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Abstract

We consider a large market model of defaultable assets in which the asset price
processes are modelled as Heston-type stochastic volatility models with default upon
hitting a lower boundary. We assume that both the asset prices and their volatilities
are correlated through systemic Brownian motions. We are interested in the loss
process that arises in this setting and we prove the existence of a large portfolio limit
for the empirical measure process of this system. This limit evolves as a measure
valued process and we show that it will have a density given in terms of a solution
to a stochastic partial differential equation of filtering type in the two-dimensional
half-space, with a Dirichlet boundary condition. We employ Malliavin calculus to
establish the existence of a regular density for the volatility component, and an
approximation by models of piecewise constant volatilities combined with a kernel
smoothing technique to obtain existence and regularity for the full two-dimensional
filtering problem. We are able to establish good regularity properties for solutions,
however uniqueness remains an open problem.

1 Introduction

In the study of large portfolios of assets it is common to model correlation through
factor models. In this setting the random drivers of individual asset prices come from
two independent sources. Firstly there is an idiosyncratic component that reflects the
movements due to the asset’s individual circumstances. Secondly there are systemic
components that reflect the impact of macroscopic events at the whole market or sector
level. The motivations for this paper come from developing such models firstly for credit
derivatives such as CDOs which are functions of large portfolios of credit risky assets, but
also for the evolution of large portfolios which have exposure to a significant proportion of
the whole market. The financial crisis of 2008 showed that the correlation between credit
risky assets was not adequately modelled and in this work we will examine the behaviour
of a large market when all the individual assets follow classical stochastic volatility models
but are correlated through market factors.

Our starting point is a simple structural model for default in a large portfolio, studied
in [6]. In this setting there is a market of N credit risky assets in which the i-th asset price
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Ai for i = 1, . . . , N is modelled by a geometric Brownian motion with a single systemic
risk factor, in that under a risk neutral measure

dAit = rAitdt+ σAit

(√
1− ρ2dW i

t + ρdW 0
t

)
, 0 ≤ t ≤ Ti

Ait = bi, t > Ti

Ai0 = ai,

where Ti = inf{t ≥ 0 : Ait = bi} for some constant default barrier bi and the parameters
r, σ, ρ, ai are constants. Here the Brownian motions W 0,W 1, . . . are all independent and
we see that it is W 0 which captures the macroscopic effects felt by the whole market.
We note that the parameters of the geometric Brownian motions, are the same for each
asset, it is just the starting point and idiosyncratic noise which cause the differences in
asset prices. By rewriting this in terms of a distance to default process and considering
the empirical measure it was shown in [6] that the limit empirical measure process of
the model has a density which is the unique strong solution to an SPDE on the positive
half-line. The density takes values in a weighted Sobolev space as the derivatives of the
density may not be well behaved at the origin. The exact regularity of the density at the
origin was the subject of [19], where it was shown that the regularity is a function of the
parameter ρ.

This is a naive model and has the problems that would be expected from such a simple
structural default model. The short term credit spreads go to 0 and we see correlation
skew when using the model to price the tranches of CDOs. Thus we wish to investigate
a model which incorporates more realistic features. In particular we take stochastic
volatility models for the underlying assets and allow there to be global volatility factors
driving the market volatility as well as idiosyncratic factors for the volatilities of the
individual assets. It is also the case that we would like to allow the parameters that
describe the volatility and correlation between assets to vary.

In this paper we consider a large portfolio of N credit risky assets, where now stochas-
tic volatility models are used instead of Black-Scholes models to describe the evolution
of the asset values. The CIR process is used to model the volatility as it is non-negative
and mean reverting. We assume the i-th value process Ai satisfies the following system
of SDEs

dAit = Aitµidt+Aith
(
σit
) (√

1− ρ2
1,idW

i
t + ρ1,idW

0
t

)
, 0 ≤ t ≤ Ti

dσit = ki(θi − σit)dt+ ξi
√
σit

(√
1− ρ2

2,idB
i
t + ρ2,idB

0
t

)
, t ≥ 0

Ait = bi, t > Ti
(Ai0, σ

i
0) = (ai, σi),

(1.1)

for all i ∈ {1, 2, . . . , N}, where Ti = inf{t ≥ 0 : Ait = bi}. Here, a1, a2, ..., aN and
σ1, σ2, ..., σN are the initial values of the asset prices and the volatilities respectively, bi

is the constant default barrier for the value of the i-th asset, Ci = (ki, θi, ξi, ri, ρ1,i, ρ2,i)
for i ∈ {1, 2, ..., N} are vectors for the various parameters of the model, h is a function
with enough regularity, and W 1

t , B
1
t , ..., W

N
t , B

N
t are standard Brownian motions. We

will assume that (ai, σi) and Ci are drawn independently from some distribution and the
Brownian motions are independent from each other and from each ai, σi and Ci. Finally(
W 0
t , B

0
t

)
is a pair of correlated Brownian motions, independent of both W i and Bi for all
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i = 1, . . . , N as well as ai, σi and Ci, which represents the impact of macroscopic factors
on each asset and each volatility respectively.

As is usual in a credit setting we consider the distance to default, or the log asset
prices, by setting Xi

t =
(
lnAit − ln bi

)
in (1.1). Applying Ito’s formula, our model becomes

dXi
t =

(
ri − h2(σit)

2

)
dt+ h(σit)

(√
1− ρ2

1,idW
i
t + ρ1,idW

0
t

)
, 0 ≤ t ≤ Ti

dσit = ki(θi − σit)dt+ ξi
√
σit

√
1− ρ2

2,idB
i
t + ξ

√
σitρ2,idB

0
t , t ≥ 0

Xi
t = 0, t > Ti

(Xi
0, σ

i
0) = (xi, σi),

(1.2)

for i ∈ {1, 2, ..., N}, where xi =
(
ln ai − ln bi

)
and Ti = inf{t ≥ 0 : Xi

t = 0}, ∀ 1 ≤ i ≤ N .

An important output from such large portfolio models is the loss process, which gives
the proportion of assets that have defaulted by any time t. This can be used to capture
some key quantities in risk management, such as the probability of loss from a portfolio
and the expected loss given default. In credit derivative pricing, the payoffs of CDO
tranches are piecewise linear functions of this loss process.

In our set up the loss process is given by the mass of the two-dimensional empirical
measure

vNt =
1

N

N∑
i=1

δXi
t ,σ

i
t
, (1.3)

on {0} × R, while the restriction of vNt to (0,∞)× R for t ≥ 0 is given by

vN1,t =
1

N

N∑
i=1

δXi
t ,σ

i
t
I{Ti>t}. (1.4)

Section 2 establishes the following convergence result: almost surely and for all positive
t we have both

vNt → vt = P
((
X1
t , σ

1
t

)
∈ · |W 0

· , B
0
· , G

)
and

vN1,t → v1,t = P
((
X1
t , σ

1
t

)
∈ ·, T1 > t |W 0

· , B
0
· , G

)
= E

[
vt, C1 (·) |W 0

· , B
0
· , G

]
weakly as N →∞, for some σ-algebra G containing the initial data, where we denote by
vt, C1 (·) the measure-valued process P

((
X1
t , σ

1
t

)
∈ ·, T1 > t |W 0

· , B
0
· , C1, G

)
. In Sections

3 and 4, we prove that vt,C1 - depending on the information contained in (W 0
. , B0

. ), G
and the coefficient vector C1 = (k1, θ1, ξ1, r1, ρ1,1, ρ2,1) - has a density ut,C1 in a weighted
Sobolev-Lebesgue space of the two-dimensional positive half-space, but with no differen-
tiability in the second spatial variable y. Moreover, it is shown in these sections that
given C1, ut, C1 satisfies an SPDE in that function space, along with a Dirichlet boundary
condition at x = 0. In Section 5 we improve the regularity by obtaining (weak) differen-
tiability also in y, along with some good integrability for the derivative. Our SPDE for
ut,C1 has the form
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ut,C1(x, y) = u0(x, y)−
∫ t

0

(
r1 −

1

2
h2(y)

)
(us,C1(x, y))x ds

−
∫ t

0
k1 (θ1 − y) (us,C1(x, y))y ds+

1

2

∫ t

0
h2(y) (us,C1(x, y))xx ds

+
ξ2

1

2

∫ t

0
(yus,C1(x, y))yy ds+ ξ1ρ3ρ1,1ρ2,1

∫ t

0
(h(y)

√
yus,C1(x, y))xy ds

−ρ1,1

∫ t

0
h(y) (us,C1(x, y))x dW

0
s − ξ1ρ2,1

∫ t

0
(
√
yut,C1(x, y))y dB

0
s (1.5)

where u0 is the initial density, ρ3 is the correlation coefficient between W 0
t and B0

t (i.e
dW 0

t · dB0
t = ρ3dt), and the boundary condition ut,C1(0, y) = 0 is satisfied for all y ∈ R

and t ≥ 0. Our result for the case where each parameter vector Ci is the same constant
vector for all i will lead to a limiting empirical process whose density is precisely the
solution to the above initial-boundary value problem.

In order to implement the model we could solve the initial-boundary value problem
for the SPDE numerically for samples Ci of the parameters. Then, we can approximate
the loss process from

lim
N→∞

vNt ({0} × R) = 1− lim
N→∞

vN1,t(R2) = 1−
∫ ∫

R2

ut(x, y)dxdy

= 1− E
[∫ ∞

0

∫
R
ut,C1(x, y)dxdy, |W 0

· , B
0
· , G

]
≈ 1− 1

n

n∑
i=1

∫ ∞
0

∫
R
ut,ci(x, y)dxdy (1.6)

where {c1, c2, ..., cn} is a random sample from the distribution of C1. As the SPDE
satisfied by each ut,ci is driven by the two-dimensional Brownian path (W 0

. , B
0
. ), we only

need to simulate (W 0
. , B

0
. ) and solve the corresponding SPDEs. This approach is quite

efficient when the number of assets N is large, since we do not have to simulate the 2N
idiosyncratic Brownian paths.

There are other approaches to the modelling of credit risk in large portfolios which
lead to stochastic partial differential equations. For example in a reduced form setting,
see [8, 22, 23, 24]. However, this is the first structural large portfolio model to incorpo-
rate stochastic volatility and also the first to introduce random coefficients in the SDEs
describing the evolution of the asset prices. This provides a level of generality which
captures many features of asset prices, and by taking a large portfolio limit reduces the
complexity of the numerical calculations arising in risk management and in derivatives
pricing applications. Of course, a disadvantage of the model is the introduction of a large
number of parameters that need to be simulated or estimated in order to implement the
model. Moreover, the random coefficients need assumptions on their joint distributions
and, when we use Monte Carlo techniques to estimate expectations in (1.6), a very large
number of simulations may still be required due to the random parameters. The constant
coefficient case is just a special case of the model we have considered, in which the weak
limit v1,t of the empirical process coincides with the measure-valued process vt,C1 whose
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density ut,C1 satisfies our SPDE. Our main aim in this paper is to establish the theoretical
background for the general case.

The calibration of the model for its use in the pricing of CDOs would follow a similar
approach to that used in [6]. In its simplest form we take the version where the parameters
of the model are assumed to be constants. The initial condition would be fitted to the
CDS prices of the underlying constituents of the portfolio. The parameters of the model
are then determined from the market tranche prices of the CDOs with different maturities.
This is done by solving the model forward from different parameter settings to find model
tranche prices and then minimizing the least squares distance between model and market
to locate the best fit parameters.

The approach to solving the model forward must be done numerically. This type of
model is more computationally intensive than that considered in [6] as the SPDE is in
two dimensions. The technique is to generate the two dimensional Brownian path and
then solve the SPDE using a finite element approach. Speed up could be achieved by
extending the work of [7] where the multilevel Monte Carlo approach was used for the
model of [6]. We will not discuss the numerical analysis for the model as, even in the
one-dimensional case, this is challenging.

There are significant mathematical challenges in extending large portfolio models to
the stochastic volatility setting. A key point is to estimate the boundary behaviour
of the empirical measure and, with a non-constant volatility path, this needs a novel
approach. The kernel smoothing technique used by [6] also needs alteration to cope
with this volatility process, to enable us to obtain the best possible regularity for our
two-dimensional density.

In Section 2, we assume that the initial data satisfies some reasonable exchangeability
conditions in order to obtain the convergence result for the empirical measure process as
N →∞. This is not just a two-dimensional version of the corresponding result in [6], since
it gives the convergence of the restriction of the empirical measure process to (0,∞)×R,
while it also gives the form of the limiting measure-valued process. It includes thus a law
of large numbers which is particularly important for dealing with this two-dimensional
version of the large portfolio analysis problem.

In Section 3 we extend some existing Malliavin calculus results and techniques, in
order to obtain a strong norm estimate for the density of a CIR process when a component
of the driving Brownian Motion (the market factor) is given. We are only able to do this
under a condition on the parameters which is stronger than the Feller condition for
the CIR process to not hit 0 at any positive time. This is due to the fact that the
CIR process does not have Lipschitz coefficients, which means that standard Malliavin
calculus techniques for proving the existence of a density of an Ito process are not directly
applicable and approximations with processes having better coefficients are needed. In
Section 4 we prove a convergence result for a sequence of stopped Ito processes when
the sequence of volatility paths decreases pointwise to a continuous and positive path,
in order to extend the results of [6] to the case when the volatility path is non-constant.
Combining this with the results of Section 3 in a divide-and-conquer approach, we obtain
the existence of a regular density for the measure-valued process vt,C1 , for any good
enough value of C1, and also the SPDE and the boundary condition satisfied by that
density.

In Section 5, we extend the kernel smoothing method developed in [6, 18, 9], by proving
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that the standard heat kernel maintains its smoothing and convergence properties, when
it is composed with a square root function, and also in certain weighted L2 spaces. This
allows us to obtain differentiability of our density in the y-direction, and also weighted
L2 integrability of the derivative. This improved kernel smoothing method does not work
in distribution spaces for our SPDE and thus, the regularity results of the previous two
sections are crucial. Finally, in Section 6, we discuss the question of uniqueness of the
solution.

Remark 1.1. (1) We will not discuss the issue of asymptotic arbitrage which can arise
when there is a large portfolio limit of assets (see [12, 13]). As we are using the limiting
model as an approximation to a large finite model, which will not admit arbitrage, the
question is only of theoretical interest.

(2) When calibrating the model for pricing credit derivatives the drift term in the
asset’s value process is replaced by a known interest rate. Including more parameters
than that used in [6] should improve the calibration of the model and may allow observed
features such as correlation skew in CDOs to be captured. Though we should note that
even including jumps in the basic model of [6] still makes it difficult to capture all the
observed features of CDO tranche prices [5].

(3) One could view the empirical mean of such a model as a natural model for an
index, see [10] for the simple case. Here we would produce a stochastic volatility model
for the index and this could be used to price volatility dependent derivatives.

(4) It would be natural to develop central limit theorems and a large deviation analysis
in further work, potentially by adapting and extending appropriately the ideas of [25,
26]. For applications in systemic risk it would also be interesting to add a mean field
interaction.

(5) The popular Heston model is just a simple case of the model used to describe the
evolution of the asset values in our setting, which is obtained when the function h is just
a square root function.

2 Connection to the probabilistic solution of an SPDE

In order to study the asymptotic behaviour of our system of particles, some assumptions
have to be made. We assume that (Ω, F , {Ft}t≥0, P) is a filtered probability space with
a complete and right-continuous filtration {Ft}t≥0,

{(
X1

0 , σ
1
0

)
,
(
X2

0 , σ
2
0

)
, ...
}

is an ex-
changeable sequence of F0-measurable two-dimensional random vectors (see [1] for more
on exchangeability), and Ci = (ki, θi, ξi, ri, ρ1,i, ρ2,i) for i ∈ N are i.i.d F0-measurable

random vectors in R6
+, independent from each (Xj

0 , σ
j
0), such that P- almost surely we

have both kiθi >
3
4ξ

2
i and ρ1,i, ρ2,i ∈ (−1, 1). We note that the condition on ki, θi, ξi is

stronger than the usual Feller condition that ensures that 0 is not reached by a CIR pro-
cess in finite time. We also consider an infinite sequence {W 0

t , B
0
t , W

1
t , B

1
t , W

2
t , B

2
t , ...}

of Ft - adapted standard Brownian motions, in which only W 0
t and B0

t are correlated
and their correlation coefficient is denoted by ρ3. Under these assumptions and for each
N ∈ N, we consider the interacting particle system described by equations (1.2) and the
corresponding empirical measure processes vNt and vN1,t given by (1.3) and (1.4) respec-

tively. We also define vN2,t = vNt − vN1,t, the restriction of vNt to {0} × R, for all t ≥ 0.
We start with the following convergence theorem, the proof of which is a simple mod-

ification of the convergence theorem for the one-dimensional empirical measure process
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in [6] and can be found in the Appendix. It is stronger than a convergence result for the
empirical measure process vNt but we need it for proving Theorem 2.3, a crucial result for
establishing the convergence of the {0} × R - supported component vN2,t (Theorem 2.5).

Theorem 2.1. For each N ∈ N and any t, s ≥ 0, consider the random measure given by

vN3,t,s =
1

N

N∑
i=1

δXi
t ,σ

i
t,σ

i
s
.

The sequence vN3,t,s of three-dimensional empirical measures converges weakly to some
measure v3,t,s for all t, s ≥ 0, P-almost surely. Moreover, the measure-valued process
{v3,t,s : t, s ≥ 0} is P-almost surely continuous in both t and s under the weak topology.

The convergence result for vNt is a direct consequence of the above theorem and it is
given in the following corollary.

Corollary 2.2. The sequence vNt of two-dimensional empirical measures given by (1.3)
converges weakly to some measure vt for all t ≥ 0, P-almost surely. Moreover, the path
{vt : t ≥ 0} is P-almost surely continuous under the weak topology. The measure-valued
process vt is the restriction of v3,t,s to the space of functions which are constant in the
third variable, for any t ≥ 0.

Proof. Since vNt is the restriction of vN3,t,s to the space of functions which are constant in
the third variable, the result follows by testing the measure against such functions and
by taking N →∞.

Next, we prove a theorem which gives us the form of the weak limits of the empirical
measures v3,t,s.

Theorem 2.3. There exists an Ω0 ⊂ Ω with P(Ω0) = 1 such that for any ω ∈ Ω0, we have∫
R2 fdv3,t,s = E

[
f
(
X1
t , σ

1
t , σ

1
s

)
|W 0

. , B
0
. , G

]
for any t, s ≥ 0 and any f ∈ Cb(R3; R),

where G is some σ-algebra contained in F0.

Proof. By the exchangeability of the initial data, we know that there exists a σ-algebra G
contained in F0, such that the two-dimensional vectors:

(
X1

0 , σ
1
0

)
,
(
X2

0 , σ
2
0

)
, ... are i.i.d

given G. Moreover,
(
Bk
· , W

k
· , Ck

)
for k ∈ N are i.i.d and since they are also independent

from
(
B0
· , W

0
· , G

)
, they are also i.i.d. under the probability measure P( · |W 0, B0, G).

The same holds for the two-dimensional vectors
(
X1

0 , σ
1
0

)
,
(
X2

0 , σ
2
0

)
, ..., since they are

i.i.d given G and measurable with respect to the bigger σ-algebra F0, with
(
W 0
· , B

0
·
)

being independent from F0. Thus, noting that there is a function g such that(
Xk
t , σ

k
t , σ

k
s

)
= g

(
t, s, Bk

· , W
k
· , B

0
· , W

0
· , Ck, X

k
0 , σ

k
0

)
it follows that

(
Xk
t , σ

k
t , σ

k
s

)
for k ∈ N are also i.i.d. random vectors under P( · |W 0, B0,G).

Thus, for any f ∈ Cb(R3;R) we have

1 ≥ P
(∫

R2

fdvN3,t,s → E
[
f
(
X1
t , σ

1
t , σ

1
s

)
|W 0
· , B

0
· , G

]
∀ t, s ∈ Q+

)
= E

[
P
(∫

R2

fdvN3,t,s → E
[
f
(
X1
t , σ

1
t , σ

1
s

)
|W 0
· , B

0
· , G

]
∀ t, s ∈ Q+|W 0

· , B
0
· ,G
)]
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= E
[
1− P

(
∪t,s∈Q+

{∫
R2

fdvN3,t,s 9 E
[
f
(
X1
t , σ

1
t , σ

1
s

)
|W 0
· , B

0
· ,G
]}
|W 0
· , B

0
· ,G
)]

≥ E

1−
∑

t,s∈Q+

P
(∫

R2

fdvN3,t,s 9 E
[
f
(
X1
t , σ

1
t , σ

1
s

)
|W 0
· , B

0
· ,G
]
|W 0
· , B

0
· ,G
) = 1,

where, in the last expectation, by the strong law of large numbers, for each t, s the
probability that there is no convergence is zero. Hence, there is an Ωf ⊂ Ω (depending
on f) with P

(
Ωf
)

= 1, such that∫
R2

fdvN3,t,s → E
[
f
(
X1
t , σ

1
t , σ

1
s

)
|W 0
· , B

0
· , G

]
∀ t, s ∈ Q+

as N →∞, for all ω ∈ Ωf .
If we denote by Ωf

0 the intersection of Ωf with the set of events for which the results

of Theorem 2.1 hold, we see that P
(

Ωf
0

)
= 1 and that for all ω ∈ Ωf

0 we have∫
R2

fdv3,t,s = E
[
f
(
X1
t , σ

1
t , σ

1
s

)
|W 0

. , B
0
. , G

]
(2.1)

for any t, s ∈ Q+. Since both quantities in (2.1) are continuous in (t, s) (this follows
from Theorem 2.1 for the LHS, and by using the dominated convergence theorem for the
RHS) and since they coincide for any t, s ∈ Q+, we conclude that they coincide for all

t, s ≥ 0 in Ωf
0 .

Finally, taking the intersection of all Ωp
0 for all p belonging to a countable and dense

subset D of Cb
(
R3; R

)
, we obtain the desired set Ω0. This follows from the fact that

both quantities in (2.1) are bounded functionals in Cb
(
R3; R

)
with the supremum norm,

where for the LHS this follows by taking limits in the obvious inequality,
∫
R2 fdv

n
3,t,s ≤

||f ||∞, ∀n ∈ N. Our proof is now complete.

Corollary 2.4. Let {vt : t ≥ 0} be the measure-valued process defined in Corollary 2.2.
There exists an Ω0 ⊂ Ω with P(Ω0) = 1 such that for any ω ∈ Ω0, we have

∫
R2 fdvt =

E
[
f
(
X1
t , σ

1
t

)
|W 0

. , B
0
. , G

]
for any t ≥ 0 and for any f ∈ Cb

(
R3; R

)
, where G is the

σ-algebra defined in Theorem 2.3.

Proof. This result follows by testing the measure against functions which are constant in
the third variable and by recalling Corollary 2.2.

The above corollary completes the convergence result for vNt which was given in
Corollary 2.2. However, what we need is a similar result for its restriction to {0} × R,
that is vN2,t. This is given in the following Theorem, the proof of which is based on the
more general convergence result given in Theorem 2.1 and Theorem 2.3.

Theorem 2.5. There exists a measure-valued process {v2,t : t ≥ 0} and an Ω1 ⊂ Ω0

with P(Ω1) = 1, such that for any ω ∈ Ω0 we have that vN2,t → v2,t weakly for all t ≥ 0.

Moreover, we have
∫
R2 fdv2,t = E

[
f
(
X1
t , σ

1
t

)
I{T1<t}|W 0

. , B
0
. , G

]
for all t ≥ 0 and for

all f ∈ Cb
(
R2; R

)
, where G is the σ-algebra defined in Theorem 2.3.
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Proof. First, observe that when
(
W 0, B0, G

)
is given, T1 has a continuous distribution,

since it is a stopping time for the Ito process X1
t . Moreover, observe that

vN2,t = δ0

N∑
i=1

δσitI{Ti<t}

and that

E
[
f
(
X1
t , σ

1
t

)
I{T1<t} |W

0
. , B

0
. , G

]
= E

[
f
(
0, σ1

t

)
I{T1<t} |W

0
· , B

0
· , G

]
,

for any t ≥ 0 and f ∈ Cb
(
R2; R

)
, which means that we only need to work with functions

f which are constant in the first variable.
Let now v2,t(·) be the probability law P

((
X1
t , σ

1
t

)
∈ · ; T1 ≤ t |W 0, B0, G

)
and fix a

function f in Cb (R; R) with positive values. Since Ti is adapted to
(
Xi
t , σ

i
t

)
for any

i ∈ N, by the independence obtained in the first paragraph of the proof of Theorem 2.3
and a Law of Large Numbers argument similar to the one in that proof, we have that the
desired convergence holds for the chosen f , for all t ∈ Q+ and for all ω in some Ω1,f ⊂ Ω
with P (Ω1,f ) = 1. By intersecting with the full-probability set Ω0 given in Theorem 2.3,
we can take Ω1,f ⊂ Ω0. Now for a t ≥ 0 and an ω ∈ Ω1,f , we pick any two rational
numbers t1, t2 ≥ 0 such that t1 ≤ t ≤ t2. Then we have

lim inf
N→∞

1

N

N∑
i=1

f
(
σit
)
I{Ti≤t}

= lim inf
N→∞

1

N

[
N∑
i=1

f
(
σit1
)
I{Ti<t} +

N∑
i=1

(
f
(
σit
)
− f

(
σit1
))

I{Ti<t}

]

≥ lim inf
N→∞

1

N

[
N∑
i=1

f
(
σit1
)
I{Ti<t} −

N∑
i=1

∣∣f (σit)− f (σit1)∣∣
]

≥ lim inf
N→∞

1

N

N∑
i=1

f
(
σit1
)
I{Ti<t1} − lim inf

N→∞

1

N

N∑
i=1

∣∣f (σit)− f (σit1)∣∣ ,
where the first term equals E

[
f
(
σ1
t1

)
I{T1<t1} |W 0

. , B
0
. , G

]
for each rational time t1. Next,

by recalling Theorem 2.3 for f(x, y, z) = |f(y) − f(z)|, and s = t1 we find that the
second term equals E

[
|f
(
σ1
t

)
− f

(
σ1
t1

)
| |W 0

. , B
0
. , G

]
. Now taking t1 → t and using

the Dominated Convergence Theorem and the fact that the random variable T1 has a
continuous distribution, we obtain

lim inf
N→∞

1

N

N∑
i=1

f(σit)I{Ti≤t} ≥ E
[
f(σ1

t )I{T1<t} |W
0
· , B

0
· , G

]
. (2.2)

Similarly, we have

lim sup
N→∞

1

N

N∑
i=1

f
(
σit
)
I{Ti≤t}

= lim sup
N→∞

1

N

[
N∑
i=1

f
(
σit2
)
I{Ti<t} +

N∑
i=1

(
f
(
σit
)
− f

(
σit2
))

I{Ti<t}

]

9



≤ lim sup
N→∞

1

N

[
N∑
i=1

f
(
σit2
)
I{Ti<t} +

N∑
i=1

∣∣f (σit)− f (σit2)∣∣
]

≤ lim sup
N→∞

1

N

N∑
i=1

f
(
σit2
)
I{Ti<t2} + lim sup

N→∞

1

N

N∑
i=1

∣∣f (σit)− f (σit2)∣∣
and by the same argument for the rational number t2 → t, we find

lim sup
N→∞

1

N

N∑
i=1

f
(
σit
)
I{Ti≤t} ≤ E

[
f
(
σ1
t

)
I{T1<t} |W

0
· , B

0
· , G

]
. (2.3)

Hence, by (2.2) and (2.3), the desired convergence holds in Ω1,f ⊂ Ω0 for all t ≥ 0 and
any f in Cb(R; R) with positive values. By linearity, and since every continuous function
can be decomposed into its continuous positive part and its continuous negative part, we
can have our convergence result for any f ∈ Cb(R; R). Let now S = {pi : i ∈ N} be
a countable basis of Cb(R; R). Then, by linearity, the desired convergence holds for all
t ≥ 0, all p ∈ [S] and all ω ∈ Ω1 = ∩i∈NΩ1,pi , with P(Ω1) = 1. Now for any f ∈ Cb(R; R)
and ε > 0, we can pick p ∈ [S] such that ||f − p||∞ < ε

3 , so we have∣∣∣∣∫
R2

f(y)dvN2,t(x, y)−
∫
R2

f(y)dv2,t(x, y)

∣∣∣∣
≤
∣∣∣∣∫

R2

(f(y)− p(y))dvN2,t(x, y)

∣∣∣∣+

∣∣∣∣∫
R2

p(y)dvN2,t(x, y)−
∫
R2

p(y)dv2,t(x, y)

∣∣∣∣
+

∣∣∣∣∫
R2

(p(y)− f(y))dv2,t(x, y)

∣∣∣∣
≤ ||f − p||∞ +

∣∣∣∣∫
R2

p(y)dvN2,t(x, y)−
∫
R2

p(y)dv2,t(x, y)

∣∣∣∣+ ||f − p||∞

≤ 3× ε

3
= ε,

for all N sufficiently large. Thus, we have our convergence result for all t ≥ 0 and all
ω ∈ Ω1 = ∩i∈NΩ1,pi with P(Ω1) = 1, so we are done.

Next, by Corollary 2.2 and Theorem 2.5, we have that vN1,t = vNt −vN2,t → vt−v2,t =: v1,t

weakly, for all t ≥ 0, P-almost surely. Also, it follows from Corollary 2.4 and Theorem 2.5
that ∫

R2

fdv1,t = E
[
f
(
X1
t , σ

1
t

)
I{T1>t} |W

0
· , B

0
· , G

]
= E

[
E
[
f
(
X1
t , σ

1
t

)
I{T1>t} |W

0
· , B

0
· , C1, G

]
|W 0
· , B

0
· , G

]
,

for any f ∈ Cb
(
R2; R

)
and t ≥ 0. It is therefore reasonable to study the behaviour of

the process of measures vt,C1(·) defined as

vt,C1 (·) = P
[(
X1
t , σ

1
t

)
∈ ·, T1 > t |W 0

· , B
0
· , C1,G

]
,

for a given value of C1 = (k1, θ1, ξ1, r1, ρ1,1, ρ2,1). The behaviour of this process of
measures is given in the following Theorem.
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Theorem 2.6. Let A be the two-dimensional differential operator mapping any smooth
function f : R+ × R→ R to

Af (x, y) =

(
r1 −

h2 (y)

2

)
fx (x, y) + k1 (θ1 − y) fy (x, y) +

1

2
h2 (y) fxx (x, y)

+
1

2
ξ2

1yfyy (x, y) + ξ1ρ3ρ1,1ρ2,1h(y)
√
yfxy (x, y)

for all (x, y) ∈ R+ × R. Then, the measure-valued stochastic process vt,C1 satisfies the
following weak form SPDE∫

R2

f (x, y) dvt,C1 (x, y) =

∫
R2

f (x, y) dv0,C1 (x, y)

+

∫ t

0

∫
R2

Af (x, y) dvs,C1 (x, y) ds

+ρ1,1

∫ t

0

∫
R2

h (y) fx (x, y) dvs,C1 (x, y) dW 0
s

+ξ1ρ2,1

∫ t

0

∫
R2

√
yfy (x, y) dvs,C1 (x, y) dB0

s ,

for all t ≥ 0 and any f ∈ Ctest0 =
{
g ∈ C2

b (R+ × R) : g (0, y) = 0, ∀ y ∈ R
}

.

Proof. By using Ito’s formula for the stopped two-dimensional process
{(
X1
t , σ

1
t

)
: t ≥ 0

}
given by (1.2) and by recalling that f (0, y) = 0 for all y, we obtain

f
(
X1
t∧T1 , σ

1
t

)
= f

(
X1

0 , σ
1
0

)
+

∫ t

0

[
fx
(
X1
s , σ

1
s

)(
r1 −

h2
(
σ1
s

)
2

)
+ k1fy

(
X1
s , σ

1
s

) (
θ1 − σ1

s

)]
I{T1>s}ds

+
1

2

∫ t

0

[
fxx
(
X1
s , σ

1
s

)
h2
(
σ1
s

)
+ ξ2

1fyy
(
X1
s , σ

1
s

)
σ1
s

]
I{T1>s}ds

+ξ1ρ3ρ1,1ρ2,1

∫ t

0
fxy
(
X1
s , σ

1
s

)
h
(
σ1
s

)√
σ1
sI{T1>s}ds

+

∫ t

0
fx
(
X1
s , σ

1
s

)
I{T1>s}h

(
σ1
s

)
ρ1,1dW

0
s

+ξ1

∫ t

0
fy
(
X1
s , σ

1
s

)
I{T1>s}

√
σ1
sρ2,1dB

0
s

+

∫ t

0
fx
(
X1
s , σ

1
s

)
I{T1>s}h(σ1

s)
√

1− ρ2
1,1dW

1
s

+ξ1

∫ t

0
fy
(
X1
s , σ

1
s

)
I{T1>s}

√
σ1
s

√
1− ρ2

2,1dB
1
s

and the desired result follows by taking conditional expectations given
(
W 0
· , B

0
·
)
, C1 and

G, by noticing that Ito integrals with respect to B1
· and W 1

· vanish due to the pairwise
independence of the Brownian Motions, and by taking the given coefficients out of the
conditional expectations.
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3 Volatility Analysis - A Malliavin Calculus approach

Now that we have connected our problem to the study of the probabilistic solution of an
SPDE, we need to establish the best possible regularity result for that solution. Before
showing that the measure-valued process E

[
·(X1

t , σ
1
t )IT1>t |B0

· , W
0
· , C1, G

]
does indeed

have a density for almost all paths of
(
B0
· , W

0
·
)

with some good regularity, it is natural
(and important as we will see) to ask whether the same holds for the 1-dimensional
measure-valued process describing the evolution of E

[
f(σt) |B0

· , G
]
, for suitable f , where

σ is a CIR process driven by a combination of B0
· and B1

· , that is a process satisfying

dσt = k(θ − σt)dt+ ξ
√
σt

√
1− ρ2

2dB
1
t + ξ

√
σtρ2dB

0
t , t ≥ 0. (3.1)

We assume that the coefficients of equation (3.1) satisfy: kθ > 3
4ξ

2, which is stronger
than the standard Feller boundary condition for a CIR process, and also ρ2 ∈ (−1, 1).
Then, the answer to our question is given in the next theorem.

Theorem 3.1. Assume that σ0 is a random variable in Lp (Ω, F0, P) for all p > p0 =
1 − 2kθ

ξ2
, such that given G, σ0 has a continuous density p0(· | G) which is supported in

[0,∞) and which satisfies
E [||p0(· | G)||γ∞] <∞,

for all γ ∈
[
−2kθ

ξ2
, 1
]
. Then, for every path of B0

· and t ≥ 0, the conditional probability

measure P(σt ∈ A |B0
· , G) posseses a continuous probability density pt(· |B0

· , G) which is
supported in [0,∞). Moreover, for any T > 0, any 1 < q < 4kθ

3ξ2
and any α ≥ 0, we have

MB0,α = sup
t≤T

(
sup
y≥0

(
yαpt(y |B0

· , G)
))
∈ Lq (Ω)

To prove this Theorem we need a few lemmas. First, we will need the following
finiteness result for the moments of the supremum of a CIR / Ornstein-Uhlenbeck process
up to some finite time. The proof of this technical lemma can be found in the Appendix.

Lemma 3.2. Under the assumptions of Theorem 3.1, for any p ≥ 0 and T > 0 we have

E

[
sup

0≤t≤T
σpt

]
<∞.

Moreover, if {ut : t ≥ 0} is the Ornstein-Uhlenbeck process which solves the SDE

dut = −k
2
utdt+

ξ

2

(√
1− ρ2

2dB
1
t + ρ2dB

0
t

)
,

under the initial condition u0 =
√
σ0, then we have also

E

[
sup

0≤t≤T
u2
t

]
<∞.
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Next, we need a few results that involve the notion of Malliavin differentiability. The
Malliavin derivative of a random variable adapted to a Brownian path is a stochastic
process measuring, in some sense, the rate of change of the random variable when the
Brownian path changes at any time t. Extending this to random variables taking values
in Banach spaces, we can define the k-th Malliavin derivative as a random function of k
time variables (provided that it exists). The existence and behaviour of these derivatives
are inextricably connected to the existence of a regular density for the random variable.
We refer to [20] for the basics of Malliavin calculus and, as in [20], we denote by Dn,p(V )
the space of n-times Malliavin differentiable random variables taking values in the Banach
space V , whose k-th Malliavin derivative has an L2 norm (as a function in k time variables
taking values in V ) of a finite Lp norm as a random variable, for all 0 ≤ k ≤ n.

In [2] and [3] it is proven that the CIR process has a Malliavin derivative under the
probability measure P, which is given by a quite similar formula. In [2] it is also proven
that under our strong assumption kθ > 3

4ξ
2, a second Malliaving derivative with some

regularity also exists. The next two lemmas extend these results to the case where the
path of the market noise B· is given. This is exactly what we need in order to prove
Theorem 3.1. The proofs of these extensions are more or less based on the same ideas as
the corresponding initial results (except that Lemma 3.2 is also needed at some points)
and can be found in the Appendix.

Lemma 3.3. There exists an Ω1 ⊂ Ω with P (Ω1) = 1, such that for all ω ∈ Ω1 the
random probability measure P(· |B0

· , G) has the following property: Under P(· |B0
· , G),

the process {σt : t ≥ 0} has a Malliavin derivative with respect to the Brownian Motion
B1
· which is given by

Dt′σt = ξ
√

1− ρ2
2e
−
∫ t
t′

[(
kθ
2
− ξ

2

8

)
1
σs

+ k
2

]
ds√

σt, (3.2)

for all t > 0 and 0 ≤ t′ ≤ t. This is a process in t′ which belongs to L2
B0
· ,G

([0, t]× Ω) for

any fixed t ≥ 0, where the notation Lq
B0
· ,G

is used for any Lq space when the probability

measure P is replaced by P(· |B0
· , G).

Lemma 3.4. For any 1 ≤ q′ < 4kθ
3ξ2

and T > 0, there exists an Ω2 ⊂ Ω with P (Ω2) = 1,

such that for all ω ∈ Ω2 the random probability measure P(· |B0
· , G) has the following

property: Under P(· |B0
· , G), the process {σt : 0 < t ≤ T} belongs to the space D2,q′ with

respect to the Brownian Motion B1
· , and the second order Malliavin derivative is given by

D2
t′,t′′σt = Dt′σt ×

[∫ t

t′

(
kθ

2
− ξ2

8

)
1

(σs)
2Dt′′σsds+

1

2σt
Dt′′σt

]
, (3.3)

for all 0 < t ≤ T and 0 ≤ t′, t′′ ≤ t, where the first order derivatives are given by Lemma
3.3. Furthermore we have

E

[
sup

0≤t′,t′′≤t≤T
|D2

t′,t′′σt|q
′

]
<∞. (3.4)

The same holds for the process vt =
√
σt, but this time the second Malliavin Derivative

is given by

D2
t′,t′′vt = Dt′vt ×

[∫ t

t′

(
kθ

2
− ξ2

8

)
1

σ2
s

Dt′′σsds

]
. (3.5)
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Finally, we need a lemma that connects the existence of a regular density to the
existence of a regular non-vanishing Malliavin Derivative. There are many results of this
kind in the literature (many of them can be found in [20]), but in our case we need the
following.

Lemma 3.5. Let F be a random variable in the space D1,2∩Lp (Ω) for all p > 1. Assume
that for some process {ut : 0 ≤ t ≤ T} of L2-integrable paths, we have 〈u., D.F 〉L2 6= 0
almost surely and also ut

〈u., D.F 〉L2
∈ D1,q′

(
L2 ([0, T ])

)
for some q′ > 1. Then F has a

continuous density p(·) for which it holds

sup
y≥0

(yαp(y)) ≤ CE
q′−1
q′

[
F

αq′
q′−1

]
E

1
q′

[∥∥∥∥D.
u.

〈u., D.F 〉L2

∥∥∥∥q′
L2([0, T ]2)

]
<∞,

for some C > 0 and for all α ≥ 0 for which E
[
F

αq′
q′−1

]
is finite.

The proof of the above lemma has also been put in the Appendix, since it is almost
identical to that of Proposition 2.1.1 in [20] (page 78), except that in the end we need to
recall Meyer’s inequality in order to obtain the estimate for the supremum. We are now
ready to prove the main result of this section.

Proof of Theorem 3.1. Lemma 3.3 implies that for almost all ω ∈ Ω, σt ∈ D1,2 with re-
spect toB1

· under the probability measure P
(
· |B0

· , G
)
. We would like to apply Lemma 3.5

on σt for an appropriate process {ut′ : 0 ≤ t′ ≤ t}. Let u. be the unique pathwise solution
to the linear integral equation

ut′ =

∫ t′

0
use
−
∫ t
s

[(
kθ
2
− ξ

2

8

)
+ k

2

]
1
σs′

ds′√
σtds, ∀ t′ < t.

Then, ut′ = u0e
∫ t′
0 e
−
∫ t
s

[(
kθ
2 −

ξ2

8

)
1
σs′

+ k2

]
ds′√

σtds for any t′ ≤ t, which is almost surely a
differentiable and strictly increasing function on [0, t], always bounded by u0e

t
√
σt > 0.

Then it is easy to check that

ut′

〈u., D.σt〉L2[0, t]

=
ut′

ut
≤ 1,

for any t′ < t. Thus, we have that

U. =
u.

〈u., D.σt〉L2[0, t]

∈ Lq′
(
Ω; L2 ([0, t])

)
. (3.6)

Next, we want to show that Ut′ is Malliavin differentiable and compute its derivative
for any 0 < t′ < t. By Lemma 3.3 we have that D.σt lies in the space

D1,q′
(
L2 [0, t]

)
⊂ D1,q′

(
L2
[
t′, t

])
,

for any t′ < t and any 1 < q′ ≤ 4kθ
3ξ2

, which implies that

D.

∫ t

t′
Dsσtds =

∫ t

t′
D2
s,.σtds
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≤
∫ t

0
D2
s,.σtds ∈ Lq

′ (
Ω; L2 [0, t]

)
,

for all 0 ≤ t′ ≤ t and any 1 < q′ ≤ 4kθ
3ξ2

. Since the LHS of the above is positive (follows

easily from Lemma 3.4 and our assumptions for the coefficients), the above implies also
that

∫ t
t′ Dsσtds ∈ D1,q′ for any t′ < t and that∫ t

.
Dsσtds ∈ D1,q′

(
L2 [0, t]

)
. (3.7)

Consider now a smooth function F satisfying

F (x) =

{
e−x, x ≥ 0,

0, x < −1,

and which has bounded derivatives. Then we can easily check that Ut′ = F
(∫ t

t′ Dsσtds
)

,

and by the standard Malliavin Chain rule we obtain Ut′ ∈ D1,q′ for any 1 < q′ < 4kθ
3ξ2

,
with

D.Ut′ = F ′
(∫ t

t′
Dsσtds

)∫ t

t′
D2
s,.σtds, (3.8)

for all 0 ≤ t′ ≤ t. Finally, from (3.7) and (3.8) we have that D.U. belongs to the space

Lq
′
(

Ω; L2
(

[0, t]2
))

and thus, by (3.6) we deduce that U. ∈ D1,q′
(
L2 [0, t]

)
.

Recall now that σpt has a finite expectation under P
(
· |B0

· , G
)
, for any exponent p > 0

and any t ≤ T , for all ω ∈ Ω2 with P (Ω2) = 1 (this follows easily from Lemma 3.2 and the
law of total expectation). Thus, by Lemma 3.5, σt possesses for all ω ∈ Ω2 a continuous
density pt(· |B0

· , G) under P
(
· |B0

· , G
)
, such that for all t ≥ 0

sup
y≥0

yαpt(y|B0
· ,G) ≤ MB0

· ,α,t

:= CE
q′−1
q′

[
(σt)

αq′
q′−1 |B0

· ,G
]

×E
1
q′

(∥∥∥∥F ′(∫ t

.
Dsσtds

)∫ t

.
D2
s,.σtds

∥∥∥∥
L2([0, t]2)

)q′
|B0
· ,G


≤ C ′E

q′−1
q′

[
sup

0≤t≤T

(
(σt)

αq′
q′−1

)
|B0
· ,G

]

×E
1
q′

(∥∥∥∥∫ t

.
D2
s,.σtds

∥∥∥∥
L2([0,t]2)

)q′
|B0
· ,G

 , (3.9)

for any α ≥ 0.
It is not hard to see that the constant C ′ > 0 does not depend on the fixed path B0

·
of the Market factor, since it depends on the maximum of the derivative of F and the
universal constant of Proposition 1.5.4 in [20] (changing the measure here is the same as
changing the process σt by changing its Market factor, under the law of the idiosyncratic
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factor). Therefore, for any 1 < q < q′, by Holder’s inequality, the estimate (3.9) and the
law of total expectation, we have

E

[(
sup

0<t≤T
MB0

· ,α,t

)q]
≤ CqE

q′−q
q′

[
E

(q′−1)q

q′−q

[
sup

0≤t≤T

(
(σt)

αq′
q′−1

)
|B0
· , G

]]

×E
q
q′

 sup
0<t≤T

(∫ T

0

∫ T

0

(∫ T

t′
D2
s,t′′σtds

)2

dt′dt′′

) q
2

 .
(3.10)

Since (q′−1)q
q′−q > 1, by applying Holder’s inequality and the law of total expectation

once more, we find that the first factor on the RHS of (3.10) is bounded by

CqE
q′−q
q′

[
sup

0≤t≤T

(
(σt)

αqq′
q′−q

)]
which is finite by Lemma 3.2. On the other hand, the second factor on the RHS of (3.10)
is bounded by

E
q
q′


∫ T

0

∫ T

0

∫ T

t′

(
sup

0<t≤T
D2
s,t′′σt

)2

dsdt′dt′′


q′
2



≤ E
q
q′


∫ T

0

∫ T

0

∫ T

0

(
sup

0<s,t′′≤t≤T
D2
s,t′′σt

)2

dsdt′dt′′


q′
2


≤ T

3q
2 E

q
q′

( sup
0<s,t′′≤t≤T

D2
s,t′′σt

)q′
which is finite by Lemma 3.4 for any T > 0, so the desired result follows.

4 Existence of a regular two-dimensional density

In this section, we combine the results we have obtained in the previous section for the
volatility process with the regularity results we have for the constant volatility model of
[6], in order to obtain a regular density for the probabilistic solution of the SPDE obtained
in Section 2, when the value of C1 is given. First, for any Hilbert space H, we denote
by L2 (Ω× [0, T ] ; H) the space of H- valued stochastic processes, which are adapted to
the Brownian path (W 0

· , B
0
· ). For our purpose we will need the following useful Theorem

which extends the results of [6] to the case where the volatility path is non-constant.

Theorem 4.1. Let {Xt : t ≥ 0} satisfy the stopped SDE
dXt =

(
r − σt

2

)
dt+

√
σt
√

1− ρ2
1dW

1
t +
√
σtρ1dW

0
t , 0 ≤ t ≤ τ,

Xt = 0, t ≥ τ,
(4.1)
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for τ = inf{t ≥ 0 : Xt = 0}, under the initial condition X0 = x0, where x0 is a
continuous random variable with an L2 density u0 = u0(· | G) given G ⊂ σ(x0), W 0

· and
W 1
· are pairwise independent standard Brownian motions which are also independent of

x0, r > 0 and ρ1 ∈ (−1, 1) are given constants, and {σt : t ≥ 0} is just a deterministic
path which is continuous and positive. Let {Vt : t ≥ 0} be the measure-valued process
given by

Vt(A) = P
(
Xt ∈ A, τ ≥ t |W 0

· , G
)

for any Borel set A ⊂ (0, ∞). Then almost surely, the following are true for all T > 0;

1. Vt possesses a density u(t, ·) = u
(
t, · ; W 0

· , G
)

for all 0 ≤ t ≤ T , which is the
unique solution to the SPDE

du(t, x) = −
(
r − σt

2

)
ux(t, x)dt+

σt
2
uxx(t, x)dt−

√
σtρ1ux(t, x)dW 0

t (4.2)

in L2
(
Ω× [0, T ] ; H1

0 (R+)
)

under the initial condition u(0, ·) = u0, where u0 is the
density of x0 given G.

2. For all 0 ≤ t ≤ T , the following identity holds

||u(t, ·)||2L2(R+) +
(
1− ρ2

1

) ∫ t

0
σs||ux(s, ·)||2L2(R+)ds = ||u0||2L2(R+). (4.3)

To prove the above theorem, we need the following convergence result for a sequence
of stopped Ito processes, when the corresponding sequence of volatility paths decreases
pointwise to some continuous and positive path.

Lemma 4.2. Let {σ0
t : 0 ≤ t ≤ T} be a continuous and strictly positive path, which is

approximated from above by a pointwise decreasing sequence {{σmt : 0 ≤ t ≤ T}}m∈N of
positive and bounded paths. For any m ∈ N ∪ {0}, denote by Xm

. the stopped Ito process
given by 

dXm
t =

(
r − σmt

2

)
dt+

√
σmt dWt, 0 ≤ t ≤ τm,

Xm
t = 0, t > τm,

(4.4)

where τm = inf{t ≥ 0 : Xm
t = 0} and W· is a standard Brownian Motion, with the initial

condition
Xm

0 = max
{
x0 − lm,

x0

2

}
,

for x0 ≥ 0 and lm =

(∥∥∥√σm. −√σ0
.

∥∥∥
L2[0, T ]

)1/2

. Then, for a sequence {mk : k ∈ N} ⊂

N, we have almost surely: Xmk
t → X0

t uniformly on any compact interval [0, T ].

The proof of the above lemma is quite technical and can be found in the Appendix

Proof of Theorem 4.1. Without loss of generality we can assume ρ1 ∈ [0, 1). We will prove
first that 2. holds for the unique solution u of (4.2) in the space L2

(
Ω× [0, T ] ; H1

0 (R+)
)
.

Since the existence and uniqueness of this solution follows from the main results of [17]
(pages 18-20), for any fixed volatility path and any square integrable initial density, we
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do not need to use 1. The estimate (4.3) for that u is also obtained without using 1.,
which means that we can use 2. for proving 1. next. Indeed, applying Ito’s formula for
the L2 norm (Theorem 3.2 in [17] for the triple H1

0 ⊂ L2 ⊂ H−1) on (4.2) and observing
that

∫∞
0 uxxu = −

∫∞
0 u2

x (by the definition of the distributional second derivative, since
u ∈ H1

0 can be approximated by smooth and compactly supported functions in that
space), we obtain

∥∥u(t, ·, W 0
· , G)

∥∥2

L2(R+)
+
(
1− ρ2

1

) ∫ t

0
σs
∥∥ux(s, ·, W 0

· , G)
∥∥2

L2(R+)
ds = ‖u0‖2L2(R+)

for all 0 ≤ t ≤ T , for all ω ∈ ΩT with P
(
ΩT
)

= 1. The desired result follows since

P (Ω∞) = 1 for Ω∞ = ∩N∈NΩN .
We proceed now to the proof of 1. which will be divided into 3 steps. In what

follows, we will be working on the set Ω∞ which is defined above and which is a set of
full probability.

1. The constant volatility case:
We assume first that the path σt is constant in t ≥ 0, i.e σt = σ2 ∀ t ≥ 0. In that case,
Vt is the limit empirical process studied in [6] and [9] (without the compactly supported
initial data restriction), scaled by σ > 0, so it does have a density u(t, ·) = u(t, ·, W 0

· )
which is the unique solution of the SPDE

du(t, x) = −
(
r − σ2

2

)
ux(t, x)dt+

σ2

2
uxx(t, x)dt− σρ1ux(t, x)dW 0

t

in L2
(
Ω× [0, T ] ; H1

0 (R+)
)
, under the initial condition u(0, ·) = u0, which is actually

(4.2). It holds also that xuxx(t, x) is square integrable.

2. The piecewise constant volatility case:
We assume now that the path σ· is piecewise constant in 0 ≤ t ≤ T , i.e
σt = σ2

i > 0 ∀ t ∈ [ti, ti+1] (almost everywhere), where 0 = t0 < t1 < ... < tn = T is a
partition of [0, T ]. We shall prove that 1. holds for T replaced by ti+1 for all i ≤ n− 1,
by using induction on i. The base case (i = 0) follows directly from Step 1 for T = t1.
Assume that our desired result holds for i = j < n− 1 and thus, we have obtained the
desired density u(t, ·) for 0 ≤ t ≤ tj+1. For i = j + 1 now, by starting our (Markovian)
processes at t = tj+1 and using Step 1 again, we have that
Vt(A) = P

(
Xt ∈ A, τ ≥ t |W 0

· , G
)

has a density ũ(t, ·) = ũ
(
t, · ; W 0

· , G
)

for all
tj+1 ≤ t ≤ tj+2, which is the unique solution of the SPDE

dũ(t, x) = −

(
r −

σ2
j+1

2

)
ũx(t, x)dt+

σ2
j+1

2
ũxx(t, x)dt− σj+1ρ1ũx(t, x)dW 0

t

in L2
(
Ω× [tj+1, tj+2] ; H1

0 (R+)
)
, i.e an equivalent to (4.2) in [tj+1, tj+2], under the

initial condition
ũ(tj+1, ·) = u (tj+1, ·)

Therefore, by defining u(t, ·) = ũ(t, ·) in (tj+1, tj+2], we see that u(t, ·) is both the
density of Vt (·) and the unique solution of (4.2) in L2

(
Ω× [0, tj+2] ; H1

0 (R+)
)

under
the initial condition u(0, ·) = u0. Our induction is now complete.
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3. The general case:
We assume finally that the path σ· is any continuous and positive path. Recall
Lemma 4.2 for σ0

· = σ· and for a pointwise decreasing sequence of piecewise constant
paths {σm· }m∈N approximating σ· from above. This gives a sequence of drifted
Brownian Motions Xmk· converging P-almost surely to X·, with corresponding volatility
paths {σmk· }m∈N. If we denote by uk(t, ·; W 0

· , G) the density of Xmk
t for any t ≥ 0, then

Step 2 shows that uk is the unique solution of (4.2) with σ· replaced by σmk· and with
an initial density given by

uk0(x) = u0 (min{2x, x+ `mk}) .

Thus, by 2., which has been proven for the unique regular enough solution of (4.2)
(independently from 1. which we are now proving), we have that∥∥∥uk(t, ·; W 0

· , G)
∥∥∥2

L2(R+)
+
(
1− ρ2

1

) ∫ t

0
σmks

∥∥∥ukx(s, ·; W 0
· , G)

∥∥∥2

L2(R+)
ds =

∥∥∥uk0∥∥∥2

L2(R+)
,

where we can take expectations to obtain∥∥∥uk(t, ·; W 0
· , G)

∥∥∥2

L2
+
(
1− ρ2

1

) ∫ t

0
σmks

∥∥∥ukx(s, ·; W 0
· , G)

∥∥∥2

L2
ds =

∥∥∥uk0∥∥∥2

L2
(4.5)

for all 0 ≤ t ≤ T , where L2 stands for L2 (Ω× R+). Moreover, by the choice of the
approximating sequence, we can see that all the volatility paths are bounded below by
m = min

0≤s≤T
{σs}, while the sequence of the norms of the uk0s is bounded. Thus, we can

easily obtain from (4.5) that the sequence of L2
(
Ω× [0, T ] ; H1

0 (R+)
)

norms of the uks
is bounded. Hence, there exists a u ∈ L2

(
Ω× [0, T ] ; H1

0 (R+)
)

such that unk → u
weakly in that space, for a sequence {nk : k ∈ N} of positive integers. Given now the
path W 0

· and given G, since convergence almost surely implies convergence in
distribution, for any smooth function f defined on [0, T ], any open set A ⊂ R+ and any
B ∈ σ

(
W 0
· , G

)
we have∫ T

0
E
[
P
(
Xt ∈ A |W 0

· , G
)
IB
]
f(t)dt =

∫ T

0
E
[

lim
k→∞

P
(
X
mnk
t ∈ A |W 0

· , G
)
IB
]
f(t)dt

= lim
k→∞

∫ T

0
E
[
P
(
X
mnk
t ∈ A |W 0

· , G
)
IB
]
f(t)dt

= lim
k→∞

∫ T

0
E
[
IB
∫
A
unk(t, x, W 0

· , G)dx

]
f(t)dt

=

∫ T

0
E
[
IB
∫
A
u(t, x, W 0

· , G)dx

]
f(t)dt,

which implies that u ∈ L2
(
Ω× [0, T ]; H1

0 (R+)
)

is the density process of Xt given W 0
·

and G. By applying Ito’s formula on any smooth function computed at Xt and taking
expectations given W 0

· and G, we find that u is also a solution of (4.2) which also
satisfies the initial condition u(0, ·) = u0. Thus, u is the unique solution of (4.2) in
L2
(
Ω× [0, T ] ; H1

0 (R+)
)
, under the initial condition u(0, ·) = u0. The proof is now

complete.
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We are now ready to prove the first main result of this paper, that is the existence of
a regular density for vt,C1 .

Theorem 4.3. Suppose that the F0-measurable random vector C1 is independent from(
X1

0 , σ
1
0

)
, and for some q > 1 we have P- almost surely 4k1θ1

3ξ21
> q and ρ1,i, ρ2,i ∈ (−1, 1).

Suppose also that given G, X1
0 has an L2-integrable density u0(·|G) in R+ such that

E
[
||u0||2q

′

L2(R+)

]
<∞ for 1

q + 1
q′ = 1. Suppose finally that the initial value assumptions of

Theorem 3.1 are satisfied for σ0 = σ1
0 and (k, θ, ξ, r, ρ1, ρ2) = (k1, θ1, ξ1, r1, ρ1,1, ρ2,1),

for any possible value of C1 = (k1, θ1, ξ1, r1, ρ1,1, ρ2,1). Then, for any value of C1,
the measure-valued stochastic process vt,C1 obtained in Section 2 has a two-dimensional
density uC1(t, ·, W 0

· , B
0
· , G) belonging to the spaces

Lα,C1 = L∞
(
[0, T ] ; L2

(
(Ω, F , P (· |C1 )) ; L2

yα
(
R+ × R+

)))
and

Hα,C1 = L2
(

(Ω, F , P (· |C1 ))× [0, T ] ; H1
0

(
R+
)
× L2

h1(y)yα
(
R+
))

for any α ≥ 0, where we write L2
g(y) for the weighted L2 space with the weight function

{g(y) : y ≥ 0}, and h1(y) := min {h(y), 1} ∀y ≥ 0.

Proof. Let f be a smooth function, compactly supported in R2, such that f vanishes on
the y - axis. Then by Theorem 3.1 we have

vt,C1 (f) = E
[
f
(
X1
t , σ

1
t

)
I{T1≥t} |W

0
· , B

0
· , C1,G

]
= E

[
E
[
f
(
X1
t , σ

1
t

)
I{T1≥t} |W

0
· , σ

1
t , B

0
· , C1,G

]
|W 0
· , B

0
· , C1,G

]
=

∫
R+

E
[
f
(
X1
t , y

)
I{T1≥t} |W

0
· , σ

1
t = y,B0

· , C1,G
]
pt
(
y|B0

· ,G
)
dy.

(4.6)

Next we have

E
[
f
(
X1
t , y

)
I{T1≥t}|W

0
· , σ

1
t = y,B0

· , C1,G
]

= E
[
E
[
f
(
X1
t , y

)
I{T1≥t}|W

0
· , σ., C1,G

]
|W 0
· , σ

1
t = y,B0

· , C1,G
]

= E
[∫

R+

f(x, y)u
(
t, x,W 0

· ,G, C1, h (σ.)
)
dx|W 0

· , σ
1
t = y,B0

· , C1,G
]

=

∫
R+

f(x, y)E
[
u
(
t, x,W 0

· ,G, C1, h (σ.)
)
|W 0
· , σ

1
t = y,B0

· , C1,G
]
dx,

(4.7)

where u
(
t, x,W 0

· , C1,G, h (σ.)
)

is the L2
(
Ω× [0, T ]; H1

0 (R+)
)

density given by Theo-
rem 4.1, when the coefficient vector C1 is given and the volatility path is h (σ.). By (4.6)
and (4.7) we obtain that the desired density exists and is given by

uC1

(
t, x, y,W 0

· , B
0
· ,G
)

= pt
(
y|B0

· ,G
)
E
[
u
(
t, x,W 0

· ,G, C1, h (σ.)
)
|W 0
· , σ

1
t = y,B0

· , C1,G
]

which is obviously supported in R+ × R+. Now, recall the estimate from Theorem 3.1
and the Cauchy-Schwarz inequality to obtain

yα
(
∂uC1

∂x

(
t, x, y, W 0

· , B
0
· , G

))2
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≤MB0
· ,α
pt
(
y |B0

· , G
)

×E2
[
ux
(
t, x, W 0

· , G, C1, h (σ.)
)
|W 0
· , σ

1
t = y, B0

· , C1, G
]

≤MB0
· , α

pt
(
y |B0

· , G
)
E
[
u2
x

(
t, x, W 0

· , G, C1, h (σ.)
)
|W 0
· , σ

1
t = y, B0

· , C1, G
]

where MB0
· ,α

= sup
0≤t≤T

(
sup
y≥0

(
yαpt

(
y |B0

· , G
)))

for which we have E
[
M q
B0
· ,α

]
< ∞ (by

Theorem 3.1). Multiplying the above by h1(y), integrating in y and using the law of total
expectation, we obtain∫

R+

h1(y)yα
(
∂uC1

∂x

(
t, x, y, W 0

· , B
0
· , G

))2

dy

≤MB0
· ,α
× E

[
h
(
σ1
t

)
u2
x

(
t, x, W 0

· , G, C1, h (σ.)
)
|W 0
· , B

0
· , C1, G

]
Thus, writing EC1 for the expectation given C1, we have

EC1

[∫ T

0

∫
R+

∫
R+

h1(y)yα
(
∂uC1

∂x

(
t, x, y, W 0

· , B
0
· , G

))2

dydxdt

]

≤ EC1

[
MB0

· ,α

∫ T

0

∫
R+

E
[
h
(
σ1
t

)
u2
x

(
t, x,W 0

· ,G, C1, h (σ.)
)
|W 0
· , B

0
· , C1,G

]
dxdt

]
= EC1

[
MB0

· ,α
E
[∫ T

0
h
(
σ1
t

) ∫
R+

u2
x

(
t, x,W 0

· ,G, C1, h (σ.)
)
dxdt |W 0

· , B
0
· , C1,G

]]
by Tonelli’s Theorem. Then, by 2. of Theorem 4.1, the above quantity is bounded by a
multiple of

EC1

[
MB0

· ,α
E
[∫

R+

u2
0(x)dx |W 0

· , B
0
· , C1, G

]]
= EC1

[
MB0

· ,α

∫
R+

u2
0(x)dx

]
≤ EC1

[
M q
B0
· ,α

]
E
[
||u0||2q

′

L2(R+)

]
<∞

by our assumptions. This is the estimate for the x-derivative of uC1 . To obtain an
estimate for the density itself, we follow the same steps without multiplying by h1(y) and
without integrating in t. In that case, when we recall 2. from Theorem 4.1, we drop the

integral term of the LHS and our upper bound is again EC1

[
M q
B0
· ,α

]
E
[
||u0||2q

′

L2(R+)

]
<∞

which is independent of t ∈ [0, T ]. Thus we obtain

sup
0≤t≤T

EC1

[∫
R+

∫
R+

yαu2
C1

(
t, x, y, W 0

· , B
0
· , G

)
dydx

]
≤ EC1

[
M q
B0
· ,α

]
E
[
||u0||2q

′

L2(R+)

]
<∞

Adding our two estimates we can easily deduce that

‖uC1‖
2
Hα,C1

∩Lα,C1
≤ CEC1

[
M q
B0
· ,α

]
E
[
||u0||2q

′

L2(R+)

]
<∞

for some C > 0 (independent of C1) and our proof is complete.
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If C1 has a nice distribution such that E
[
EC1

[
M q
B0
· ,α

]]
<∞, we can take expectations

on the last estimate to deduce the existence of a regular density for the limiting empirical
measure process, justifying the validity of the approximate computation in (1.6). Sub-
stituting now

∫
R2 f · dvt,C1 =

∫
R2 f(x, y)uC1(t, x, y)dxdy in the distributional SPDE of

Theorem 2.6 and integrating by parts, we obtain the SPDE for the density of vt,C1 :

uC1(t, x, y) = U0(x, y |G)− r1

∫ t

0
(uC1(s, x, y))x ds

+
1

2

∫ t

0
h2(y) (uC1(s, x, y))x ds− k1θ1

∫ t

0
(uC1(s, x, y))y ds

+k1

∫ t

0
(yuC1(s, x, y))y ds+

1

2

∫ t

0
h2(y) (uC1(s, x, y))xx ds

+ξ1ρ3ρ1,1ρ2,1

∫ t

0
(h (y)

√
yuC1(s, x, y))xy ds

+
ξ2

1

2

∫ t

0
(yuC1(s, x, y))yy ds− ρ1,1

∫ t

0
h(y) (uC1(s, x, y))x dW

0
s

−ξ1ρ2,1

∫ t

0
(
√
yuC1(s, x, y))y dB

0
s , (4.8)

where the derivatives in y and the second derivative in x are considered in the distribu-
tional sense (over the test space Ctest0 defined in Theorem 2.6), while U0(x, y |G) stands
for the initial density with marginals u0(x |G) and p0(y | G).

5 Using the SPDE to improve the regularity

In this section we write L̃2
δ = L2

yδ
(R+ × R+). Observe that under this notation, the space

Lα,C1 defined in Theorem 4.3 can be written as

Lα,C1 = L∞
(

[0, T ] ; L2
(

(Ω, F , P (· |C1 )) ; L̃2
α

))
,

which means that the Lα,C1 - norm of a function equals the supremum in t ∈ [0, T ] of
the L2 (Ω, F , P (· |C1 )) norm of its L̃2

α - norm. All the expectations in this chapter are
taken under the conditional probability measure P (· |C1 ). For any value of the coefficient
vector C1, we will write Ω for (Ω, F , P (· |C1 )) and P for P (· |C1 ) for simplicity.

In this section, we exploit the initial-boundary value problem satisfied by uC1 , in
order to establish the best possible regularity for our density. First, we need to define
the initial-boundary value problem explicitly. We give the following definition of an α-
solution to our problem for α ≥ 0, the properties of which are all satisfied by the density
function uC1 for all α ≥ 0 as we have shown in the previous section.

Definition 5.1. For a given value of the coefficient vector C1, let U0 ∈ L2
(

Ω; L̃2
α

)
be

a random function which is extended to be zero outside R+ × R+, h a function having
polynomial growth in R+, and ρ a real number. Given C1, ρ and the functions U0 and h,
we say that u is an α-solution to our problem when the following are satisfied;
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1. u is adapted to the filtration {σ
(
G, W 0

t , B
0
t

)
: t ≥ 0} and belongs to the space

Hα,C1 ∩ Lα,C1 , where Lα,C1 and Hα,C1 are the spaces defined in Theorem 4.3.

2. u vanishes for negative y and satisfies the SPDE

u(t, x, y) = U0(x, y)− r1

∫ t

0
(u(s, x, y))x ds

+
1

2

∫ t

0
h2(y) (u(s, x, y))x ds− k1θ1

∫ t

0
(u(s, x, y))y ds

+k1

∫ t

0
(yu(s, x, y))y ds+

1

2

∫ t

0
h2(y) (u(s, x, y))xx ds

+ρ

∫ t

0
(h (y)

√
yu(s, x, y))xy ds

+
ξ2

1

2

∫ t

0
(yu(s, x, y))yy ds− ρ1,1

∫ t

0
h(y) (u(s, x, y))x dW

0
s

−ξ1ρ2,1

∫ t

0
(
√
yu(s, x, y))y dB

0
s , (5.1)

for all x ≥ 0 and y ∈ R, where uy, uyy and uxx are considered in the distributional
sense over the space of test functions

Ctest0 = {g ∈ C2
b (R+ × R) : g(0, y) = 0, ∀y ∈ R}.

Observe that for ρ = ξ1ρ3ρ1,1ρ2,1, where ρ3 is the correlation between W 0 and B0

(i.e dW 0
t · dB0

t = ρ3dt), we obtain the SPDE obtained in the previous section. The main
result of this section is given in the following theorem.

Theorem 5.2. Fix the value of the coefficient vector C1, the real number ρ and the initial
data function U0. Let u be an α-solution to our problem, for all α ≥ 0. Then, the weak
derivative uy of u exists and we have

uy ∈ L2
(

[0, T ]× Ω; L̃2
α

)
for all α ≥ 2.

To prove the above Theorem, we need to modify appropriately the kernel smoothing
method which has been developed in [6, 18, 9]. The idea is to test our SPDE against

φε(z, y) =
1√
2πε

e−
(
√
z−y)2
2ε , y, z ∈ R,

in order to obtain a smoothed version of it. Keep in mind that we do not have to integrate
over the negative numbers, where the square root is not defined, since by definition our
solution vanishes there. From the smoothed version of our SPDE, we can obtain for any
δ > 1, an identity involving some finite L̃2

δ , L̃
2
δ−1 and L̃2

δ−2 norms and inner products
of smoothed quantities involving the solution and its derivatives (we shall refer to this
as the δ-identity). The finiteness of the L̃2 norms appearing in the δ-identity for any δ,
follows from the good global regularity of our functions when they are smoothed with
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φε(z, y). This good smoothing property of φε(z, y), which is not obvious and has to be
established concretely, follows from the fact that φε(z, y) is just the standard heat kernel
(used in the standard kernel smoothing method) composed with a square root function.
Then, we can obtain the desired result by manipulating appropriately the δ-identity for
each δ > 1 and by taking ε → 0+, provided that φε(z, y) has the same convergence
properties as the standard heat kernel. The composition with the square root function
leads to the elimination of some bad terms in our δ-identities (terms that could explode
as ε → 0+ under our weak regularity assumptions) which would appear if we used the
standard kernel smoothing method. The intuition behind the choice of this composition
is that our solution is expected to be the density of a law describing a CIR process in
the y-direction, while the mapping z →

√
z transforms a CIR process into a process of a

constant volatility (like the Brownian motion with drift in the constant volatility model,
where the standard kernel smoothing method works).

As we have already mentioned, we need to show that φε(z, y) introduced above pos-
sesses all the nice smoothing and convergence (as ε→ 0+) properties of the standard heat
kernel, and also for many different weighted L2 norms. These natural extensions are given
in the following technical lemmas, the proofs of which have been put in the Appendix
since they are simple modifications of the proofs of the corresponding properties of the
standard heat kernel under the standard L2 norm.

Lemma 5.3. Suppose that (Λ, µ) is a measure space. For any function u supported in
Λ× R+ we define the functions

Ju,ε(λ, y) =

∫
R
u(λ, z)φε(z, y)dz

and
Ju(λ, y) = 2yu(λ, y2).

Suppose that for all δ′ > −1 we have Ju ∈ L2
(

Λ; L2
yδ′

(R+)
)

. Then for all δ′ > −1 we

have the following regularity and convergence results;

1. Ju,ε(·, ·) is smooth and for all n ∈ N it holds that ∂n

∂ynJu,ε(·, ·) ∈ L
2
(

Λ; L2
yδ′

(R+)
)

.

2. Ju,ε(·, ·)→ Ju(·, ·) strongly in L2
(

Λ; L2
yδ′

(R+)
)

, as ε→ 0+.

Lemma 5.4. In the notation of lemma 5.3, assume that for some δ′ > 0, there exists a
constant C > 0 and an n ∈ N such that for any ε > 0 we have∥∥∥∥ ∂l∂ylJu,ε (s, ·)

∥∥∥∥2

L2

(
Λ;L2

yδ
′ (R+)

) ≤ C (5.2)

for some function u supported in Λ×R+ and all l ∈ {1, 2, ..., n}. Then we have ∂l

∂yl
Ju ∈

L2
(

Λ; L2
yδ′

(R+)
)

and also ∂l

∂yl
Ju,ε → ∂l

∂yl
Ju strongly in L2

(
Λ; L2

yδ′
(R+)

)
as ε→ 0+, for

all l ∈ {1, 2, ..., n}.

We will use these two lemmas for Λ = Ω × R+ and Λ = [0, t] × Ω × R+ for t ≥ 0,
with the corresponding product of measures (where Ω is equipped with the measure
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P (· |C1 ) and both [0, t] and R+ are equipped with the standard Lebesgue measure).
This means that, in the notation we introduced at the beginning of this section, the two

lemmas will be used for functions in the spaces L2
(

Ω× R+; L2
yδ′

(R+)
)

= L2
(

Ω; L̃2
δ′

)
and L2

(
[0, t]× Ω× R+; L2

yδ′
(R+)

)
= L2

(
[0, t]× Ω; L̃2

δ′

)
.

We fix now a function u which is an α-solution to our problem for all α ≥ 0 and we
set:

Iε,g(z)(s, x, y) =

∫
R
g(z)u(s, x, z)φε(z, y)dz

for any function g of z and ε > 0. Under this notation, the δ-identity (for any δ > 1) for
our solution u is given in the following lemma:

Lemma 5.5 (the δ-identity). The following estimate holds for any δ > 1,

‖Iε,1(t, ·)‖2
L2(Ω; L̃2

δ)
=

∥∥∥∥∫
R
U0(·, z)φε(z, ·)dz

∥∥∥∥2

L2(Ω; L̃2
δ)

+

∫ t

0

〈
∂

∂x
Iε,h2(z)(s, ·), Iε,1(s, ·)

〉
L2(Ω; L̃2

δ)
ds

+δ

(
k1θ1 −

ξ2
1

4

)∫ t

0

〈
I
ε,z−

1
2
(s, ·), Iε,1(s, ·)

〉
L2(Ω; L̃2

δ−1)
ds

+

(
k1θ1 −

ξ2
1

4

)∫ t

0

〈
I
ε,z−

1
2
(s, ·), ∂

∂y
Iε,1(s, ·)

〉
L2(Ω; L̃2

δ)
ds

−δk1

∫ t

0

〈
I
ε,z

1
2
(s, ·), Iε,1(s, ·)

〉
L2(Ω; L̃2

δ−1)
ds

−k1

∫ t

0

〈
I
ε,z

1
2
(s, ·), ∂

∂y
Iε,1(s, ·)

〉
L2(Ω; L̃2

δ)
ds

−
∫ t

0

〈
∂

∂x
Iε,h2(z)(s, ·),

∂

∂x
Iε,1(s, ·)

〉
L2(Ω; L̃2

δ)
ds

−δρ
∫ t

0

〈
∂

∂x
Iε,h(z)(s, ·), Iε,1(s, ·)

〉
L2(Ω; L̃2

δ−1)
ds

+ρ2
1,1

∫ t

0

∥∥∥∥ ∂∂xIε,h(z)(s, ·)
∥∥∥∥2

L2(Ω; L̃2
δ)
ds

+δ(δ − 1)
ξ2

1

8

∫ t

0
‖Iε,1(s, ·)‖2

L2(Ω; L̃2
δ−2)

ds

−ξ
2
1

4

(
1− ρ2

2,1

) ∫ t

0

∥∥∥∥ ∂∂y Iε,1(s, ·)
∥∥∥∥2

L2(Ω; L̃2
δ)
ds.

− (ρ− ξ1ρ3ρ1,1ρ2,1)

∫ t

0

〈
∂

∂x
Iε,h(z)(s, ·),

∂

∂y
Iε,1(s, ·)

〉
L2(Ω; L̃2

δ)
ds.

(5.3)

All the terms in the above identity are finite.
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Proof. Notice first that the finiteness of each term in the identity we need to prove is a
consequence of 1. of Lemma 5.3. Next, we observe that by definition of φε we have∫

R
g(z)u(s, x, z)

∂

∂z
φε(z, y)dz = −1

2

∫
R
z−

1
2 g(z)u(s, x, z)

∂

∂y
φε(z, y)dz

= −1

2

∂

∂y
I
ε,g(z)z−

1
2
(s, x, y) (5.4)

and also∫
R
g(z)u(s, x, z)

∂2

∂z2
φε(z, y)dz

= −
∫
R
g(z)u(s, x, z)

∂

∂z

(
∂

∂y
φε(z, y)

1

2
√
z

)
dz

= −
∫
R
g(z)u(s, x, z)

∂

∂y

∂

∂z
φε(z, y)

1

2
√
z
dz +

∫
R
g(z)u(s, x, z)

∂

∂y
φε(z, y)

1

4z
√
z
dz

= −
(

1

2

∫
R
g(z)z−

1
2u(s, x, z)

∂

∂z
φε(z, y)dz

)
y

+
1

4

∫
R
g(z)z−

3
2u(s, x, z)

∂

∂y
(φε(z, y)) dz

=
1

4

(
Iε,g(z)z−1(s, x, y)

)
yy

+
1

4

(
I
ε,g(z)z−

3
2
(s, x, y)

)
y
, (5.5)

for any ε > 0 and α ∈ R. Thus, after testing (5.1) against φε, by substituting from (5.4)
and (5.5), and by interchanging the x-derivatives with the integrals, we obtain

Iε,1(t, x, y) =

∫
R+

U0(x, z)φε(z, y)dz − r1

∫ t

0

∂

∂x
Iε,1(s, x, y)ds

+
1

2

∫ t

0

∂

∂x
Iε,h2(z)(s, x, y)ds− k1θ1

2

∫ t

0

∂

∂y
I
ε,z−

1
2
(s, x, y)ds

+
k1

2

∫ t

0

∂

∂y
I
ε,z

1
2
(s, x, y)ds+

1

2

∫ t

0

∂2

∂x2
Iε,h2(z)(s, x, y)ds

+
ξ2

1

8

∫ t

0

∂2

∂y2
Iε,1(s, x, y)ds+

ξ2
1

8

∫ t

0

∂

∂y
I
ε,z−

1
2
(s, x, y)ds

+
ρ

2

∫ t

0

∂2

∂x∂y
Iε,h(z)(s, x, y)ds− ρ1,1

∫ t

0

∂

∂x
Iε,h(z)(s, x, y)dW 0

s

−ξ1

2
ρ2,1

∫ t

0

∂

∂y
Iε,1(s, x, y)dB0

s . (5.6)

By applying Ito’s formula for the L2(R+) norm on (5.6) (Theorem 3.1 from [17] for the
triple H1

0 ⊂ L2 ⊂ H−1), multiplying by yδ for δ > 1 and integrating in y over R+, we
obtain the equality

‖Iε,1(t, ·)‖2
L̃2
δ

=

∥∥∥∥∫
R
U0(·, z)φε(z, ·)dz

∥∥∥∥2

L̃2
δ

−2r1

∫ t

0

〈
∂

∂x
Iε,1(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds+

∫ t

0

〈
∂

∂x
Iε,h2(z)(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds

−k1θ1

∫ t

0

〈
∂

∂y
I
ε,z−

1
2
(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds+ k1

∫ t

0

〈
∂

∂y
I
ε,z

1
2
(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds
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+

∫ t

0

〈
∂2

∂x2
Iε,h2(z)(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds+
ξ2

1

4

∫ t

0

〈
∂2

∂y2
Iε,1(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds

+ρ

∫ t

0

〈
∂2

∂x∂y
Iε,h(z)(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds

+ξ1ρ3ρ1,1ρ2,1

∫ t

0

〈
∂

∂x
Iε,h(z)(s, ·),

∂

∂y
Iε,1(s, ·)

〉
L̃2
δ

ds

+
ξ2

1

4

∫ t

0

〈
∂

∂y
I
ε,z−

1
2
(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds+ ρ2
1,1

∫ t

0

∥∥∥∥ ∂∂xIε,h(z)(s, ·)
∥∥∥∥2

L̃2
δ

ds

+
ξ2

1

4
ρ2

2,1

∫ t

0

∥∥∥∥ ∂∂y Iε,1(s, ·)
∥∥∥∥2

L̃2
δ

ds

−2ρ1,1

∫ t

0

〈
∂

∂x
Iε,h(z)(s, ·), Iε,1(s, ·)

〉
L̃2
δ

dW 0
s

−ξ1ρ2,1

∫ t

0

〈
∂

∂y
Iε,1(s, ·), Iε,1(s, ·)

〉
L̃2
δ

dB0
s . (5.7)

Observe now that by the definition of uxx in our SPDE, we have∫
R+

∫
R
uxx(s, x, z)φε(z, y)f(x)dzdx =

∫
R+

∫
R
u(s, x, z)φε(z, y)fxx(x)dzdx

= −
∫
R+

∫
R
ux(s, x, z)φε(z, y)fx(x)dzdx (5.8)

for any smooth f vanishing at zero. Since u ∈ H1
0 , this mapping over all such functions

f defines a distribution in H−1, and since those test functions are dense in H1
0 , we have

that (5.8) holds for any f ∈ H1
0 . In particular, for f = Iε,1(s, ·, y), multiplying (5.8) by

yδ and then integrating in y and t over R+, we obtain∫ t

0

〈
∂2

∂x2
Iε,h2(z)(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds = −
∫ t

0

〈
∂

∂x
Iε,h2(z)(s, ·),

∂

∂x
Iε,1(s, ·)

〉
L̃2
δ

ds.

(5.9)
Next, integration by parts implies∫ t

0

〈
∂2

∂y2
Iε,1(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds

= δ(δ − 1)
1

2

∫ t

0
‖Iε,1(s, ·)‖2

L̃2
δ−2

ds−
∫ t

0

∥∥∥∥ ∂∂y Iε,1(s, ·)
∥∥∥∥2

L̃2
δ

ds

(5.10)

and ∫ t

0

〈
∂2

∂x∂y
Iε,h(z)(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds

= −
∫ t

0

〈
∂

∂x
Iε,h(z)(s, ·),

∂

∂y
Iε,1(s, ·)

〉
L̃2
δ

ds− δ
∫ t

0

〈
∂

∂x
Iε,h(z)(s, ·), Iε,1(s, ·)

〉
L̃2
δ−1

ds

27



(5.11)

and also∫ t

0

〈
∂

∂y
Iε,zα(s, ·), Iε,1(s, ·)

〉
L̃2
δ

ds

= −δ
∫ t

0
〈Iε,zα(s, ·), Iε,1(s, ·)〉L̃2

δ−1
ds−

∫ t

0

〈
Iε,zα(s, ·), ∂

∂y
Iε,1(s, ·)

〉
L̃2
δ

ds,

(5.12)

for any α for which the above quantities are regular enough. Note that integrating
by parts in the y-direction is possible without leaving any boundary term at infinity,
since all the terms inside the inner products are rapidly decreasing in y. This is also a
consequence of 1. of Lemma 5.3, since for any n ∈ N and any function f having derivatives
in polynomially weighted L2 spaces, by Morrey’s inequality we have:

ynf(y) ≤ 1

y
sup
z∈R
|zn+1f(z)|

≤ 1

y

(∫
R
z2(n+1)f2(z)dz +

∫
R
z2nf2(z)dz +

∫
R
z2(n+1)(f ′(z))2dz

) 1
2

→ 0

as y → ∞. Of course, we do not have boundary terms at zero either, due to the weight
function yδ.

We will use (5.9) - (5.11) to get rid of second order derivative terms in our estimate.
Here, it becomes clear why we have chosen to compose the standard heat kernel with√
z: In (5.7), substituting the second term in the fourth row from (5.10) gives again the

term of the eighth row but with a negative coefficient of a bigger absolute value, which
allows us to control y-derivative terms. It is not hard to check that that this wouldn’t
have been the case if we had composed the standard heat kernel with another function,
when the existence of uy is not assumed (as in our case). By observing now that the first
inner product of the RHS of (5.7) is zero, substituting also (5.9), (5.11) and (5.12) for
α = ±1

2 in (5.7) and taking expectations, we obtain the desired.

Now that we have obtained the δ-identity for all δ > 1, we can proceed to the proof
of our main Theorem. Our strategy is to establish the regularity result by controlling the
derivative terms in the δ-identity for all δ > 1, by taking ε→ 0+ and by using Lemma 5.3
and Lemma 5.4 (which gives the regularity of the limits).

Proof of Theorem 5.2. For all the inner products in the δ-identity except the first and
the seventh, we can use the Cauchy-Schwartz inequality in the form

〈u1, u2〉L̃2
δ
≤ ‖u1‖L̃2

2δ1

‖u2‖L̃2δ2

for δ = δ1 + δ2, and then the AM-GM inequality (ab ≤ a2

4C + Cb2) for the products of
norms to obtain

28



‖Iε,1(t, ·)‖2
L2(Ω; L̃2

δ)

≤
∥∥∥∥∫

R
U0(·, z)φε(z, ·)dz

∥∥∥∥2

L2(Ω; L̃2
δ)

+

∫ t

0

〈
∂

∂x
Iε,h2(z)(s, ·), Iε,1(s, ·)

〉
L2(Ω; L̃2

δ)
ds

−δρ
∫ t

0

〈
∂

∂x
Iε,h(z)(s, ·), Iε,1(s, ·)

〉
L2(Ω; L̃2

δ−1)
ds

+

∣∣∣∣k1θ1 −
ξ2

1

4

∣∣∣∣ ∫ t

0
C1

∥∥∥I
ε,z−

1
2
(s, ·)

∥∥∥2

L2(Ω; L̃2
δ)
ds

+

∣∣∣∣k1θ1 −
ξ2

1

4

∣∣∣∣ ∫ t

0

1

4C1

∥∥∥∥ ∂∂y Iε,1(s, ·)
∥∥∥∥2

L2(Ω; L̃2
δ)
ds

+δ

∣∣∣∣k1θ1 −
ξ2

1

4

∣∣∣∣ ∫ t

0
C2

∥∥∥I
ε,z−

1
2
(s, ·)

∥∥∥2

L2(Ω; L̃2
δ)
ds

+δ

∣∣∣∣k1θ1 −
ξ2

1

4

∣∣∣∣ ∫ t

0

1

4C2
‖Iε,1(s, ·)‖2

L2(Ω; L̃2
δ−2)

ds

+k1

(
C1

∫ t

0

∥∥∥I
ε,z

1
2
(s, ·)

∥∥∥2

L2(Ω; L̃2
δ)
ds+

1

4C1

∫ t

0

∥∥∥∥ ∂∂y Iε,1(s, ·)
∥∥∥∥2

L2(Ω; L̃2
δ)
ds

)

+δk1

(
C2

∫ t

0

∥∥∥I
ε,z

1
2
(s, ·)

∥∥∥2

L2(Ω; L̃2
δ−1)

ds+
1

4C2

∫ t

0
‖Iε,1(s, ·)‖2

L2(Ω; L̃2
δ−1)

ds

)

−
∫ t

0

〈
∂

∂x
Iε,h2(z)(s, ·),

∂

∂x
Iε,1(s, ·)

〉
L2(Ω; L̃2

δ)
ds

+ρ2
1,1

∫ t

0

∥∥∥∥ ∂∂xIε,h(z)(s, ·)
∥∥∥∥2

L2(Ω; L̃2
δ)
ds

+δ(δ − 1)
ξ2

1

8

∫ t

0
‖Iε,1(s, ·)‖2

L2(Ω; L̃2
δ−2)

ds

−ξ
2
1

4

(
1− ρ2

2,1

) ∫ t

0

∥∥∥∥ ∂∂y Iε,1(s, ·)
∥∥∥∥2

L2(Ω; L̃2
δ)
ds

+C1 |ρ− ξ1ρ3ρ1,1ρ2,1|
∫ t

0

∥∥∥∥ ∂∂xIε,h(z)(s, ·)
∥∥∥∥2

L2(Ω; L̃2
δ)
ds

+
1

4C1
|ρ− ξ1ρ3ρ1,1ρ2,1|

∫ t

0

∥∥∥∥ ∂∂y Iε,1(s, ·)
∥∥∥∥2

L2(Ω; L̃2
δ)
ds (5.13)

and this for any C1, C2 > 0. If we choose C2 = 1 and a large enough C1 to have(∣∣∣∣k1θ1 −
ξ2

1

4

∣∣∣∣+ |ρ− ξ1ρ3ρ1,1ρ2,1|+ k1

)
1

4C1
<
ξ2

1

4

(
1− ρ2

2,1

)
,
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then from (5.13) we can obtain the following estimate

‖Iε,1(t, ·)‖2
L2(Ω; L̃2

δ)
+M1

∫ t

0

∥∥∥∥ ∂∂y Iε,1(s, ·)
∥∥∥∥2

L2(Ω; L̃2
δ)
ds

≤
∥∥∥∥∫

R
U0(·, z)φε(z, ·)dz

∥∥∥∥2

L2(Ω; L̃2
δ)

+M2

∑
α∈{0,− 1

2
, 1
2}

∫ t

0
‖Iε,zα(s, ·)‖2

L2(Ω; L̃2
δ)
ds

+δM2

∑
α∈{0, 1

2
}

∫ t

0
‖Iε,zα(s, ·)‖2

L2(Ω; L̃2
δ−1)

ds

+δM2

∫ t

0
‖Iε,1(s, ·)‖2

L2(Ω; L̃2
δ−2)

ds+M2

∫ t

0

∥∥∥∥ ∂∂xIε,h(z)(s, ·)
∥∥∥∥2

L2(Ω; L̃2
δ)
ds

+

∫ t

0

〈
∂

∂x
Iε,h2(z)(s, ·), Iε,1(s, ·)

〉
L2(Ω; L̃2

δ)
ds

−δρ
∫ t

0

〈
∂

∂x
Iε,h(z)(s, ·), Iε,1(s, ·)

〉
L2(Ω; L̃2

δ−1)
ds

−
∫ t

0

〈
∂

∂x
Iε,h2(z)(s, ·),

∂

∂x
Iε,1(s, ·)

〉
L2(Ω; L̃2

δ)
ds, (5.14)

for some positive constants M1 and M2. Now, for any function g, it is easy to check that
with the notation of Lemma 5.3 we have Iε,g(z) = Jg·u,ε and ∂

∂xIε,g(z) = Jg·ux,ε. Then, for
any δ′ ∈ {δ, δ − 1, δ − 2} (since δ − 2 > −1), by 2. of Lemma 5.3 we can compute the

limits of these quantities in L2
(

[0, t]× Ω; L̃2
δ

)
, which are equal to

Jg·u(s, x, v) = 2vg(v2)u(s, x, v2)

and
Jg·ux(s, x, v) = 2vg(v2)ux(s, x, v2)

respectively, provided that they belong to L2
(

[0, t]× Ω; L̃2
δ

)
. This can be verified by

computing their norms in that space. For g(z) = g1(z) = zα and g(z) = g2(z) = hβ(z)
and for all 0 ≤ t ≤ T , this computation gives

‖Jg1·u‖
2
L2

yδ
′ ([0, t]×Ω×R+×R+) = 4

∫ t

0
E
[∫

R+

∫
R+

v4α+2+δ′u2(s, x, v2)dvdx

]
ds

= 2

∫ t

0
E
[∫

R+

∫
R+

y2α+ 1+δ′
2 u2(s, x, y)dydx

]
ds (5.15)

and

‖Jg2·ux‖
2
L2

yδ
′ ([0, t]×Ω×R+×R+) = 4

∫ t

0
E
[∫

R+

∫
R+

v2+δ′h2β
(
v2
)
u2(s, x, v2)dvdx

]
ds

= 2

∫ t

0
E
[∫

R+

∫
R+

y
1+δ′
2 h2β (y)u2(s, x, y)dydx

]
ds,

(5.16)
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which are both finite for all the combinations of α, β and δ′ appearing in the norm terms
of the RHS of (5.14), since it is easy to verify then that the exponent of y in the RHS
of both (5.15) and (5.16) is positive, and since h has polynomial growth. Hence, 2. of
Lemma 5.3 and the continuity of the inner products imply that all the terms in the RHS
of (5.14) are convergent as ε→ 0+. Therefore, the RHS of (5.14) is also bounded in ε and
thus, Lemma 5.4 applied on the y-derivative term in the LHS of that estimate implies

that ∂
∂vJu =

(
2vu(s, x, v2)

)
v

exists in L2
(

[0, t]× Ω; L̃2
δ

)
and that in this space we have

∂
∂v Iε,1 = ∂

∂vJu,ε →
∂
∂vJu as ε→ 0+.

From the above we can easily deduce that
(
u
(
s, x, v2

))
v

exists, which implies that

the weak derivative uy(s, x, y) = 1
2
√
y
∂
∂vu

(
s, x, v2

)
|v=
√
y also exists. Moreover, by using

the standard inequality (a− b)2 ≤ 2(a2 + b2) we have∫ t

0
E
[∫

R+

∫
R+

y
δ+3
2 u2

y(s, x, y)dydx

]
ds

=
1

2

∫ t

0
E
[∫

R+

∫
R+

vδ+2
((
u
(
s, x, v2

))
v

)2
dvdx

]
ds

=
1

2

∫ t

0
E
[∫

R+

∫
R+

vδ
((
vu
(
s, x, v2

))
v
− u

(
s, x, v2

))2
dvdx

]
ds

≤ 1

2

∫ t

0

∥∥∥∥ ∂∂yJu(s, ·)
∥∥∥∥2

L2
yδ

(Ω×R+×R+)

ds

+
1

2

∫ t

0
E
[∫

R+

∫
R+

y
δ−1
2 u2 (s, x, y) dydx

]
ds, (5.17)

which is clearly finite since ∂
∂vJu ∈ L

2
(

[0, t]× Ω; L̃2
δ

)
. This gives the regularity result

for weight exponents α = δ+3
2 ∈ (2,+∞). Observe however that the limit of the RHS of

(5.14) as ε → 0+ gives a bound for the first summand of the RHS of (5.17) consisting
of weighted L2 norms of u with weights yδ, yδ−1 and yδ−2 for δ > 1. Then, by our
regularity assumptions for u, we see that each of these norms is also finite for δ = 1,
and the same holds for the second summand of the RHS of (5.17). Hence, by using the
Dominated Convergence Theorem, we see that the LHS of (5.17) is bounded as δ → 1+

and thus, it is also finite for δ = 1 (by Fatou’s lemma for example), which implies the
desired regularity result also for α = 2.

Remark 5.6. Observe that the smoothed quantities Ju,ε(λ, y) do not have to vanish as
y → 0, even though their limits Ju(λ, y) decay linearly in y near zero, so the integral of
Ju,ε(λ, y) against yδ

′
can explode at zero for δ′ ≤ −1. It follows that Lemma 5.3 does not

work for δ′ = −1, since the weighted norms of the smoothed quantities can be infinite,
while those of their limits are finite. This is why we had to work with the δ-identity for
δ > 1 (implying δ′ ≥ δ − 2 > −1 wherever Lemma 5.3 is used) and take δ → 1+ only
after taking ε→ 0+.

Remark 5.7. The flexibility in the choice of ρ allows us to extend our results to the case
where the idiosyncratic noises have nonzero correlation. Indeed, suppose that for any

i ≥ 1 we have W i
t = wiW̃

i
t +

√
1− w2

iZ
i
t and Bi

t = biB̃
i
t +

√
1− b2iZit , where W̃ i

· , B̃
i
·
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and Zi· are pairwise independent standard Brownian Motions, and wi, bi ∈ [−1, 0)∪ (0, 1].
Then, we can obtain the convergence results of section 2 in exactly the same way, and
the SPDE we obtain is the one treated in the previous section with

ρ = ξ1ρ3ρ1,1ρ2,1 + ξ1

√
1− ρ2

1,1

√
1− ρ2

2,1

√
1− w2

1

√
1− b21 (5.18)

The extension will be complete if we manage to embed the measure-valued process vt,C1

in Lα,C1 ∩Hα,C1 for all α ≥ 0 and for a given value of C1, as we have done in Section 4
for the zero correlation case. Since vt,C1 can be expressed as a conditional law of the pair
(X1
· , σ

1
· ) as in the zero correlation case, this embedding can be done by conditioning on

Z1
· to reduce the problem to the zero correlation case, with

√
1− ρ2

1,1W
1
· ,
√

1− ρ2
2,1B

1
· ,

ρ1,1W
0
· and ρ2,1B

0
· replaced by w1

√
1− ρ2

1,1W̃
1
· , b1

√
1− ρ2

2,1B̃
1
· , ρ1,1W

0
· +

√
1− w2

1Z
1
·

and ρ2,1B
0
· +

√
1− b21Z1

· respectively. This approach obviously fails when w1 = 0 or
b1 = 0.

6 Discussion of Uniqueness

The previous sections have established existence and regularity results for this class of
stochastic volatility models arising from large portfolios. We would also like to prove
that our problem has always a unique solution for a fixed coefficient vector C1 and a
fixed initial data function U0. However the bad behaviour of the coefficients of the SPDE
near zero render all the standard approaches to the question of uniqueness inapplicable.

Indeed, by following the same steps as in the proof of the δ-identity but for δ = 0,
without integrating in y, and by using the product rule instead of integrating by parts,
we can obtain Lε(t, y) = Rε(t, y) where

Lε(t, y)

=
ξ2

1

8

(∫ t

0
‖Iε,1(s, ·, y)‖2L2(Ω×R+) ds

)
yy

+ρ

(∫ t

0

〈
∂

∂x
Iε,h(z)(s, ·, y), Iε,1(s, ·, y)

〉
L2(Ω×R+)

ds

)
y

−
(
k1θ1 −

ξ2
1

4

)(∫ t

0

〈
I
ε,z−

1
2
(s, ·, y), Iε,1(s, ·, y)

〉
L2(Ω×R+)

ds

)
y

+k1

(∫ t

0

〈
I
ε,z

1
2
(s, ·, y), Iε,1(s, ·, y)

〉
L2(Ω×R+)

ds

)
y

(6.1)

and

Rε(t, y)

= ‖Iε,1(t, ·, y)‖2L2(Ω×R+) −
∥∥∥∥∫

R
U0(·, z)φε(z, y)dz

∥∥∥∥2

L2(Ω×R+)

−
∫ t

0

〈
∂

∂x
Iε,h2(z)(s, ·, y), Iε,1(s, ·, y)

〉
L2(Ω×R+)

ds
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−
(
k1θ1 −

ξ2
1

4

)∫ t

0

〈
I
ε,z−

1
2
(s, ·, y),

∂

∂y
Iε,1(s, ·, y)

〉
L2(Ω×R+)

ds

+k1

∫ t

0

〈
I
ε,z

1
2
(s, ·, y),

∂

∂y
Iε,1(s, ·, y)

〉
L2(Ω×R+)

ds

+

∫ t

0

〈
∂

∂x
Iε,h2(z)(s, ·, y),

∂

∂x
Iε,1(s, ·, y)

〉
L2(Ω×R+)

ds

− (ξ1ρ3ρ1,1ρ2,1 − ρ)

∫ t

0

〈
∂

∂x
Iε,h(z)(s, ·, y),

∂

∂y
Iε,1(s, ·, y)

〉
L2(Ω×R+)

ds

−ρ2
1,1

∫ t

0

∥∥∥∥ ∂∂xIε,h(z)(s, ·, y)

∥∥∥∥2

L2(Ω×R+)

ds

−ξ
2
1

4

(
ρ2

2,1 − 1
) ∫ t

0

∥∥∥∥ ∂∂y Iε,1(s, ·, y)

∥∥∥∥2

L2(Ω×R+)

ds. (6.2)

where we can use our regularity result to compute the limit of each term in Rε(t, y),
in an L1

loc sense as a function of y and for any t ≥ 0. Using this, we can deduce the
convergence of each term in Lε(t, y) in the same sense, which implies that the function

E(t, y) :=
∫ t

0

∥∥2yu(s, ·, y2)
∥∥2

L2(Ω×R+)
ds also has a locally integrable second derivative in

y. Then, we can take ε→ 0+ on Lε(t, y) = Rε(t, y) and substitute the limit of each term
to obtain

E(t, y) = E(0, y) +
ξ1

2

8
Eyy(t, y)−

(
k1θ1 −

ξ2
1

4

)
1

2y
Ey(t, y) +

k1y

2
Ey(t, y)

+

(
k1θ1 −

ξ2
1

4

)
1

y2
E(t, y) + k1E(t, y)

−
(
1− ρ2

1,1

)
h2(y2)

∫ t

0

∥∥∥∥ ∂∂x (2yu(s, ·, y2)
)∥∥∥∥2

L2(Ω×R+)

ds

+ (ξ1ρ3ρ1,1ρ2,1 − ρ)h(y2)

×
∫ t

0

〈
∂

∂x

(
2yu(s, ·, y2)

)
,
∂

∂y

(
2yu(s, ·, y2)

)〉
L2(Ω×R+)

ds

−ξ
2
1

4

(
1− ρ2

2,1

) ∫ t

0

∥∥∥∥ ∂∂y (2yu(s, ·, y2)
)∥∥∥∥2

L2(Ω×R+)

ds (6.3)

where we can assume that |ρ − ξ1ρ3ρ1,1ρ2,1| ≤ ξ1

√
1− ρ2

1,1

√
1− ρ2

2,1, a condition obvi-

ously satisfied when ρ = ξ1ρ3ρ1,1ρ2,1, and then apply the Cauchy-Schwarz and AM-GM
inequalities to show that the sum of the last three terms is negative. This implies that
E(t, y) satisfies:

Et(t, y) ≤ Et(0, y) +
ξ1

2

8
Eyy(t, y)−

(
k1θ1 −

ξ2
1

4

)
1

2y
Ey(t, y) +

k1y

2
Ey(t, y)

+

(
k1θ1 −

ξ2
1

4

)
1

y2
E(t, y) + k1E(t, y) (6.4)

under the boundary condition E(t, 0) = 0 for all t ≥ 0, with the first order derivatives in
y being continuous classical derivatives (this follows from standard 1-dimensional Sobolev
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embeddings). This seems to be the best possible result we can have for the energy of a
solution to our initial-boundary value problem, since all the norm estimates that can be
obtained from Theorem 5.2 can also be obtained by integrating (6.4) against some power
of y. Since the problem is linear, uniqueness follows if we can show that E must vanish
everywhere when we have zero initial data (which is equivalent to Et(0, y) = 0 for all
y ≥ 0). However, this is an open problem as standard approaches to problems of this
kind fail due to the unboundedness of the coefficient of the non-derivative term.

A possible approach to the above problem would be to multiply (6.4) (for Et(0, ·) = 0)
by some positive function of y and integrate in [0, +∞), hoping to obtain an estimate
where Gronwall’s Lemma can be applied to give the desired result. This seems to fail
since it leads to estimates involving different weighted norms of E, which are always
non-equivalent due to the unboundedness of 1

y2
near zero.

Another approach would be to try to use an argument like the standard parabolic
maximum principle, i.e to obtain a zero maximum for the positive function eg(y)tE(t, y)
by choosing a function g that helps in the elimination of non-derivative terms in (6.4),
and by recalling that when the maximum of a function is not attained at the boundary,
the first order derivatives vanish and the second order ones are non-positive. Once more,
the unboundedness of 1

y2
near zero does not allow for g to be bounded, which causes extra

problems as one can easily check.
Finally, if we try to implement either of the above approaches in the domain [ε, +∞)

for small ε > 0, where the coefficient of the non-derivative term in (6.4) is bounded, and
then try to take ε → 0+, we will see that the desired result can be obtained only when

E(t, y) = O(e
− 1
y2 ) near zero. Of course, this is something we cannot expect since our

CIR density does not vanish faster than y
2k1θ1
ξ21
−1

as y → 0+.

Remark 6.1. The estimate (6.4) can also be obtained in the case where the idiosyncratic
Brownian Motions have correlation as in Remark 5.7, since by (5.18) we have

|ρ− ξ1ρ3ρ1,1ρ2,1| = ξ1

√
1− ρ2

1,1

√
1− ρ2

2,1

√
1− w2

1

√
1− b21

≤ ξ1

√
1− ρ2

1,1

√
1− ρ2

2,1.

a condition necessary for obtaining that estimate.
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A APPENDIX: Proofs of standard and technical results

Proof of Theorem 2.1. First, we consider each pair
(
Xi
. , σ

i
.

)
as a random variable

taking values in the probability space
(
C
(
[0, T ] ; R2

)
, || � ||∞, B

)
, which is the space of

continuous R2-valued functions defined on [0, T ], equipped with the supremum norm || � ||
and the appropriate σ-algebra B.
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Since [0, T ] is a compact subinterval of R, B coincides with the usual σ-algebra for
the law of the Ft-adapted process

(
Xi
. , σ

i
.

)
. Moreover, there is a function S such that for

each ω ∈ Ω we can write(
Xi
. (ω), σi. (ω)

)
= S

(
Bi
. (ω), W i

. (ω), B0
. (ω), W 0

. (ω), xi(ω), σi0(ω), Ci(ω)
)
,

since
(
Xi
. , σ

i
.

)
is obviously a strong solution to (1.2).

For a permutation π : {1, 2, ..., N} → {1, 2, ..., N} and a collection {G1, G2, ..., GN} of
B-measurable sets, the event{(

Bπ(i)
. , W π(i)

. , B0
. , W

0
. , x

π(i), σπ(i), Cπ(i)

)
∈ S−1(Gi), ∀ 1 ≤ i ≤ N

}
has a probability which is equal to

P
(
ω ∈ Ω :

(
Xπ(i)
. (ω), σπ(i)

. (ω)
)
∈ Gi, ∀ 1 ≤ i ≤ N

)
.

We claim that the law

P
(
ω ∈ Ω :

(
Xπ(i)
. (ω), σπ(i)

. (ω)
)
∈ Gi, ∀ 1 ≤ i ≤ N

)
= P

((
Bπ(i)
. , W π(i)

. , B0
. , W

0
. , x

π(i), σ
π(i)
0 , Cπ(i)

)
∈ S−1 (Gi) , ∀ 1 ≤ i ≤ N

)
is independent of the permutation π. Indeed, by a linear inversion it is enough to show

that the joint law of
{
Bπ(i)
. , W π(i)

. , xπ(i), σ
π(i)
0 , Cπ(i) : 1 ≤ i ≤ N

}
∪
{
B0
. , W

0
.

}
is inde-

pendent of the permutation π (·), which is a consequence of our exchangeability assump-
tions. As a result the set

{(
Xi
. , σ

i
.

)
: 1 ≤ i ≤ N

}
is an exchangeable set of C

(
[0, T ] ; R2

)
-

valued random variables. Hence, by de Finetti’s Theorem (see Theorem 4.1 in [15], but
it can also be found in [1]), we obtain that the sequence of measure-valued processes

vN∗ =
1

N

N∑
i=1

δXi
. , σ

i
.

converges weakly to some probability measure v∗ (which is defined on B), P-almost surely.
Thus there is a set Ω′ ⊂ Ω where the convergence is valid for any ω ∈ Ω′, where P(Ω′) = 1.

Let Pt,s :
(
C
(
[0, T ] ; R2

)
, || � ||∞, B

)
−→ R3 be an evaluation functional at some

(t, s) ∈ [0, T ]2, which maps (f(·), g(·)) to (f(t), g(t), g(s)) and which is obviously con-
tinuous. We fix an ω ∈ Ω′ and we define v3,t,s = v∗ ◦ P−1

t,s for all (t, s) ∈ [0, T ]2. Then,
for this ω and for any Borel set A ⊂ R3 we have

vN3,t,s(A) =
1

N
#
{

1 ≤ i ≤ N :
(
Xi
t , σ

i
t, σ

i
s

)
∈ A

}
=

1

N
#
{

1 ≤ i ≤ N : Pt,s
(
Xi
. , σ

i
.

)
∈ A

}
=

1

N
#
{

1 ≤ i ≤ N :
(
Xi
. , σ

i
.

)
∈ P−1

t,s (A)
}

= vN∗ (P−1
t,s (A))

for all N ∈ N and all (t, s) ∈ [0, T ]2. This means that for this ω and for any f ∈
Cb
(
R3; R

)
we have ∫

R2

fdvN3,t,s =

∫
C([0, T ];R2)

f ◦ Pt,sdvN∗ , (A.1)
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since we can easily show this for a sequence of simple functions approximating f from
below and conclude then by the Monotone Convergence Theorem. Taking now N → ∞
we find ∫

R2

fdvN3,t,s →
∫
C([0, T ];R2)

f ◦ Pt,s · dv∗ =

∫
R2

fdv3,t,s, (A.2)

for any f ∈ Cb
(
R3; R

)
, where the last equality in (A.2) is obtained exactly as (A.1).

Since this holds for any f ∈ Cb
(
R3; R

)
, we have the desired convergence.

Finally, to show continuity under the weak topology for a given ω ∈ Ω′, we shall
invoke the Portmanteau Theorem, according to which we only need to show that

lim inf
n→∞

v3,tn,sn(A) ≥ v3,t,s(A)

whenever (tn, sn) → (t, s) ∈ [0, T ]2 and for any open A ⊂ R3. This is obtained by
observing that

v3,t,s(A) = v∗
(
P−1
t,s (A)

)
= v∗

({
(Y., Z.) ∈ C

(
[0, T ] ; R2

)
: (Yt, Zt, Zs) ∈ A

})
= v∗

(
∪∞k=1 ∩∞n=k

{
(Y., Z.) ∈ C

(
[0, T ] ; R2

)
: (Ytn , Ztn , Zsn) ∈ A

})
,

which holds because (Ytn , Ztn , Zsn)→ (Yt, Zt, Zs) by the continuity of the path (Y., Z.),
and hence (Ytn , Ztn , Zsn) is finally contained in any open set containing (Yt, Zt, Zs).
Then, the last quantity is equal to

lim
k→∞

v∗
(
∩∞n=k

{
(Y., Z.) ∈ C

(
[0, T ] ; R2

)
: (Ytn , Ztn , Zsn) ∈ A

})
≤ lim

k→∞
inf
n≥k

v∗
({

(Y., Z.) ∈ C
(
[0, T ] ; R2

)
: (Ytn , Ztn , Zsn) ∈ A

})
= lim inf

n→∞
v∗
(
P−1
tn,sn(A)

)
= lim inf

n→∞
v3,tn,sn(A)

and the desired continuity has been proven. Since this continuous limit process of mea-
sures is obtained almost surely for (t, s) ∈ [0, n]2, for any n ∈ N, with N being countable,
it is actually obtained almost surely for all t, s ≥ 0. The proof of the Theorem is now
complete.

Proof of Lemma 3.2. Observe that we only need to prove our claim for p = n ∈ N.
By Ito’s formula we have

σnt = σn0 +

∫ t

0
n

(
σn−1
s k (θ − σs) +

ξ2

2
(n− 1)σn−1

s

)
ds

+nξ

∫ t

0
σn−1/2
s d

(√
1− ρ2

2B
1
s + ρ2B

0
s

)
≤ σn0 + C1T + nξ

∫ t

0
σn−1/2
s d

(√
1− ρ2

2B
1
s + ρ2B

0
s

)
for some C1 > 0 when t ≤ T , since the quantity within the Riemann integral is a
polynomial of a negative leading coefficient (thus upper bounded in the positive reals),
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computed at the CIR process σs which is always non-negative (as we pointed out before
introducing our model). Taking supremum for t ≤ T , then taking expectations and finally
using Cauchy-Schwartz and Doob’s inequalities, we obtain:

E [Mn
T ] ≤ E [σn0 ] + C1T + nξE

1
2

[
sup

0≤t≤T

(∫ t

0
σn−1/2
s d

(√
1− ρ2

2B
1
s + ρ2B

0
s

))2
]

≤ E [σn0 ] + C1T + nξE
1
2

[∫ T

0
σ2n−1
s ds

]
≤ E [σn0 ] + C1T + C2

∫ T

0
E

1
2
[
σ2n−1
s

]
ds,

for some C2 > 0, where we have set MT = sup
t≤T

σnt . The first expectation of the RHS of the

last equation is finite by our assumptions for the initial data. To obtain the desired result
for the CIR process, it suffices to show that the expectation within the last Riemann
integral is bounded for 0 ≤ s ≤ T . For this, we recall Theorem 3.1 and Remark 2 from
pages 8-9 in [11], from which we can easily obtain (after conditioning on the initial value)

E
[
σ2n−1
s

]
≤ C3

2n−1∑
k=0

γk−2n+1
s E

[
σk0

]
,

for all 0 ≤ s ≤ T and some C3 > 0, where γs = 2k
ξ2

(
1− e−ks

)−1
. The RHS of the

above inequality is bounded for 0 < s ≤ T , since σ0 has bounded moments and since
γs >

2k
ξ2
> 0 for all 0 < s ≤ T .

Finally, the desired result for
{
u2
t : t ≥ 0

}
can be obtained in a much easier way, since

we have an explicit formula for the Ornstein-Uhlenbeck process. Indeed, by using this
formula we can control the maximum of the process by

√
σ0 an by the maximum of a

Brownian Motion in [0, T ] (up to a constant factor), where the last is normally distributed
and thus it has a finite second moment. The proof of the Lemma is now complete.

Proof of Lemma 3.3. First we set vt =
√
σt and, as our assumptions ensure that σ

does not hit 0, we can apply Ito’s formula to equation (3.1) to obtain

dvt =

[(
kθ

2
− ξ2

8

)
1

vt
− k

2
vt

]
dt+

ξ

2
dBt, (A.3)

where Bt :=
√

1− ρ2
2B

1
t + ρ2B

0
t is a standard Brownian Motion. Since the CIR process

is an L1-integrable process (this follows from Lemma 3.2), vt is an L2-integrable process.
Consider now for any ε > 0, a twice continuously differentiable and increasing cut-off
function Φε(x) satisfying

Φε(x) =

{
1 if x ≥ 2ε,

0 if x < ε.

Then the derivative satisfies

∂

∂x
Φε(x) =

{
0 if x ≥ 2ε,

0 if x < ε.
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Moreover, we define: J ε(x) = Φε(x)
x for x > 0 and J ε(0) = 0, and we observe that this

function is bounded and continuously differentiable with

∂

∂x
J ε(x) =

{
− 1
x2

x ≥ 2ε,

0 x < ε,

which is also bounded and non-positive for any ε > 0.
Let {vεt : t ≥ 0} be the unique solution to the SDE

dvεt =

[(
kθ

2
− ξ2

8

)
J ε(vεt)−

k

2
vεt

]
dt+

ξ

2
dBt (A.4)

for an arbitrary ε > 0, where B· is the same Brownian motion as in (A.3). For any
ε > 0, Theorem 2.2.1 from page 102 of [20] implies that vεt is Malliavin differentiable
with respect to the Brownian motion B1

· . By looking at the proof of that Theorem,
we can see that the underlying probability measure does not play any role, as long as
we are differentiating with respect to the path of a Brownian motion, which means that
here we always have Malliavin differentiability under the probability measure P(· |B0

· , G).
Under that conditional probability measure, by the same Theorem and the remark after
its proof we have that the Malliavin derivative of vεt (with respect to B1

· ) satisfies the
integral equation

Dt′v
ε
t =

ξ
√

1− ρ2
2

2
+

∫ t

t′

[(
kθ

2
− ξ2

8

)
∂

∂x
J ε(vεs)−

k

2

]
Dt′v

ε
sds, ∀ t ≥ t′ ≥ 0,

This can be solved in t to give

Dt′v
ε
t =

ξ
√

1− ρ2
2

2
e

∫ t
t′

[(
kθ
2
− ξ

2

8

)
∂
∂x
Jε(vεs)− k2

]
ds
, ∀ t ≥ t′ ≥ 0. (A.5)

As mentioned in [3], the stopping time τε = inf{t > 0 : vt ≤ ε} tends to ∞ as ε → 0
and we also have vεt = vτ2εt = vt ≥ 2ε, ∀ t ≤ τ2ε (this can be seen by observing that when
we stop (A.3) at τ2ε, we can substitute the 1

v
τ2ε
t

term by the equal J ε (vτ2εt ) and obtain

exactly (A.4) stopped at τ2ε but for vt instead of vεt , so since this stopped SDE has a
pathwise unique solution, vt and vεt must coincide up to time τ2ε), P-almost surely. It
follows then that vεt → vt and also

∫ t
t′

∂
∂xJ

ε(vεs)ds→ −
∫ t
t′

1
v2s
ds for all t ≥ t′ ≥ 0 as ε→ 0+,

P-almost surely. Hence we have

E
[
P
(
vεt → vt, ∀ t ≥ 0 |B0

· , G
)]

= P (vεt → vt, ∀ t ≥ 0) = 1,

which implies that
P
(
vεt → vt, ∀ t ≥ 0 |B0

· , G
)

= 1 (A.6)

P-almost surely. Similarly, we can deduce that

P
(∫ t

t′

∂

∂x
J ε(vεs)ds→ −

∫ t

t′

1

v2
s

ds, ∀ t ≥ 0 |B0
· , G

)
= 1 (A.7)

P-almost surely.

38



Furthermore, it is shown in [3] that

E
[
P
(
|vεt | ≤ |ut|+ |vt|, ∀ t ≥ 0 |B0

· , G
)]

= P (|vεt | ≤ |vt|+ |ut|, ∀ t ≥ 0) = 1,

where ut is the Ornstein - Uhlenbeck process of Lemma 3.2, while we also have

E

[
sup

0≤t≤T
E
[
(|vt|+ |ut|)2 |B0

· , G
]]
≤ E

[
sup

0≤t≤T
(|vt|+ |ut|)2

]
≤ 2(|| sup

0≤t≤T
vt||2L2(Ω) + || sup

0≤t≤T
ut||2L2(Ω)),

which is finite by the two results of Lemma 3.2. This means that P-almost surely we have
also

P
(
|vεt | ≤ |ut|+ |vt| ∀ t ≥ 0 |B0

· , G
)

= 1 (A.8)

and
E
[
(|vt|+ |ut|)2|B0

· , G
]
<∞ (A.9)

for all 0 ≤ t ≤ T . By (A.6), (A.7), (A.8) and (A.9), we have that there exists an Ω0 of full
probability such that for all ω ∈ Ω0 and all 0 ≤ t′ ≤ t ≤ T , both vεt and Dt′v

ε
t converge

P(· |B0
· , G)-almost surely to vt and

Vt,t′ =
ξ
√

1− ρ2
2

2
e
−
∫ t
t′

[(
kθ
2
− ξ

2

8

)
1

v2t
+ k

2

]
ds

respectively as ε→ 0, while {vεt : t ≥ 0} is dominated by an L2
B0
· ,G

-integrable process and

Dt′v
ε
t ≤

ξ
√

1−ρ22
2 for all ε > 0 and all 0 ≤ t′ ≤ t ≤ T . Thus, we can apply the Dominated

Convergence Theorem to deduce that the last two convergences hold also in L2
B0
· ,G

and

L2
B0
· ,G

([0, t]× Ω) respectively, for all 0 ≤ t ≤ T and all ω ∈ Ω0. Then, by Lemma 1.2.3

from [20] (page 30) we obtain that Dt′vt exists and is equal to Vt,t′ ,

Dt′vt =
ξ
√

1− ρ2
2

2
e
−
∫ t
t′

[(
kθ
2
− ξ

2

8

)
1

σ1s
− k

2

]
ds

(A.10)

for all 0 ≤ t′ ≤ t ≤ T and all ω ∈ Ω0.
Finally, for any n ∈ N, let fn be a smooth and compactly supported function such

that fn(x) = x for all x ≤ n and
∥∥ ∂
∂xfn

∥∥
∞ = 1. By Lemma 3.2, we have

E

[
sup

0≤t≤T
E
[
σ2
t |B0

· , G
]]
≤ E

[
sup

0≤t≤T
σ2
t

]
<∞,

which implies that σt ∈ L2
B0
· ,G

for all ω ∈ Ω1 and all 0 ≤ t ≤ T , where Ω1 ⊂ Ω0

is a set of full probability. Then, for all ω ∈ Ω1 and all 0 ≤ t ≤ T , the Dominated
Convergence Theorem implies that f2

n(vt) → σt in L2
B0
· ,G

as n → ∞ (since we obviously

have P(· |B0
· , G)-almost sure convergence and domination by v2

t = σt). Moreover, for all
ω ∈ Ω1 and all 0 ≤ t′ ≤ t ≤ T , the standard Malliavin chain rule implies that

Dt′f
2
n(vt) = 2fn(vt)f

′
n(vt)Dt′vt → 2vtDt′vt
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P(· |B0
· , G) - almost surely as n → ∞, while we have also domination by 2vtDt′vt ≤

ξρ2vt ∈ L2
B0
· ,G

. Thus, we can use the Dominated Convergence Theorem once more to

see that the last convergence holds also in L2
B0
· ,G

([0, t]× Ω), for all ω ∈ Ω1 and all

0 ≤ t ≤ T . Recalling now Lemma 1.2.3 from [20] again, we deduce that Dt′σt exists in
L2
B0
· ,G

([0, t]× Ω) and it is equal to 2vtDt′vt, thus

Dt′σt = ξ
√

1− ρ2
2e
−
∫ t
t′

[(
kθ
2
− ξ

2

8

)
1

σ1s
− k

2

]
ds√

σt

which is exactly (3.2). The proof is now complete.

Proof of Lemma 3.4. Fix t > 0. Consider the sequence of stochastic processes (in
t′ ∈ [0, t])

vnt,t′ = ξ
√

1− ρ2
2e
−
∫ t
t′

[(
kθ
2
− ξ

2

8

)
1

σs+
1
n

+ k
2

]
ds
gn

(√
σt +

1

n

)
, ∀n ∈ N,

where the smooth and increasing cut-off function gn satisfies

gn(x) =


x, 0 ≤ x ≤ n,
−1, x ≤ −2,

n+ 1, x ≥ n+ 2,

and has a derivative which is bounded by 1. This process is uniformly bounded by
ξ
√

1− ρ2
2

√
σs + 1 ∈ Lp (Ω) , ∀ p ≥ 1, since

√
σs + 1 ≤ 1

2
sup

0≤s≤T
(σs + 2) ,

which has finite moments by Lemma 3.2. Thus we have also ξ
√

1− ρ2
2

√
σs + 1 ∈ Lp

B0
· ,G

(Ω)

for all p > 1, P-almost surely. Moreover, by the Monotone Convergence Theorem,
vnt,t′ converges pointwise to Dt′σt as n → ∞, so by the Dominated Convergence The-

orem we see that this convergence holds also in Lp
B0
· ,G

(Ω) for any t′ < t, and also in

Lp
B0
· ,G
(
Ω; L2 ([0, t])

)
, for any p ≥ 1, P-almost surely.

Next, observe that

vnt,t′ = f

(∫ t

t′
hn (σs) ds

)
gn

(√
σt +

1

n

)
, (A.11)

where f, hn are sufficiently smooth functions with bounded first derivatives, such that

f(x) =
√

1− ρ2
2ξe
−x and hn(x) = k

2 +
(
kθ
2 −

ξ2

8

)
1

x+ 1
n

for x > 0 and n ∈ N, and f(x) =

hn(x) = 0 for x < −1 and n ∈ N. Now we recall the standard Malliavin chain rule, so
almost surely, under the probability measure P(· |B0

· , G), we have

Dt′′hn (σs) = h′n (σs)Dt′′σs,

which is bounded for any n ∈ N, so we can integrate in s and intechange the integral
with the derivative to obtain

Dt′′

∫ t

t′
hn (σs) ds =

∫ t

t′
h′n (σs)Dt′′σsds. (A.12)
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Next, observe that all the arguments in (A.11) are positive, so by applying the same
Malliavin chain rule and by substituting from (A.12) we obtain

Dt′′v
n
t,t′ = f ′

(∫ t

t′
hn (σs) ds

)∫ t

t′
h′n (σs)Dt′′σsdsgn

(√
σt +

1

n

)

+f

(∫ t

t′
hn (σs) ds

)
g′n

(√
σt +

1

n

)
Dt′′σt

2
√
σt + 1

n

=
√

1− ρ2
2ξe
−
∫ t
t′

(
k
2

+

(
kθ
2
− ξ

2

2

)
1

σs+
1
n

)
ds
∫ t

t′

(
kθ
2 −

ξ2

8

)
Dt′′σsds(

σs + 1
n

)2 gn

(√
σt +

1

n

)

+
√

1− ρ2
2ξe
−
∫ t
t′

(
k
2

+

(
kθ
2
− ξ

2

2

)
1

σs+
1
n

)
ds
g′n

(√
σt +

1

n

)
Dt′′σt

2
√
σt + 1

n

.

(A.13)

Now we want to bound the above quantity by some process in Lq
′

B0
· ,G

(
Ω; L2

[
[0, t]2

])
,

uniformly in n ∈ N, so we can apply again the Dominated Convergence Theorem, for some
q′ > 1. Observe that Dt′′σs ≤ ξ

√
1− ρ2

2

√
σs (by (3.2)) and that 0 ≤ d

dxgn(x) ≤ 1 ⇒
gn(x) ≤ x for all n ∈ N, so if we drop the summand−

∫ t
t′
k
2 from the exponents in (A.13)

we obtain

Dt′′v
n
t,t′ ≤ ξ

√
1− ρ2

2e
−
∫ t
t′

(
kθ
2
− ξ

2

2

)
1

σs+
1
n
ds
∫ t

t′

√
σsds(

σs + 1
n

)2
√
σt +

1

n

+ξ
√

1− ρ2
2e
−
∫ t
t′

(
kθ
2
− ξ

2

2

)
1

σs+
1
n
ds

√
σt

2
√
σt + 1

n

< ξ
√

1− ρ2
2

[∫ T

0

ds

σ
3
2
s

sup
0≤s≤T

√
σs + 1 + 1

]

whose Lq
′

B0
· ,G

(
Ω; L2

[
[0, t]2

])
norm is bounded by

ξ
√

1− ρ2
2t

E

(∫ T

0

ds

σ
3
2
s

sup
0<s≤T

√
σs + 1

)q′+ 1

 1
q′

≤ ξ
√

1− ρ2
2t

E
q′
p

[(∫ T

0

ds

σ
3
2
s

)p]
E
q′
p′

( sup
0<s≤T

√
σs + 1

)p′+ 1

 1
q′

≤ ξ
√

1− ρ2
2t

T q′
p′ E

q′
p

[∫ T

0

ds

σ
3p
2
s

]
E
q′
p′

( sup
0<s≤T

√
σs + 1

)p′+ 1

 1
q′

,

(A.14)

where 1
p + 1

p′ = 1
q′ .
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The second expectation of (A.14) is finite for all p′ < ∞ ⇔ p > q′ because of the

estimate (σs + 1)
p′
2 ≤ C1

(
σp
′
s + 1

)
for some C1 > 0 and Lemma 3.2. On the other hand,

if 2kθ
ξ2

> 3p
2 , the first expectation of (A.14) can be computed by recalling Theorem 3.1

from [11] as follows

E

[∫ T

0

ds

σ
3p
2
s

]
= E

[∫ T

0
E
[
σ
− 3p

2
s |σ0

]
ds

]
= λ1E

[∫ T

0
γ

3p
2
s H

(
−γsσ0e

−ks
)
ds

]
(A.15)

where λ1 > 0, γs = 2k
ξ2

(
1− e−ks

)−1
> 2k

ξ2
for all s ≥ 0, and H is a hypergeometric

function for which we have the asymptotic estimate of page 17 in [11]. That estimate (for

N = 0) easily gives H(−z) ≤ λ2|z|−
3p
2 for some λ2 > 0 and all z ≥ 0. Thus, by (A.15)

we find

E

[∫ T

0

ds

σ
3p
2
s

]
≤ λ1λ2E

[∫ T

0
e

3kps
2 σ

− 3p
2

0

]
ds = λ1λ2

∫ T

0
e

3kps
s dsE

[
σ
− 3p

2
0

]
which is finite by our initial data assumptions if and only if 2kθ

ξ2
> 3p

2 . Thus, the RHS

of (A.14) if finite iff 2kθ
ξ2

> 3p
2 . This can be achieved by making p sufficiently close to q′,

provided that: 2kθ
ξ2

> 3q′

2 which is equivalent to q′ < 4kθ
3ξ2

. We can choose such a q′ > 1

since we have 4kθ
3ξ2

> 1. Observe that the same condition is assumed in [2] to obtain L1

regularity, but for our purpose, we are going to need this Lq regularity for some q strictly

bigger than 1. Moreover, we need to have a finite Lq
′

B0
· ,G

(
Ω; L2

[
[0, t]2

])
norm, P-almost

surely, and this is obtained by the law of total expectation as follows

E

E
(∫ T

0

ds

σ
3
2
s

sup
0<s≤T

√
σs + 1

)q′
+ 1 |B0

· , G

 = E

(∫ T

0

ds

σ
3
2
s

sup
0<s≤T

√
σs + 1

)q′
+ 1

 ,
so we have

E

(∫ T

0

ds

σ
3
2
s

sup
0<s≤T

√
σs + 1

)q′
+ 1 |B0

· , G

 <∞
for all ω in some Ω′ ⊂ Ω of full probability. Thus, the pointwise convergence of Dt′′v

n
t,t′

to the RHS of (3.3) and the Dominated Convergence Theorem imply that we have the

same convergence in Lq
B0
· ,G

(
Ω; L2

[
[0, t]2

])
for all ω ∈ Ω′. Then, since vnt,t′ converges

to Dt′σt in Lq
′

B0
· ,G

(Ω) for any t′ < t and also in Lq
′

B0
· ,G
(
Ω; L2 ([0, t])

)
, for any p ≥ 1 and

any ω ∈ Ω2 ⊂ Ω′, we deduce that σt ∈ D2,q′ under the probability measure P(· |B0
· , G))

with respect to B1
· , with the second Malliavin Derivative being given by (3.3), P-almost

surely. It follows also that (3.4) holds, since the sequence converging pointwise to the
RHS of (3.3) is dominated by a random quantity of finite positive moments, uniformly
in t, t′, t′′ ∈ [0, T ]. The proof for vt =

√
σt is similar, the only difference is the absence

of the functions gn and the terminal value term.

Proof of Lemma 3.5. For any a ≥ b, we define ψ(y) = I[b, a](y) and φ(y) =
∫ y
−∞ ψ(z)dz.

The standard Malliavin Chain rule implies that φ(F ) ∈ D1,2 and moreover

〈u., D.φ(F )〉L2 = 〈u., ψ(F )D.F 〉L2
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= ψ(F ) 〈u., D.F 〉L2

and dividing by < u., D.F >L2 yields

ψ(F ) =

〈
u.

〈u., D.F 〉L2

, D.φ(F )

〉
L2

(A.16)

Next, by Proposition 1.5.4 of [20] (page 69), ut
<u., D.F>L2

belongs to the domain of δ,

the adjoint of the Malliavin derivative operator, and there exists a constant C > 0 such
that

E
1
q′

[∣∣∣∣δ( u.
〈u., D.F 〉

)∣∣∣∣q′
]
≤ CE

1
q′

(∥∥∥∥D.
u.

〈u., D.F 〉L2

∥∥∥∥
L2([0, T ]2)

)q′ <∞. (A.17)

Hence (A.16) implies

P (b ≤ F ≤ a) = E (ψ(F )) = E
[
δ

(
u.

〈u., D.F 〉L2

)
φ(F )

]
= E

[∫ F

−∞
I[b, a](z)δ

(
u.

〈u., D.F 〉L2

)
dz

]
= E

[∫ a

b
I{z≤F}δ

(
u.

〈u., D.F 〉L2

)
dz

]
(A.18)

Now, by Holder’s inequality and (A.17) we have that the quantity

p(z) = E
[
I{z≤F}δ

(
u.

〈u., D.F 〉L2

)]
is bounded, thus by Fubini’s Theorem and (A.18) we obtain

P (b ≤ F ≤ a) =

∫ a

b
E
[
I{z≤F}δ

(
u.

〈u., D.F 〉L2

)]
dz

Therefore, the probability density exists and is equal to p(z), which is bounded as men-
tioned above. Moreover, since the quantity within the expectation is dominated by

δ
(

u.
〈u., D.F 〉L2

)
, which is in Lq

′
by (A.17), the Dominated Convergence Theorem implies

that the density is also continuous. Furthermore, for α ≥ 0, by Holder’s inequality and
(A.17), we have

yαp(y) = E
[
yαI{y≤F}δ

(
u.

〈u., D.F 〉L2

)]
≤ E

q′−1
q′

[
y
αq′
q′−1 Iy≤F

]
E

1
q′

[∣∣∣∣δ( u.
〈u., D.F 〉

)∣∣∣∣q′
]

≤ CE
[
F

αq′
q′−1

]
E

1
q′

(∥∥∥∥D.
u.

〈u., D.F 〉L2

∥∥∥∥
L2([0, T ]2)

)q′ <∞,
for any y > 0 and the desired estimate follows.
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Proof of Lemma 4.2. By using the bounded convergence theorem we can easily obtain
σm. → σ0

. and
√
σm. →

√
σ0
. in L2, as m→∞.

To prove our claim, we consider the process Y m
. satisfying the same SDE and initial

condition as Xm
. for any m ∈ N ∪ {0}, but without being stopped when it hits zero.

We will show first that for a subsequence {mk : k ∈ N} ⊂ N, we have almost surely:
Y mk
. → Y 0

. uniformly on any compact interval [0, T ], and there exists a k0 ∈ N such that
Y mk
t < Y 0

t ∀ k ≥ k0 and all t ≤ T . Indeed, we have

sup
t≤T

∣∣Y m
t − Y 0

t

∣∣ = sup
t≤T

∣∣∣∣Xm
0 −X0

0 −
1

2

∫ t

0

(
σms − σ0

s

)
ds+

∫ t

0

(√
σms −

√
σ0
s

)
dWs

∣∣∣∣ ,
This is bounded by

∣∣Xm
0 −X0

0

∣∣+
1

2

∫ T

0

∣∣σms − σ0
s

∣∣ ds+ sup
t≤T

∣∣∣∣∫ t

0

(√
σms −

√
σ0
s

)
dWs

∣∣∣∣
= min

{x0

2
, lm

}
+

1

2

∥∥σm· − σ0
·
∥∥
L1[0,T ]

+ sup
t≤T

∣∣∣∣∫ t

0

(√
σms −

√
σ0
s

)
dWs

∣∣∣∣ ,
where the first two terms tend obviously to zero, while the last term tends to zero in
probability due to Doob’s Martingale inequality for p = 2 and Ito’s isometry, so along a
subsequence, the whole quantity tends almost surely to zero. Next, we have

Y m
t − Y 0

t = −min
{x0

2
, lm

}
− 1

2

∫ t

0

(
σms − σ0

s

)
ds+

∫ t

0

(√
σms −

√
σ0
s

)
dWs

≤ −min
{x0

2
, lm

}
+ sup

t≤T

∣∣∣∣∫ t

0

(√
σms −

√
σ0
s

)
dWs

∣∣∣∣ , (A.19)

and once more, by Doob’s Martingale inequality for p = 2 and l0m =
min{x0

2
, lm}

2 , we have

P

(
sup
t≤T

∣∣∣∣∫ t

0

(√
σms −

√
σ0
s

)
dWs

∣∣∣∣ > l0m | F0

)

≤ 1

(l0m)2E

((∫ T

0

(√
σms −

√
σ0
s

)
dWs

)2

| F0

)

=
(lm)4

(l0m)2 ,

where l0m = lm
2 → 0 for large m. Thus, there exists a subsequence {mk : k ∈ N} ⊂ N

such that
∞∑
k=1

(lmk)4(
l0mk
)2 <∞

which implies that almost surely, supt≤T

∣∣∣∫ t0 (√σmks −
√
σ0
s

)
dWs

∣∣∣ < l0mk =
lmk

2 for all

large k (by the Borel-Cantelli lemma). Therefore, by (A.19) we obtain

sup
t≤T

(
Y mk
t − Y 0

t

)
≤ −lmk +

lmk
2

= − lmk
2

< 0 (A.20)
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almost surely for all large k.
We are ready now to prove the uniform convergence of the stopped processes. For a

fixed event, the stopping times τmk , τ0 are given and (A.20) implies that τmk ≤ τ0 for
all large k. Moreover, we have τmk → τ0 as k →∞. Indeed, for any ε > 0, Y mk is lower
bounded by a positive constant in

[
0, τ0 − ε

]
for all k bigger than some k0(ε) (since the

same holds for the continuous process Y 0
· by the definition of τ0, and since Y mk· tends

uniformly to Y 0
· ), which implies that τ0 − ε < τmk ≤ τ0 for all k ≥ k0(ε). Now, if we

have τ0 > T , then we have also τmk > T for all big enough k, which gives

lim
k→∞

sup
0≤t≤T

∣∣Xmk
t −X0

t

∣∣ = lim
k→∞

sup
0≤t≤T

∣∣Y mk
t − Y 0

t

∣∣ = 0.

On the other hand, if τ0 ≤ T we have

sup
t≤T

∣∣Xmk
t −X0

t

∣∣ = max

{
sup

0≤t≤τmk

∣∣Xmk
t −X0

t

∣∣ , sup
τmk≤t≤τ0

∣∣Xmk
t −X0

t

∣∣ , sup
τ0≤t≤T

∣∣Xmk
t −X0

t

∣∣} .
(A.21)

The first supremum of the RHS of the above is equal to the supremum of
∣∣Y mk
t − Y 0

t

∣∣
for t ≤ τmk , which tends to zero since Y mk· → Y 0

· uniformly in [0, T ], while the third one
is always equal to 0. Hence, we only need to show that the second supremum of the RHS
of (A.21) tends also to 0 as k →∞. Indeed, for some τmk ≤ tk ≤ τ0, we have

sup
τmk≤t≤τ0

∣∣Xmk
t −X0

t

∣∣ =
∣∣Y 0
tk

∣∣→ ∣∣Y 0
τ0

∣∣ = 0,

as k →∞ (by the continuity of Y 0
· ) so the desired result follows.

Proof of Lemma 5.3. Observe that by setting z = v2, v ∈ R+, any integration against
φε can be written as an integration against the standard heat kernel, i.e

Ju,ε(λ, y) =

∫
R+

u(λ, z)
1√
2πε

e−
(
√
z−y)2
2ε dz

=

∫
R

2vu
(
λ, v2

)
IR+(v)

1√
2πε

e−
(v−y)2

2ε dv

We are going to prove 1. first. Observe that by our regularity assumptions and the
properties of the standard heat kernel, Ju,ε(λ, y) is smooth and it’s n-th derivative in y
equals ∫

R+

2vu
(
λ, v2

) 1√
2πε

P (v − y)e−
(v−y)2

2ε dv

where P is some polynomial of degree n. Thus we need to show that for any δ > 0 and
n ∈ N we have

∫
Λ

∫
R+

yδ
′

∫
R+

2vu
(
λ, v2

)
(v − y)n

e−
(v−y)2

2ε

√
2πε

dv

2

dydµ(λ) <∞

By Cauchy-Schwartz, the above quantity is bounded by:
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∫
Λ

∫
R+

yδ
′

∫
R+

4v2u2
(
λ, v2

)
(v − y)2n e

− (v−y)2
2ε

√
2πε

dv

∫
R

e−
(v−y)2

2ε

√
2πε

dv

 dydµ(λ)

=

∫
Λ

∫
R+

∫
R+

yδ
′
4v2u2

(
λ, v2

)
(y − v)2n e

− (v−y)2
2ε

√
2πε

dv

 dydµ(λ)

(A.22)

and thus, by Fubini’s Theorem, we only need to show that

∫
Λ

∫
R+

4v2u2
(
λ, v2

)∫
R+

yδ
′
(y − v)2n e

− (v−y)2
2ε

√
2πε

dy

 dvdµ(λ) <∞

for which it suffices to show that∫
R+

yδ
′
(y − v)2n e

− (v−y)2
2ε

√
2πε

dy = O
(
vδ
′
+ 1
)

due to our integrability assumptions for Ju (λ, v) = 2vu
(
λ, v2

)
.

For δ′ ≥ 0, we use the well known estimate (a+ b)δ
′ ≤ C(|a|δ′ + |b|δ′) to obtain

∫
R+

yδ
′
(y − v)2n e

− (v−y)2
2ε

√
2πε

dy

≤ Cvδ′
∫
R

(y − v)2n e
− (v−y)2

2ε

√
2πε

dy + C

∫
R

(|y − v|)2n+δ′ e
− (v−y)2

2ε

√
2πε

dy

≤ Cεnvδ′
∫
R
w2n e

−w
2

2

√
2π

dw + Cεn+ δ′
2

∫
R

(|w|)2n+δ′ e
−w

2

2

√
2π

dw

(A.23)

which is exactly what we wanted.
On the other hand, for δ′ ∈ (−1, 0], we have

∫
R+

yδ
′
(y − v)2n e

− (v−y)2
2ε

√
2πε

dy

=

∫ v
2

0
yδ
′
(v − y)2n e

− (v−y)2
2ε

√
2πε

dy +

∫ +∞

v
2

yδ
′
(v − y)2n e

− (v−y)2
2ε

√
2πε

dy

≤ (2ε)n√
π

∫ v
2

0
yδ
′
(

(v − y)2

2ε

)n+ 1
2 e−

(v−y)2
2ε

|v − y|
dy +

(v
2

)δ′ ∫ +∞

v
2

(v − y)2n e
− (v−y)2

2ε

√
2πε

dy

≤ C(n)(2ε)n
∫ v

2

0
yδ
′ 1

v − y
dy +

(v
2

)δ′ ∫
R

(v − y)2n e
− (v−y)2

2ε

√
2πε

dy
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≤ C(n)(2ε)n
(v

2

)−1
∫ v

2

0
yδ
′
dy +

(v
2

)δ′
εn
∫
R
w2n e

−w
2

2

√
2π

dy

≤ C(n)(2ε)n

δ′ + 1

(v
2

)δ′
+
(v

2

)δ′
εn
∫
R
w2n e

−w
2

2

√
2π

dy

(A.24)

which is again what we needed and thus the proof of 1. is complete. We proceed now to
the proof of 2..

By the Cauchy-Schwarz inquality and Fubini’s Theorem we have

‖Ju,ε(·, ·)‖2L2(Λ; L̃2
δ′)

=

∫
Λ

∫
R+

yδ
′

∫
R+

2vu
(
λ, v2

) e− (v−y)2
4ε

4
√

2πε

e−
(v−y)2

4ε

4
√

2πε
dv

2

dydµ(λ)

≤
∫

Λ

∫
R+

yδ
′

∫
R+

4v2u2
(
λ, v2

) e− (v−y)2
2ε

√
2πε

dv

∫
R

e−
(v−y)2

2ε

√
2πε

dv

 dydµ(λ)

=

∫
Λ

∫
R+

4v2u2
(
λ, v2

) ∫
R+

yδ
′ e−

(v−y)2
2ε

√
2πε

dydvdµ(λ)

(A.25)

Next, we see that

4v2u2
(
λ, v2

) ∫
R+

yδ
′ e−

(v−y)2
2ε

√
2πε

dy → 4v2+δ′u2
(
λ, v2

)
as ε → 0+ for v ≥ 0, and it can also be bounded by something integrable, uniformly in
ε > 0 (this can be seen by recalling (A.23) and (A.24) for n = 0). Thus, by the Dominated
Convergence Theorem, the RHS of (A.25) converges to∫

Λ

∫
R+

4vδ
′+2u2

(
λ, v2

)
dvdµ(λ) = ‖Ju(·, ·)‖2

L2

(
Λ;L2

yδ
′ (R+)

)

as ε→ 0+. Therefore, we obtain

lim sup
ε→0+

‖Ju,ε(·, ·)‖2
L2

(
Λ;L2

yδ
′ (R+)

) ≤ ‖Ju(·, ·)‖2
L2

(
Λ;L2

yδ
′ (R+)

) . (A.26)

Next, fix a measurable A ⊂ Λ with µ(A) < +∞ and a smooth function f : R+ → R
supported in some interval [M1, M2], where 0 < M1 < M2. Then it holds that

∫
R+

f(y)
e−

(v−y)2
2ε

√
2πε

dy → f(v)
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pointwise as ε→ 0+. Furthermore we have

∫
R+

f(y)
e
− (v−y)2

2εkm

√
2πεkm

dy ≤ C sup
y∈R
|f(y)|


1 , v ≤ 2M2

2M2
|v−M2| , v > 2M2

for all m ∈ N and for some constant C > 0 and thus, by applying Cauchy-Schwartz we
obtain ∫

Λ

∫ +∞

M2

IA(λ)2vu(λ, v2)
2M2

|v −M2|
dvdµ(λ)

≤ 2M2 ‖Ju(·, ·)‖
L2

(
Λ;L2

yδ
′ (R+)

)(µ(A)

∫
v>2M2

1

vδ′ |v −M2|2
dv

)1/2

which is finite. This means that we can apply the Dominated Convergence Theorem to
obtain

lim
ε→0+

∫
Λ

∫
R+

Ju,ε(λ, y)f(y)IA(λ)dydµ(λ)

= lim
ε→0+

∫
Λ

∫
R+

f(y)

∫
R
u(λ, z)

e−
(
√
z−y)2
2ε

√
2πε

IA(λ)dz

 dydµ(λ)

= lim
ε→0+

∫
Λ

∫
R+

f(y)

∫
R+

2vu(λ, v2)
e−

(v−y)2
2ε

√
2πε

IA(λ)dv

 dydµ(λ)

= lim
ε→0+

∫
Λ

∫
R+

IA(λ)2vu(λ, v2)

∫
R+

f(y)
e−

(v−y)2
2ε

√
2πε

dy

 dvdµ(λ)

=

∫
Λ

∫
R+

IA(λ)2vu(λ, v2)f(v)dvdµ(λ) (A.27)

so we deduce that Ju,ε(·, ·) → Ju(·, ·) weakly in the Hilbert space L2
(

Λ; L2
yδ′

(R+)
)

(since A and f are arbitrary). Since a Hilbert space is always a uniformly convex space,
by recalling (A.26) and Proposition III.30 from [4] (page 75), we deduce that Ju,ε(·, ·)→
Iu(·, ·) strongly in L2

(
Λ; L2

yδ′
(R+)

)
, which implies 2.

Proof of Lemma 5.4. First, by our boundedness assumption we have that for any
sequence {εk}k∈N converging to 0+, there exists a decreasing subsequence {εkm}m∈N and

an element J lu ∈ L2
(

Λ; L2
yδ′

(R+)
)

for all l ∈ {1, 2, ..., n}, such that

∂l

∂yl
Ju,εkm → J lu,

for all l ∈ {1, 2, ..., n}, weakly in L2
(

Λ; L2
yδ′

(R+)
)

as m→ +∞. Then, for any measur-

able A ⊂ Λ with µ(A) < +∞ and any smooth and compactly supported function f(z),
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we have ∫
R

∂l

∂zl
f(z)

e−
(z−y)2

2ε

√
2πε

dz → ∂l

∂yl
f(y)

pointwise as ε → 0+. Hence, we can use Fubini’s Theorem and the Dominated Conver-
gence Theorem as we did in the proof of Lemma 5.3 (but for a partial derivative of f) to
obtain

lim
m→∞

∫
Λ

∫
R+

IA(λ)Ju,εkm (λ, y)
∂l

∂yl
f(y)dydµ(λ)

= lim
m→∞

∫
Λ

∫
R
IA(λ)

∂l

∂yl
f(y)

∫
R
u(λ, z)

e
− (
√
z−y)2

2εkm

√
2πεkm

dz

 dydµ(λ)

= lim
m→∞

∫
Λ

∫
R+

IA(λ)
∂l

∂yl
f(y)

∫
R+

2vu(λ, v2)
e
− (v−y)2

2εkm

√
2πεkm

dv

 dydµ(λ)

= lim
m→∞

∫
Λ

∫
R+

IA(λ)Ju(λ, v)

∫
R

∂l

∂yl
f(y)

e
− (v−y)2

2εkm

√
2πεkm

dy

 dvdµ(λ)

=

∫
Λ

∫
R+

IA(λ)Ju(λ, v)
∂l

∂yl
f(v)dvdµ(λ)

and thus we have∫
Λ

∫
R+

IA(λ)J lu(λ, y)f(y)dydµ(λ)

= lim
m→∞

∫
Λ

∫
R+

IA(λ)
∂l

∂yl
Ju,εkm (λ, y)f(y)dydµ(λ)

= lim
m→∞

(−1)l
∫

Λ

∫
R+

IA(λ)Ju,εkm (λ, y)
∂l

∂yl
f(y)dydµ(λ)

= (−1)l
∫

Λ

∫
R
IA(λ)Ju(λ, v)

∂l

∂vl
f(v)dvdµ(λ),

which means that J lu is the l-th weak derivative of Ju. Next, for any l ≤ n we have∥∥∥∥ ∂l∂ylJu,ε(·, ·)
∥∥∥∥2

L2

(
Λ;L2

yδ
′ (R+)

)

=

∫
Λ

∫
R+

yδ
′

 ∂l

∂yl

∫
R+

2vu
(
λ, v2

) e− (v−y)2
2ε

√
2πε

dv

2

dydµ(λ)

=

∫
Λ

∫
R+

yδ
′

∫
R+

2vu
(
λ, v2

) ∂l
∂yl

e− (v−y)2
2ε

√
2πε

 dv

2

dydµ(λ)
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=

∫
Λ

∫
R+

yδ
′

∫
R+

J lu (λ, v)
e−

(v−y)2
4ε

4
√

2πε

e−
(v−y)2

4ε

4
√

2πε
dv

2

dydµ(λ)

≤
∫

Λ

∫
R+

yδ
′

∫
R+

(
J lu (λ, v)

)2 e−
(v−y)2

2ε

√
2πε

dv

∫
R

e−
(v−y)2

2ε

√
2πε

dv

 dydµ(λ)

=

∫
Λ

∫
R+

(
J lu (λ, v)

)2
∫
R+

yδ
′ e−

(v−y)2
2ε

√
2πε

dydvdµ(λ)

(A.28)

which converges (by the same argument as in (A.25) in the proof of Lemma 5.3) to∫
Λ

∫
R+

vδ
′
(
J lu (λ, v)

)2
dvdµ(λ) =

∥∥∥J lu(·, ·)
∥∥∥2

L2

(
Λ;L2

yδ
′ (R+)

)

and thus we have

lim sup
ε→0+

∥∥∥∥ ∂l∂ylJu,ε(·, ·)
∥∥∥∥2

L2

(
Λ;L2

yδ
′ (R+)

) ≤ ∥∥∥J lu(·, ·)
∥∥∥2

L2

(
Λ;L2

yδ
′ (R+)

) . (A.29)

Hence, by recalling Proposition III.30 from [4] (as we did in the proof of Lemma 5.3),

we can conclude that ∂l

∂zl
Ju,εkm → J lu as m→ +∞, strongly in the uniformly convex space

L2
(

Λ; L2
yδ′

(R+)
)

, for all l ∈ {1, 2, ..., n}. The desired result follows since the sequence

{εm}m∈N is arbitrary and since a weak derivative is always unique.

References

[1] Aldous, D. (1985) Exchangeability and related topics, Ecole d’Ete St Flour 1983,
Springer Lecture Notes in Mathematics, 1117, 1–198
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