof of Lemma 2.7.

Re-expressing the last inequality in terms of λ and adjusting the constants yields the desired
upper bound.

We now turn to the first inequality of the lemma. Our proof is based on Theorem 4.3 in [4],
though more work is required because our process is not Markov. This time let n ∈ Z be such
that 2n−2 ≤ λ < 2n−1. As before let Tnk (s) be the k + 1-st level n crossing time of the process
after time s, and also let Tn−1(s) be the first level n crossing time strictly before s.

Consider the possible level n movements of the process up to time Tn0 (s). We take cases
depending on the orientations of the two level n crossings leading up to Tn0 (s).

(a) −− (b) ++ (c) +− (d) −+

Define π = P(Z > 2) (> 0 by Assumption 2.1).
In case (a) the next two level n crossings will have orientation −+ with probability π/2.

Let αn−1(s), αn0 (s), αn1 (s), αn2 (s), be respectively the orientations of the two crossings up to time
Tn0 (s) and the two crossings after time Tn0 (s). Also let Tn−1

1 (Tn1 (s)) be the next level n − 1

crossing time after Tn1 (s). Let Dn
0 (s) = Tn0 (s)−Tn−1(s)

d
= µnW , Dn

1 (s) = Tn1 (s)−Tn0 (s)
d
= µnW

and Dn−1
1 (Tn1 (s)) = Tn−1

1 (Tn1 (s)) − Tn1 (s)
d
= µn−1W . Note that they are independent and
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independent of the αnk(s). We have

P(|X(s+ t)−X(s)| > λ | Fs, αn−1(s) = −, αn0 (s) = −)

≥ P(|X(s+ t)−X(s)| > 2n−1 | Fs, αn−1(s) = −, αn0 (s) = −)

≥ π/2P(|X(s+ t)−X(s)| > 2n−1 | Fs,
αn−1(s) = −, αn0 (s) = −, αn1 (s) = −, αn2 (s) = +)

≥ π/2P(Tn1 (s) < s+ t, Tn−1
1 (Tn1 (s)) > s+ t | Fs,

αn−1(s) = −, αn0 (s) = −, αn1 (s) = −, αn2 (s) = +)

≥ π/2P(Tn0 (s) < s+ t/2, Dn
1 (s) < t/2, Dn−1

1 (Tn1 (s)) > t | Fs,
αn−1(s) = −, αn0 (s) = −, αn1 (s) = −, αn2 (s) = +)

= π/2P(Tn0 (s) < s+ t/2 | Fs, αn−1(s) = −, αn0 (s) = −)

P(Dn
1 (s) < t/2)P(Dn−1

1 (Tn1 (s)) > t)

Thus from Lemmas 2.4 and 2.6 we have

P(|X(s+ t)−X(s)| > λ | Fs, αn−1(s) = −, αn0 (s) = −)

≥ c1 exp
(
−c2(λ1/H/t)H/(1−H)

)(
1− c3 exp

(
−c4(λ1/H/t)H/(1−H)

))
Choose K large enough such that the last term is at least 1/2 when λ1/H/t ≥ K. Thus, since
the LHS is decreasing in λ, we can find c5 such that for all t ∈ [0, 1] and λ ≥ 0, the LHS is
bounded below by c5 exp

(
−c2(λ1/H/t)H/(1−H)

)
.

Cases (b) is analogous to case (a).
In case (c) we distinguish two further possibilities: (c1) the next two level n crossings

form an excursion (either −+ or +−); and (c2) the next two level n crossings form a direct
crossing (either −− or ++). In case (c1) with probability 1/2 the excursion will be −+, in
which case we can proceed as in case (a) to get a bound of the same form. In case (c2) if
the direct crossing is −− then the approach of case (a) again suffices, however if the direct
crossing is ++ then we need to modify the argument a little. In this case we wish to bound
P(|X(s+ t)−X(s)| > λ | Fs, αn−1(s) = +, αn0 (s) = −, αn1 (s) = +, αn2 (s) = +). With probability
π/2 the next pair of level n crossings are the excursion +−. Let Tn−1

1 (Tn3 (s)) be the next level
n− 1 crossing time after Tn3 (s), then we get

P(|X(s+ t)−X(s)| > λ | Fs, αn−1(s) = +, αn0 (s) = −, αn1 (s) = +, αn2 (s) = +)

≥ π/2P(|X(s+ t)−X(s)| > 2n−1 | Fs,
αn−1(s) = +, αn0,s = −, αn1 (s) = +, αn2 (s) = +, αn3 (s) = +, αn4 (s) = −)

≥ π/2P(Tn3 (s) < s+ t, Tn−1
1 (Tn3 (s)) > s+ t | Fs,

αn−1(s) = +, αn0,s = −, αn1 (s) = +, αn2 (s) = +, αn3 (s) = +, αn4 (s) = −)

≥ π/2P(Tn0 (s) < s+ t/4, Dn
1 (s) < t/4, Dn

2 (s) < t/4, Dn
3 (s) < t/4, Dn−1

1 (Tn3 (s)) > t | Fs,
αn−1(s) = +, αn0,s = −, αn1 (s) = +, αn2 (s) = +, αn3 (s) = +, αn4 (s) = −)

= π/2P(Tn0 (s) < s+ t/2 | Fs, αn−1(s) = +, αn0 (s) = −)

P(Dn
1 (s) < t/4)P(Dn

2 (s) < t/4)P(Dn
3 (s) < t/4)P(Dn−1

1 (Tn3 (s)) > t).

This can be bounded below in the same way as in case (a).
Case (d) is analogous to case (c).
Finally, for general t ≥ 0, letm be such that µ−mt ≤ 1. Then, noting that (2−mλ)1/H/(tµ−m) =
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λ1/H/t, by the discrete scaling of X,

P(|X(s+ t)−X(s)| > λ | Fs) = P(|X(µ−m(s+ t))−X(µ−ms)| > 2−mλ | Fµ−ms)

≥ c5 exp
(
−c6((2−mλ)1/H/(µ−mt))H/(1−H)

)
= c5 exp

(
−c6(λ1/H/t)H/(1−H)

)
,

which concludes the proof of the lemma.

We are now able to establish the modulus of continuity of the CEBP.

Theorem 2.8. Suppose that Assumptions 2.1 and 2.5 hold. Let hH(δ) = δH | log δ|1−H , then
there exist constants c10, c11 > 0 such that

c10 ≤ lim inf
δ→0

sup
s,t∈[0,1],|t−s|<δ

|X(t)−X(s)|
hH(t− s)

≤ lim sup
δ→0

sup
s,t∈[0,1],|t−s|<δ

|X(t)−X(s)|
hH(t− s)

≤ c11.

Proof. Consider first the lower bound. Fix c1 > 0, then for any l > 0 and m = 0, 1, . . . , 2l − 1,
put

Am,l =
{
|X((m+ 1)2−l)−X(m2−l)| > c1l

1−H2−lH
}
.

By Lemma 2.7 we have P(Am,l | Fm2−l) ≥ c2e
−c3l, where c3 ∝ c

1/(1−H)
1 . By repeatedly condi-

tioning we have

P

2l−1⋂
m=0

Acm,l

 =

2l−1∏
m=0

P(Acm,l | Fm2−l) =

2l−1∏
m=0

(1− P(Am,l | Fm2−l))

≤
(

1− c2e
−c3l

)2l

=

(
1− c2e

−c3l2l

2l

)2l

≤ c4 exp
(
−c2e

(log 2−c3)l
)

We can choose c1 so that log 2− c3 > 0, in which case the RHS above tends to 0 as l→∞, and
we have

P
(
|X(t+ 2−l)−X(t)| ≤ c5hH(2−l), ∀l > 0, t ∈ [0, 1− 2−l]

)
= 0,

which establishes the lower bound.
For the upper bound we proceed in a similar manner, though we can no longer just consider

points on the lattice 2−lZ. For l > 0 and m = 0, . . . , 2l − 1, let Im,l = [m2−l, (m+ 1)2−l), and
define

Φm,l = sup
t∈Im,l

|X(t)−X(m2−l)|

Bm,l = {Φm,l > c1l
1−H2−lH}

From our estimate in Lemma 2.7 we have P(Bm,l | Fm2−l) ≤ c2e
−c3l, where c3 ∝ c1/(1−H)

1 . Thus,

10



repeatedly conditioning on Fm2−l for m = 2l − 1, . . . , 0, we have

P(Bm,l for some 0 ≤ m < 2l) = 1− P(Bc
m,l for all 0 ≤ m < 2l)

≤ 1− (1− c2e
−c3l)2l

= 1−
(

1− c2e
−c3l2l

2l

)2l

≤ 1− exp
(
−c4e

−(c3−log 2)l
)

≤ c4e
−(c3−log 2)l.

Here we have chosen c1 so that c3 − log 2 > 0.
Applying the Borel-Cantelli lemma, we see that there exists an L such that with probability

1
Φm,l ≤ c1l

1−H2−lH for all l > L and 0 ≤ m < 2l.

Now let s ∈ Im,l and suppose that t is such that s < t and |s−t| < 2−l. Then t ∈ Im,l∪Im+1,l

and we have, with probability 1,

|X(t)−X(s)| ≤ |X(t)−X((m+ 1)2−l)|+ |X((m+ 1)2−l)−X(m2−l)|
+|X(m2−l)−X(s)|

≤ 3c1l
1−H2−lH .

If we take 2−(l+1) ≤ δ ≤ 2−l, then we have, with probability 1,

sup
s,t∈[0,1],|s−t|<δ

|X(s)−X(t)| ≤ c5l
1−H2−lH ≤ c6hH(δ),

as required.

Remark 2.9. In the special case where the CEBP reduces to a Brownian motion, the existence
of the limit in Theorem 2.8 follows from Levy’s modulus of continuity theorem.

The argument above works for s and t in any bounded interval, not just [0, 1]. This allows
us to state the following corollary for all t ∈ [0,∞).

Corollary 2.10. Suppose that Assumptions 2.1 and 2.5 hold, then the CEBP is a monofractal,
in that P-a.s. the Holder exponent hX(t) = H for all t ∈ [0,∞).

3 The Multifractal Embedded Branching Process (MEBP) pro-
cess

The Multifractal Embedded Branching process (MEBP processes) is constructed as the time
change of a CEBP process. The time change is constructed from a cascade process defined
on the embedded branching process. (This allows us to construct a Markov approximation to
the process, which can be simulated online. See [8] for details.) The cascade process defines a
measure, ν, on the boundary of the (doubly infinite) tree Υ. The measure ν is then mapped
to a measure ζ on R+, with which we define a chronometer M (a non-decreasing process) by
M(t) = ζ([0, t]). The MEBP process is then given by Y = X ◦M−1, where X is the CEBP. The
crossing trees of X and Y have the same spatial structure, but have different crossing durations.
In Figure 4 we plot a realisation of an MEBP process and its associated CEBP.

11



0 2000 4000 6000 8000 10000
−20

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−20

0

20

40

60

80

100

120

140

Figure 4: Top figure: CEBP process where the offspring consist of a geometric(0.6) number
of excursions, each up-down or down-up with equal probability, followed by either an up-up
or down-down direct crossing (compare this with Brownian motion, for which there are a
geometric(0.5) number of excursions). Bottom figure: MEBP process obtained from a mul-
tifractal time change of the top CEBP process, with i.i.d. gamma distributed weights.

12



With each crossing Cmk we associate a random weight Rmk . We then define cumulative
weights ρmk as follows (using our tree indexing):

ρn:i =


∏|i|
k=1Rn:i|k/

∏n−1
k=0 Rk:∅ n > 0∏|i|

k=1Rn:i|k n = 0∏|i|
k=1Rn:i|k

∏|n|
k=1R−k:∅ n < 0

Here we have used the convention that
∏0
k=1 xk = 1, to deal with the case |i| = 0.

The cumulative weight at a crossing Cn:i is the product of the weights down the line of
descent from the spine to the crossing, scaled by the product of the weights on the spine up to
level n.

Assumption 3.1. Assume that the Rmk ∈ (0,∞) are i.i.d. Let R stand for a generic Rmk .
Define

m(θ) = E
Z∅∑
k=1

(Rk)
θ = µERθ.

We suppose that m(θ) <∞ in an open neighbourhood of 1, m(1) = 1, m′(1) < 0, and

E

 Z∅∑
k=1

Rk log

Z∅∑
k=1

Rk

 <∞.

As we are assuming independent weights, the condition m(1) = 1 implies ER = 1/µ. For
each crossing Cn:i there is an associated branching random walk (BRW) with branching structure
given by Υn:i, and the position of n:j ∈ Υn:i given by − log(ρn:j/ρn:i). Let

Wn:i(k) =
∑

j∈Υn:i, |j|=|i|+k

ρn:j

ρn:i
.

Standard results on martingales in BRWs [7] give us the following.

Lemma 3.2. Under Assumptions 2.1 and 3.1, Wn:i(k) converges almost surely and in mean to
some Wn:i. Moreover, the Wn:i are identically distributed with mean 1. For |i| = k the Wn:i are
mutually independent, and Wn:i is independent of Zn:j and Rn:j for any j not a descendant of i.

For all nodes n:i,

Wn:i =

Zn:i∑
j=1

Rn:ijWn:ij (5)

We can now define the measure ν on ∂Υ by

ν(∂Υn:i) = ρn:iWn:i.

By Carathéodory’s Extension Theorem, we can uniquely extend ν to the sigma algebra generated
by these cylinder sets. The measure ζ is a mapping of ν from the doubly infinite tree to R+.
Let Tnk denote the k-th level n passage time of the CEBP process X, then we put

ζ((Tnk−1, T
n
k ]) := ν(∂Υn

k) = ρnkWn
k .

Putting ζ({0}) = 0, this gives us ζ([0, Tnk ]) for all n ∈ Z and k ≥ 0.
For arbitrary t ∈ R+, let m:i ∈ ∂Υ be such that t ∈ (Tm:i|n−, Tm:i|n ] for all n ≥ 0. Noting

that {Tm:i|n}n is a non-increasing sequence, we define ζ([0, t]) = limn→∞ ζ([0, Tm:i|n ]). We define
M(t) = ζ([0, t]), and define the MEBP process Y as

Y = X ◦M−1.

13



It is shown in [8] that M is continuous with no flat spots.
Put T nk =M(Tnk ) =

∑k
j=1 ρ

n
jWn

j , then Y (T nk ) = X(Tnk ), so T nk is the k-th level n crossing
time for Y , and Dnk = ρnkWn

k the k-th level n crossing duration. Note that if we take constant
weights equal to 1/µ, then T nk = Tnk and Y = X.

Mandelbrot, Fisher and Calvet [19] described a class of multifractal processes such that

Y (at)
fdd
= M(a)Y (t) and M(ab)

d
= M1(a)M2(b),

where M1 and M2 are independent copies of M . Write A for M−1 then we can re-express the
scaling rule for Y as

Y (A(a)t)
fdd
= aY (t) and A(ab)

d
= A1(a)A2(b), (6)

where A1 and A2 are independent copies of A. For our MEBP Y we have, for any n ∈ Z,

Y (t)
fdd
= 2−nY (tρn1 ).

This is of the same form as (6), with A(2n) = ρn1 =
∏−n∨0
k=1 R−k:∅/

∏n−1∨0
k=0 Rk:∅, however it only

holds for a, b ∈ 2Z.

4 Hausdorff spectrum of ζ

Using the natural metric on ∂Υ, the multifractal spectrum of ν is already known [14]. However
when we map ν to ζ we lose the strong separation between the components of ∂Υ, making life
more difficult. In particular, the points Tnk all correspond to two distinct points on ∂Υ. One
of these will have an index ending 111 . . . and the other will end Zm:j|nZm:j|n+1

Zm:j|n+2
. . ., for

some m:j. These points are countably dense in R+, but we will show that none-the-less they do
not effect the spectrum of ζ.

Hausdorff dimension is not suited to unbounded sets, so we restrict ζ to the finite interval
[0, T 0

1 ], corresponding to ∂Υ0:∅. As ζ is self-similar, its Hausdorff spectrum will be the same
when restricted to any finite interval. We will not be using the doubly infinite tree in this
section and simply write Υ∅ for Υ0:∅ and i for 0:i.

Our approach for the lower bound is based on that of [6], where the multifractal spectrum of
a random self-similar measure is obtained under fairly weak assumptions. For the upper bound
we take the approach of Riedi [22].

4.1 Lower bound

Fix α and let Fα be the set of points in [0, T 0
1 ] with ζ local dimension α: Fα = {x ∈ [0, T 0

1 ] :
dζ(x) = α}, where dζ(x) was defined in (1). We obtain a lower bound on the Hausdorff dimension
of Fα using the approach of [1]. That is, if we can find a Borel measure λ such that λ(Fα) > 0
and

lim sup
r→0

λ(B(x, r))

rd
<∞, ∀x ∈ Fα,

then dimH(Fα), the Hausdorff dimension of Fα, is ≥ d.
For any given node i ∈ Υ∅ and θ ∈ R we have a non-negative martingale

W(θ)
i (k) = m(θ)−k

∑
j∈Υi, |j|=|i|+k

(
ρj
ρi

)θ

LetW(θ)
i be the a.s. limit of this martingale (soWi =W(1)

i ). We make the following assumption
(a strengthening of Assumption 3.1).
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Assumption 4.1. Recall m(θ) = µERθ. Let Im ⊂ (0,∞) be the interior of the set of
θ > 0 for which m(θ) ∈ (0,∞). We suppose that 1 ∈ Im, m(1) = 1, and that for all
θ ∈ Im, m′(θ) = µERθ logR exists and logm(θ) > θm′(θ)/m(θ) (equivalently ERθ log(ERθ) +
(logµ)/µ > ERθ logRθ). We also suppose that for all θ ∈ Im we can find an ε > 0 for which

E

 Z∅∑
k=1

Rθk

1+ε

<∞. (7)

Lemma 4.2. Under Assumptions 2.1 and 4.1, for all θ ∈ Im, W(θ)
i (k) converges almost surely

and in mean to some W(θ)
i . Moreover, the W(θ)

i are identically distributed with mean 1, for any

θ ∈ Im there is an ε > 0 such that EW(θ)
i

1+ε
<∞, and EW(θ)

i | logWi| <∞.

For |i| = k the W(θ)
i are mutually independent, and W(θ)

i is independent of Zj and Rj for
any j not a descendant of i. For all nodes i,

W(θ)
i = m(θ)−1

Zi∑
j=1

RθijW
(θ)
ij (8)

Proof. The mean convergence follows from Theorem 7.1 of [7], and the limit necessarily has
mean 1.

That EW(θ)
i

1+ε
<∞ follows from [10] Proposition 4 (see [6] Lemma 9.1), upon noting that

the condition θm′(θ) < m(θ) logm(θ) implies that for some ε > 0 we have m(θ(1+ε)) < m(θ)1+ε.

That EW(θ)
i | logWi| <∞ follows from [6] Lemma 9.6 (which is just an application of Hölder’s

inequality), provided EW−ε <∞ for all ε > 0 sufficiently small. However, from [5] Theorem 3,
the left tail of W decays exponentially, so all negative moments are finite.

The remainder of the lemma follows from the branching structure of the W(θ)
i (k).

We will suppose that Assumptions 2.1 and 4.1 hold for the remainder of this subsection.
Generalising our definition of ν, for each θ ∈ Im we define a measure ν(θ) on ∂Υ∅ by

ν(θ)(∂Υi) = ρθim(θ)−|i|W(θ)
i .

We then project this from ∂Υ∅ to [0, T 0
1 ] to get the measure ζ(θ)

ζ(θ)((Tnk−1, T
n
k ]) := ν(θ)(∂Υn

k) = ρnkm(θ)nW(θ),n
k .

For a suitable choice of θ, ζ(θ) is the measure we use to bound dim(Fα). To show it has the
correct properties we need a number of lemmas.

Lemma 4.3. Let

G1 =

{
i ∈ ∂Υ∅ : lim

k→∞

logWi|k
k

= 0

}

G2 =

i ∈ ∂Υ∅ : lim
k→∞

logW(θ)
i|k

k
= 0


Then for all θ ∈ Im we have

νθ(G1 ∩G2) = νθ(∂Υ∅), P-a.s.
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Proof. We consider G1 first. Let Eε,k =
{
i ∈ ∂Υ∅ : | logWi|k | > kε

}
. For any l we have

Aε =

{
i ∈ ∂Υ∅ : lim sup

k→∞

| logWi|k |
k

> ε

}
⊂
⋃
k≥l

Eε,k.

Hence
ν(θ)(Aε) ≤ lim

l→∞

∑
k≥l

ν(θ)(Eε,k).

Now

Eν(θ)(Eε,k) = E
∑

i∈Υ∅, |i|=k

ρθim(θ)−kW(θ)
i I{| logWi|>kε}

= E
∑

i∈Υ∅, |i|=k

ρθim(θ)−kEW(θ)
i I{| logWi|>kε}

= EW(θ)
i I{| logWi|>kε}

so

E
∑
k

ν(θ)(Eε,k) = EW(θ)
i

∑
k

I{ε−1| logWi|>k}

≤ EW(θ)
i (1 + ε−1| logWi|)

< ∞ (from Lemma 4.2).

Thus Eν(θ)(Aε) = 0 and hence ν(θ)(∂Υ∅\G1) = 0, P-a.s.

For G2, redefine Eε,k =
{
i ∈ ∂Υ∅ : | logW(θ)

i|k | > kε
}

and

Aε =
{
i ∈ ∂Υ∅ : lim supk→∞ | logW(θ)

i|k |/k > ε
}

, then proceed in the same manner as above

to show that
E
∑
k

ν(θ)(Eε,k) ≤ EW(θ)
i (1 + ε−1| logW(θ)

i |).

In this case the RHS is finite when EW(θ)
i log+W

(θ)
i <∞, which certainly holds when W(θ)

i has
a finite 1 + ε moment.

Lemma 4.4. Let

G3 =

{
i ∈ ∂Υ : lim

k→∞

log ρi|k
k

= −α logµ

}
,

then, for θ such that

α = − ERθ logR

(logµ)ERθ

we have ν(θ)(G3) = ν(θ)(∂Υ∅), P-a.s.

Proof. The approach we use can be found in a number of places, see for example [6] Lemma
8.6, so we will only sketch the argument here.

For θ as above, let ν̄(θ) be the measure on NN given by

ν̄(θ)(A) = Eν(θ)(A ∩ ∂Υ∅)

and let Ē(θ) be the corresponding expectation operator. Define the random variable Xk on NN

by
Xk(i) = logRi|k
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then it follows from the branching structure of ν(θ) and the independence of the Ri|k , that the

{Xk} are i.i.d. under ν̄(θ). Thus by the SLLN, ν̄(θ)-a.s. we have∑k
j=1Xj

k
=

log ρi|k

k

→ Ē(θ)X1

=
ERθ logR

ERθ

It follows immediately that Eν(θ)(∂Υ∅\G3) = 0, as required.

The map from ∂Υ to [0, T 0
1 ] that sends ν to ζ is just i 7→ Ti = limn→∞ Ti|n , which we will

denote T . As noted earlier, T is not one-to-one. For i ∈ Υ∅ we will write i(n, 1) for the index i
followed by n ones, and i(n,Z) for the index i followed by Zi, Zi(1,Z), Zi(2,Z), . . . , Zi(n−1,Z).

For i ∈ Υ∅ and any n we have Ti = Ti(n,Z) = Ti(∞,Z). Recall that i− is the crossing
immediately before i, thus Ti−(∞,Z) = Ti(∞,1). Write Ji for the interval (Ti−, Ti]. Suppose that
|i| = m, so that Ji is at level −m, then for any n > m, the first level −n interval contained in
Ji is Ji(n−m,1) (with right hand limit Ti(n−m,1)), and the last level −n interval contained in Ji is
Ji(n−m,Z) (with left hand limit Ti(n−m,Z)−). Let B(x, r) denote an open ball centred in x, with
radius r.

Lemma 4.5. For ε > 0 define

Gε4 = {i ∈ ∂Υ∅ : B(Ti, µ
−bn(1+ε)c) ⊂ Ji|n eventually}

G4 = lim
ε↓0

Gε4

then ν(θ)(G4) = ν(θ)(∂Υ∅) P-a.s.

Throughout the next two proofs it will be understood that n(1 + ε) and nε are rounded
down to the nearest integer.

Proof. Define An = {i ∈ ∂Υ∅ : i|n(1+ε) 6= i|n(nε, 1) nor i|n(nε, Z)}. That is, An is constructed
by taking all the level −n intervals, then from each one removing the first and last level −n(1+ε)
intervals. Let A = limAn then we claim that A ⊂ Gε4 for all ε > 0. The proof depends on the
following result, which is just an application of Liu [15] Theorem 2.1 to the problem in hand:
for any ε > 0 we have P-a.s. that

min
i∈∂Υ∅

µ−nWi|n ≥ µ
−n(1+ε) eventually.

From this we have immediately that, for n large enough,

B(Ti|n(nε,1), µ
−n(1+ε)) ⊂ Ji|n and

B(Ti|n(nε,Z)−, µ
−n(1+ε)) ⊂ Ji|n

from which we see that for all i ∈ An, B(Ti, µ
−n(1+ε)) ⊂ Ji|n , so An ⊂ Gε4 eventually, as required.

To finish we have

Eν(θ)(∂Υ∅\An)

= E
∑

i∈Υ∅, |i|=n

(
ν(θ)(∂Υi(nε,1)) + ν(θ)(∂Υi(nε,Z))

)
= E

∑
i∈Υ∅, |i|=n

(
ρθi(nε,1)m(θ)−n(1+ε)W(θ)

i(nε,1) + ρθi(nε,Z)m(θ)−n(1+ε)W(θ)
i(nε,Z)

)
= 2µ−nε

→ 0 as n→∞.
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Theorem 4.6. Suppose that Assumptions 2.1 and 4.1 hold, then for any α such that α =
−ERθ logR/(ERθ logµ) for some θ ∈ Im, we have

dim(Fα) ≥ αθ + 1 +
logERθ

logµ
.

Proof. We show that T (G) := T (G1 ∩G2 ∩G3 ∩G4) ⊂ Fα, that ζ(θ)(T (G)) = ν(θ)(G) > 0, and
that for some d and all i ∈ G

lim sup
r→0

ζ(θ)(B(Ti, r))

rd
<∞.

It then follows from [9] Propostion 4.9 that dim(Fα) ≥ dim(T (G)) ≥ d.
That ν(θ)(G) > 0 is immediate from Lemmas 4.3 to 4.5.
We next show that T (G) ⊂ Fα. For any i ∈ G we have for any ε > 0, B(Ti, µ

−n(1+ε)) ⊂ Ji|n
eventually, whence for µ−(n+1)(1+ε) ≤ r < µ−n(1+ε),

log ζ(B(Ti, r))

log r
≥

log(ρi|nWi|n)

−n(1 + ε) logµ
,

and hence, as i ∈ G1 ∩G3,

lim
r→0

log ζ(B(Ti, r))

log r
≥ lim

n→∞

log ρi|n + logWi|n
−n(1 + ε) logµ

=
α

1 + ε
. (9)

As i ∈ G4 this is true for all ε > 0 and we can replace the RHS by α.
Now, given r let l be such that µ−lWi|l ≤ r < µ−(l−1)Wi|l−1

. Then Ji|l ⊂ B(Ti, r) and thus
ζ(Ji|l) ≤ ζ(B(Ti, r)). As r → 0 we have log r/l→ − logµ and log ρi|l/l→ −α logµ, and so

lim
r→0

log ζ(B(Ti, r))

log r
≤ lim

r→0

log(ρi|lWi|l)

log r
= α. (10)

Combining (9) and (10) we have that T (G) ⊂ Fα.
To finish, note again that for any i ∈ G we have for any ε > 0, B(Ti, µ

−n(1+ε)) ⊂ Ji|n
eventually, whence for µ−(n+1)(1+ε) ≤ r < µ−n(1+ε)

ζ(θ)(B(Ti, r))

rd
≤

ρθi|nm(θ)−nW(θ)
i|n

rd

= exp

θ log ρi|n − n logm(θ) + logW(θ)
i|n

log r
− d

 log r


(11)

and

θ log ρi|n − n logm(θ) + logW(θ)
i|n

log r
=

θ log ρi|n − n logm(θ) + logW(θ)
i|n

−n(1 + ε) logµ

→ αθ

1 + ε
+

logm(θ)

(1 + ε) logµ
+ 0

=
αθ + 1 + (logERθ)/ logµ

1 + ε

So (11) is finite for all d < αθ + 1 + logERθ
log µ , as required.
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Note that if we put

γ(θ) = −1− logERθ

logµ
(12)

then the minimum of αθ − γ(θ) occurs at α = −ERθ logR/(ERθ logµ), so our lower bound

αθ + 1 + logERθ
log µ can be expressed as the Legendre transform

inf
θ
αθ − γ(θ).

It is easy to check that for any t such that the local ζ-dimension exists and equals α, we
have that the local Hölder exponent hM(t) of M(t) = ζ([0, t]) is α. Thus if Gα = {t ∈ [0, T 0

1 ] :
hM(t) = α} then

dim(Gα) ≥ inf
θ
αθ − γ(θ).

Note that the local dimension dζ of ζ is not-necessarily defined everywhere, while the Hölder
exponent ofM is. However, as we are after a lower bound on the multifractal spectrum of hM,
this is not a problem.

4.2 Upper bound

To get an upper bound on the Hausdorff spectrum, we develop a multifractal formalism similar
to [22]. However, instead of studying M on a regular grid, we study it on a grid adapted to its
underlying random tree structure, which requires a change to the partition function we use.

Note that sinceM has non-decreasing continuous sample paths, we can write its local Hölder
exponent as

hM(t) = lim inf
ε→0

log(M(t+ ε)−M(t− ε))
log 2ε

= lim inf
ε→0

log ζ([t− ε, t+ ε])

log 2ε
.

Let t = Ti ∈ [0, T 0
1 ], for i ∈ ∂Υ∅. Our basic idea when bounding hM(Ti) is to approximate

the interval [Ti−ε, Ti+ε] by the interval Ji|n , for a suitable n. Unfortunately this proves difficult
when Ti is a crossing time, since Ti will then be one of the end points of Ji|n , for all n large
enough. We deal with this problem by using intervals of the form J̄i|n = Ji|n− ∪ Ji|n ∪ Ji|n+,
where i− and i+ denote respectively the left and right neighbours of i.

For i ∈ Υ∅, let D̄i = |J̄i| be the length of J̄i. Recall that Di = ρiWi = ζ(Ji) is the duration
of crossing Ci, and define D̄i = ζ(J̄i) = Di−+Di +Di+. Clearly if i = 11 · · · 1 then we can omit
Di−.

We use the D̄i to define discretised versions of hM. For i ∈ ∂Υ∅, recall that EDi|n = µ−n

(under Assumption 2.1), then put

hnM(Ti) =
log D̄i|n
−n logµ

=
log ζ(J̄i|n)

−n logµ
.

Including Di− and Di+ in the definition of D̄i helps us avoid boundary problems which can arise
when i = j(∞, 1) or j(∞, Z), for some j ∈ Υ∅ (that is, when Ti is a hitting time).

The following assumption, which is a strengthening of Assumption 2.1, will be used through-
out this section. We will also need Assumption 3.1 to guarantee the existence of M.

Assumption 4.7. Suppose that Z ∈ 2N, Z is non-trivial, and EZp <∞ for all p > 1.

Lemma 4.8. Suppose that Assumption 4.7 holds. Then, with probability 1,

log max
i∈Υn

Wi = o(n) and log min
i∈Υn

Wi = o(n).
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Proof. This follows directly from Liu [15] Theorems 2.1 and 3.1.

Lemma 4.9. Suppose Assumptions 3.1 and 4.7 hold. Then, with probability 1, for all i ∈ ∂Υ∅
(equivalently for all t ∈ [0, T 0

1 ]),

lim inf
n→∞

hnM(Ti) = hM(Ti).

Proof. For any ε > 0 and Ti we can always find a positive n = n(ε, Ti) such that

D̄i|n+1
≤M(Ti + ε)−M(Ti − ε) < D̄i|n . (13)

Given n and t = Ti, let In(t) = {ε | n(ε, t) = n}. Now for any ε ∈ In(t) we see that if ε is
larger than Di|n +Di|n− and Di|n +Di|n+, thenM(Ti +ε)−M(Ti−ε) ≥ D̄i|n , which contradicts
(13). Thus ε < max(Di|n + Di|n−, Di|n + Di|n+). Similarly, if ε is strictly smaller than Di|n+1−
and Di|n+1+, thenM(Ti+ε)−M(Ti−ε) < D̄i|n+1

, which also contradicts (13). Thus necessarily
ε ≥ min(Di|n+1−, Di|n+1+). Thus from Lemma 4.8 we have that for ε ∈ In(t),

−(n+ 1) logµ+ log 2 + o(n) ≤ log 2ε < −n logµ+ log 4 + o(n). (14)

Dividing each member of the double inequality (13) by log 2ε < 0 and using the bounds
(14), we obtain

lim inf
n→∞

log D̄i|n
−(n+ 1) logµ+ o(n)

≤ lim inf
ε→0

log(M(Ti + ε)−M(Ti − ε))
log 2ε

≤ lim inf
n→∞

log D̄i|n+1

−n logµ+ o(n)
,

and the result follows.

We use hnM to define the coarse spectrum of M. Let

S(n)(α, ε) = {i ∈ Υ∅(−n) | α− ε ≤ hnM(Ti) ≤ α+ ε},

then define

f(α) := lim
ε→0

lim sup
n→+∞

log |S(n)(α, ε)|
n logµ

. (15)

This differs from the usual definition of the coarse spectrum in that an irregular grid is used to
partition the real line rather than a regular grid.

Lemma 4.10. Suppose Assumptions 3.1 and 4.7 hold. Then, with probability 1, for all α

dim(Gα) ≤ f(α),

where Gα = {t ∈ [0, T 0
1 ] : hM(t) = α}.

Proof. Let α ∈ R and g > f(α) be arbitrary. We find a covering for Gα and show that its
g-Hausdorff measure is zero for all g > f(α). The result then follows by sending g to f(α).

Consider t = Ti ∈ [0, T 0
1 ]. If t ∈ Gα, then for any 0 < ε, there exists m such that for all

n ≥ m, α− ε ≤ hnM(Ti) < α+ ε. Since t ∈ Ji|n for all n, for any m,⋃
n≥m

⋃
j∈S(n)(α,ε)

Jj is a covering of Gα.
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Let η > 0 be such that g > f(α) + 2η. By definition of f(α), there exists ε0 > 0 and m0

such that for all n ≥ m0 and 0 < ε ≤ ε0,

|S(n)(α, ε)| ≤ µn[f(α)+η] . (16)

It follows that if m ≥ m0 and 0 < ε ≤ ε0, then∑
n≥m

∑
j∈S(n)(α,ε)

|Jj|g ≤
∑
n≥m

∣∣∣∣ max
j∈Υ∅(−n)

µ−nWj

∣∣∣∣g µn[f(α)+η]

=
∑
n≥m

∣∣∣∣ max
j∈Υ∅(−n)

Wj

∣∣∣∣g µ−n[g−f(α)−η].

Since g > f(α) + 2η we have µ−n[g−f(α)−η] < µ−nη and thus∑
n≥m

∑
j∈S(n)(α,ε)

|Jj|g ≤
∑
n≥m

∣∣∣∣ max
j∈Υ∅(−n)

Wj

∣∣∣∣g µ−nη.
By Lemma 4.8, for any ε > 0 there exists m1 such that P-a.s., for all n ≥ m1,

max
j∈Υ∅(−n)

Wj ≤ enε.

It follows for all m > max(m0,m1):∑
n≥m

∑
j∈S(n)(α,ε)

|Jj|g ≤
∑
n≥m

enεgµ−nη =
∑
n≥m

en(εg−η log µ) .

For ε < η(logµ)/g, the exponent is strictly negative and the sum is finite. Hence, sending m to
infinity, we obtain for all 0 < ε < ε0∑

n≥m

∑
j∈S(n)(α,ε)

|Jj|g → 0 as m→∞

which concludes the proof.

Define

τ(θ) = lim inf
n→∞

log
(∑

i∈Υ∅(−n)Dθi
)

−n logµ

τ̄(θ) = lim inf
n→∞

log
(∑

j∈Υ∅(−n) D̄θj
)

−n logµ
.

Also let τ∗(α) = inf
θ
αθ− τ(θ) and τ̄∗(α) = inf

θ
αθ− τ̄(θ) be the Legendre transforms of τ and τ̄ .

Lemma 4.11. Suppose Assumptions 3.1 and 4.7 hold. Then P-a.s.

f ≤ τ̄∗.

Proof. The sum
∑

j∈Υ∅(−n) D̄θj can be bounded below by considering only singularity coefficients
which are roughly equal to α: ∑

j∈Υ∅(−n)

D̄θj ≥
∑

j∈S(n)(α,ε)

D̄θj .
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Moreover if j ∈ Υ∅(−n) then D̄j = µ−nh
n
M(Tj), whence for j ∈ S(n)(α, ε) we have

for θ ≥ 0, D̄θj ≥ µ−nθ(α+ε)

for θ < 0, D̄θj ≥ µ−nθ(α−ε),

so that D̄θj ≥ µ−n(αθ+|θ|ε) for all θ. Thus
∑

j∈S(n)(α,ε) D̄θj ≥ |S(n)(α, ε)|µ−n(αθ+|θ|ε).
Let α ∈ R be such that f(α) > −∞, and take any g < f(α). Then there exist ε0 > 0 and

m0 such that for all ε ∈ (0, ε0) and n ≥ m0 we have

g ≤ log |S(n)(α, ε)|
n logµ

.

It follows that for such ε and n,∑
j∈Υ∅(−n)

D̄θj ≥ |S(n)(α, ε)|µ−n(αθ+|θ|ε) ≥ µ−n(αθ−g+|θ|ε).

Thus

τ̄(θ) = lim inf
n→∞

log
(∑

i∈Υ∅(−n)Dθi
)

−n logµ
≤ αθ − g + |θ|ε.

Now let ε→ 0 and γ → f(α) to get τ̄(θ) ≤ αθ− f(α), or f(α) ≤ αθ− τ̄(θ). This inequality
is obviously true if f(α) = −∞, so minimising over θ we get, for all α, f(α) ≤ τ̄∗(α).

Lemma 4.12. Suppose Assumptions 3.1 and 4.7 hold. Then P-a.s.

τ = τ̄ . (17)

Proof. We take cases depending on θ.
Suppose θ ≥ 0. In this case it is clear from the definitions that τ̄(θ) ≤ τ(θ). The reverse

inequality follows directly from∑
i∈Υ∅(−n)

|Di|θ ≤ 3θ
∑

i∈Υ∅(−n)

max(Di−,Di,Di+)θ

≤ 3θ+1
∑

i∈Υ∅(−n)

Dθi .

Suppose now θ < 0. In this case we get immediately from the definitions that τ̄(θ) ≥ τ(θ).
For the reverse inequalities, note first that the crossing tree has at least two children per node.
Thus, for any given realisation, given i ∈ Υ∅(−n) we can always find a node j ∈ Υ∅(−(n + 2))
such that J̄j ⊂ Ji, whence ∑

i∈Υ∅(−n)

Dθi ≤
∑

j∈Υ∅(−(n+2))

D̄θj .

Taking logs, dividing by n logµ, and sending n to infinity, the result follows.

Define the partition function

γ̂(θ) = lim inf
n→∞

log
(
E
∑

i∈Υ∅(−n)Dθi
)

−n logµ
.

In Lemma 4.15 below we give conditions under which γ̂(θ) = γ(θ).
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Lemma 4.13. Suppose Assumptions 3.1 and 4.7 hold. Then, P-a.s., for all α ∈ R,

τ∗(α) ≤ γ̂∗(α) = inf
θ
αθ − γ̂(θ).

Proof. This can be proved in the same way as [22] Lemma 3.9.

Assumption 4.14. Assume that R ∈ (0, 1], P(
∑Z∅

k=1Rk = 1) < 1 and for all p > 1, E
(∑Z∅

k=1Rk

)p
<

∞.

Under Assumptions 3.1, 4.7 and 4.14 we have from [13] that EWp <∞ for all p.

Lemma 4.15. Suppose Assumptions 3.1, 4.7 and 4.14 hold. Then

γ̂(θ) = γ(θ) = −1− logERθ

logµ
.

Proof. Since ρi =
∏|i|
k=1Ri|k and Wi are independent, we have

E
∑

i∈Υ∅(−n)

Dθi = E
∑

i∈Υ∅(−n)

ρθiWθ
i = µn(ERθ)nEWθ.

We note that the RHS is finite under the conditions of the lemma. Taking logs, dividing by
−n logµ, and sending n→∞ gives the result.

5 Hausdorff spectrum of an MEBP

Combining the results of Sections 4.1 and 4.2 we have the following.

Theorem 5.1. Suppose Assumptions 4.1, 4.7 and 4.14 are satisfied. Then the Hausdorff spec-
trum of M is

DM(α) = dim(Gα) = inf
θ
αθ − γ(θ),

where γ(θ) = −1− logERθ/logµ.

Remark 5.2. Since γ is equal to the partition function γ̂, we have a multifractal formalism for
M.

Combining Theorem 5.1 with Theorem 2.8 we get the Hausdorff spectrum of an MEBP
process.

Theorem 5.3. Suppose Assumptions 2.5, 4.1, 4.7 and 4.14 hold. Let Y be an MEBP process,
with offspring distribution Z and M the time change. Recall that Gα = {t ∈ [0, T 0

1 ] : hM(t) =
α}, and let Hα = {t ∈ [0, T 0

1 ] : hY (t) = α}. Then for all α > 0

DY (α) = dim(Hα) =
α

H
dim(GH/α) =

α

H
DM(H/α),

where H = log 2/ logEZ.

Proof. Let G̃α = {t ∈ [0, T 0
1 ] : hM−1(t) = α} then (see [18, 23]),

dim(G̃α) = α dim(G1/α) .

Finally, composition with a process of constant modulus of continuity H transforms the spec-
trum as follows:

dim(Hα) = dim(G̃α/H) =
α

H
dim(GH/α).

23



References

[1] Arbeiter, M. and Patzschke, N., 1996. Random self-similar multifractals. Math. Nachr.
181, 5–42.

[2] Arneodo, A., Argoul, F., Bacry, E., Elezgaray J. and Muzy, J.F., 1995. On-
delettes, multifractales et turbulences. De l’ADN aux croissances cristallines. Diderot, Paris.

[3] Bacry, E., Muzy J.F. and Arneodo, A., 1993. Singularity spectrum of fractal signals
from wavelet analysis: exact results. J. Stat. Phys. 70, 635–674.

[4] Barlow, M.T. and Perkins, E.A., 1988. Brownian motion on the Sierpinski gasket.
Prob. Th. Rel. Fields 79, 543–623.

[5] Biggins, J.D. and Bingham, N.H., 1993. Large deviations in the supercritical branching
process. Adv. Appl. Prob. 25, 757–772.

[6] Biggins, J.D., Hambly, B.M. and Jones, O.D., 2011. Multifractal spectra for random
self-similar measures via branching processes. Adv. Appl. Prob. 43, 1–39.

[7] Biggins, J.D. and Kyprianou, A.E., 2004. Measure change in multitype branching. Ann.
Appl. Prob. 36, 544–581.

[8] Decrouez, G. and Jones, O.D., 2012. A class of multifractal processes constructed using
an embedded branching process. Ann. Appl. Prob. 22, 2357–2387.

[9] Falconer, K., 2003. Fractal Geometry: Mathematical Foundations and Applications, 2nd
Edition. Wiley.

[10] Iksanov, A.M., 2004. Elementary fixed points of the BRW smoothing transforms with
infinite number of summands. Stoch. Proc. Appl. 114, 27–50.

[11] Jaffard, S., Abry, P. and Wendt, H. Irregularities and scaling in signal and image
processing: multifractal analysis. In Benoit Mandelbrot: A Life in Many Dimensions, M.
Frame, editor. World scientific publishing, to appear.

[12] Jaffard, S., Lashermes, B. and Abry, P., 2007. Wavelet Leaders in Multifractal
Analysis. In Wavelet Analysis and Applications, T. Qian, M.I. Vai an dY. Xu, editors,
201–246. Birkhäuser.
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