
SOME NOTES ON TREES AND PATHS

B.M. HAMBLY AND TERRY J. LYONS

Abstract. These notes cover background material on trees which are used in

the paper [1].

1. Trees and paths - background information

In the paper [1] it is shown that trees have an important role as the negligible sets
of control theory, quite analogous to the null sets of Lebesgue integration. The trees
considered are analytic objects in flavour, and not the finite combinatorial objects
of undergraduate courses. In this note we collect together a few related ways of
looking at them, and prove a basic characterisation generalising the concept of
height function.

We first recall that
(1). Graphs (E, V ) that are acyclic and connected are generally called trees. If
such a tree is non-empty and has a distinguished vertex v it is called a rooted tree.
(2). A rooted tree induces and is characterised by a partial order on V with least
element v. The partial order is defined as follows

a � b if the circuit free path from the root v → b goes through a.

This order has the property that for each fixed b the set {a � b} is totally ordered
by �.

Conversely any partial order on a finite set V with a least element v and the
property that for each b the set {a � b} is totally ordered defines a unique rooted
tree on V . One of the simplest ways to construct a tree is to consider a (finite)
collection Ω of paths in a graph sharing a fixed initial or starting vertex, and with
the partial order that ω � ω′ iff ω is an initial segment of ω′.
(3). Alternatively, let (E, V ) be a graph extended into a continuum by assigning a
length to each edge. Let d (a, b) be the infimum of the lengths of paths1 between
the two vertices a, b in the graph. Then g is a geodesic metric on V . Trees are
exactly the graphs that give rise to 0-hyperbolic metrics in the sense of Gromov (see
for example [2]).
(4). There are many ways to enumerate the edges and nodes of a finite rooted tree.
One way is to think of a family tree recording the descendants of a single individual
(the root). Start with the root. At the root, if all children have been visited stop,
at any other node, if all the children have been visited, move up to the parent. If
there are children who have not been visited, then visit the oldest unvisited child.
At each time n the enumeration either moves up an edge or down an edge - each
edge is visited exactly twice. Let h (n) denote the distance from the top of the
family tree after n steps in this enumeration with the convention that h (0) = 0,
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then h is similar to the path of a random walk, moving up or down one unit at each
step, except that it is positive and returns to zero exactly as many times as there
are edges coming from the root. Hence h (2 |E|) = 0.

The function h completely describes the rooted tree. The function h directly yields
the nearest neighbour metric on the tree. If h is a function such that h (0) = 0,
it moves up or down one unit at each step, is positive and h (2 |E|) = 0, then d
defined by

d (m,n) = h (m) + h (n)− 2 inf
u∈[m,n]

h (u) ,

is a pseudo-metric on [0, 2 |V |]. If we identify points in [0, 2 |V |] that are zero
distance apart and join by edges the equivalence classes of points that are distance
one apart, then one recovers an equivalent rooted tree.

Put less pedantically, let the enumeration be a at step n and b at step m and
define

d (a, b) = h (m) + h (n)− 2 inf
u∈[m,n]

h (u) ,

then it is simple to check that d is well defined and is a metric on vertices making
the set of vertices a tree.

Thus excursions of simple (random) walks are a convenient (and well studied)
way to describe abstract graphical trees. This particular choice for coding a tree
with a positive function on the interval can be extended to describe continuous
trees. This approach was used by Le Gall [3] in his development of the Brownian
snake associated to the measure valued Dawson-Watanabe process.

2. R-trees are coded by continuous functions

One of the early examples of a continuous tree is the evolution of a continuous
time stochastic process, where, as is customary in probability theory, one identifies
the evolution of two trajectories until the first time they separate. (This idea dates
back at least to Kolmogorov and his introduction of filtrations). Another popular
and equivalent approach to continuous trees is through R-trees ([4] p425 and the
references there).

Interestingly, analysts and probabilists have generally rejected the abstract tree
as too wild an object, and usually add extra structure, essentially a second topology
or Borel structure on the tree that comes from thinking of the tree as a family of
paths in a space which also has some topology. This approach is critical to the
arguments used in [1] where tree-like paths are approximated by with simpler tree-
like paths in 1-variation. (They would never converge in the ‘hyperbolic’ metric).
In contrast, group theorists and low dimensional topologists have made a great deal
of progress by studying specific symmetry groups of these trees and do not seem to
find their hugeness too problematic.

Our goal in this subsection of the appendix is to prove the simple representation:
that the general R-tree arises from identifying the contours of a continuous function
on a locally connected and connected space. The height functions we considered
on [0, T ] are a special case.

Definition 2.1. An R-tree is a uniquely arcwise connected metric space, in which
the arc between two points is isometric to an interval.

Such a space is locally connected, for let Bx be the set of points a distance at
most 1/n from x. If z ∈ Bx, then the arc connecting x with z is isometrically
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embedded, and hence is contained in Bx. Hence Bx is the union of connected sets
with non-empty common intersection (they contain x) and is connected. The sets
Bx form a basis for the topology induced by the metric. Observe that if two arcs
meet at two points, then the uniqueness assertion ensures that they coincide on the
interval in between.

Fix some point v as the ‘root’ and let x and y be two points in the R-tree.
The arcs from x and y to v have a maximal interval in common starting at v and
terminating at some v1, after that time they never meet again. One arc between
them is the join of the arcs from x to v1 to y (and hence it is the arc and a geodesic
between them). Hence

d (x, y) = d (x, v) + d (y, v)− 2d (v, v1) .

Example 2.2. Consider the space Ω of continuous paths Xt ∈ E where each path
is defined on an interval [0, ξ (ω)) and has a left limit at [0, ξ (ω)). Suppose that if
X ∈ Ω is defined on [0, ξ), then X|[0,s) ∈ Ω for every s less than ξ. Define

d (ω, ω′) = ξ (ω) + ξ (ω′)− 2 sup {t < min (ξ (ω) , ξ (ω′)) | ω (s) = ω′ (s) ∀s ≤ t} .

Then (Ω, d) is an R-tree.

We now give a way of constructing R-trees. The basic idea for this is quite easy,
but the core of the argument lies in the detail so we proceed carefully in stages.

Let I be a connected and locally connected topological space, and h : I → R be
a positive continuous function that attains its lower bound at a point v ∈ I.

Definition 2.3. For each x ∈ I and λ ≤ h (x) define Cx,λ to be the maximal
connected subset of {y | h (y) ≥ λ} containing x.

Lemma 2.4. The sets Cx,λ exist, and are closed. Moreover, if Cx,λ ∩ Cx′,λ′ 6= φ
and λ ≤ λ′, then

Cx′,λ′ ⊂ Cx,λ.

Proof. An arbitrary union of connected sets with non-empty intersection is con-
nected, taking the union of all connected subsets of {y | h (y) ≥ λ} containing x
constructs the unique maximal connected subset. Since h is continuous the closure
Dx,λ of Cx,λ is also a subset of {y | h (y) ≥ λ}. The closure of a connected set is
always connected hence Dx,λ is also connected. It follows from the fact that Cx,λ

is maximal that Cx,λ = Dx,λ and so is a closed set.
If Cx,λ ∩ Cx′,λ′ 6= φ and λ ≤ λ′, then

x ∈ Cx,λ ∪ Cx′,λ′ ⊂ {y | h (y) ≥ λ} ,

and since Cx,λ ∩ Cx′,λ′ 6= φ, the set Cx,λ ∪ Cx′,λ′ is connected. Hence maximality
ensures Cx,λ = Cx,λ ∪ Cx′,λ′ and hence Cx′,λ′ ⊂ Cx,λ. �

Corollary 2.5. Either Cx,λ equals Cx′,λ or it is disjoint from it.

Proof. If they are not disjoint, then the previous Lemma can be applied twice to
prove that Cx′,λ ⊂ Cx,λ and Cx,λ ⊂ Cx′,λ. �

Corollary 2.6. If Cx,λ = Cx′,λ, then Cx,λ′′ = Cx′,λ′′ for all λ′′ < λ.

Proof. The set Cx,λ, Cx′,λ are nonempty and have nontrivial intersection. Cx,λ ⊂
Cx,λ′′ and Cx′,λ ⊂ Cx′,λ′′ hence Cx,λ′′ and Cx′,λ′′ have nontrivial intersection. Hence
they are equal. �
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Corollary 2.7. y ∈ Cx,λ if and only if Cy,h(y) ⊂ Cx,λ.

Proof. Suppose that y ∈ Cx,λ, then Cy,h(y) and Cx,λ are not disjoint. It follows from
the definition of Cx,λ and y ∈ Cx,λ that h (y) ≥ λ. By Lemma 2.4 Cy,h(y) ⊂ Cx,λ.
Suppose that Cy,h(y) ⊂ Cx,λ, since y ∈ Cy,h(y) it is obvious that y ∈ Cx,λ. �

Definition 2.8. The set Cx := Cx,h(x) is commonly referred to as the contour of
h through x.

The map x → Cx induces a partial order on I with x � y if Cx ⊇ Cy. If h
attains its lower bound at x, then Cx = I since {y | h (y) ≥ h (x)} = I and I is
connected by hypothesis. Hence the root v � y for all y ∈ I.

Lemma 2.9. Suppose that λ ∈ [h (v) , h (x)], then there is a y in Cx,λ such that
h (y) = λ and, in particular, there is always a contour (Cx,λ) at height λ through y
that contains x.

Proof. By the definition of Cx,λ it is the maximal connected subset of h ≥ λ
containing x; assume the hypothesis that there is no y in Cx,λ with h (y) = λ so
that it is contained in h > λ, hence Cx,λ is a maximal connected subset of h > λ.
Now h > λ is open and locally connected, hence its maximal connected subsets of
h > λ are open and Cx,λ is open. However it is also closed, which contradicts the
connectedness of the I. Thus we have established the existence of the point y. �

The contour is obviously unique, although y is in general not. If we consider the
equivalence classes x˜y if x � y and y � x, then we see that the equivalence classes
[y]˜ of y � x are totally ordered and in one to one correspondence with points in
the interval [h (v) , h (x)].

Lemma 2.10. If z ∈ Cy,λ and h (z) > λ, then z is in the interior of Cy,λ. If
Cx′,λ′ ⊂ Cx,λ with λ′ > λ, then Cx,λ is a neighbourhood of Cx′,λ′ .

Proof. I is locally connected, and h is continuous, hence there is a connected
neighbourhood U of z such that h (z) ≥ λ. By maximality U ⊂ Cz,λ. Since
Cz,λ ∩ Cy,λ 6= φ we have Cz,λ = Cy,λ and thus U ⊂ Cy,λ. Hence Cy,λ is a neigh-
bourhood of z. The last part follows trivially once by noting that for all z ∈ Cx′,λ′

we have h (z) ≥ λ′ > λ and hence Cy,λ is a neighbourhood of z. �

We now define a pseudo-metric on I. Lemma 2.10 (the only place we will use
local connectedness) is critical to showing that the map from I to the resulting
quotient space is continuous.

Definition 2.11. If y and z are points in I, define λ (y, z) ≤ min (h (y) , h (z)) such
that Cy,λ = Cz,λ

λ (y, z) = sup {λ | Cy,λ = Cz,λ, λ ≤ h (y) , λ ≤ h (z)} .

The set
{λ | Cy,λ = Cz,λ, λ ≤ h (y) , λ ≤ h (z)}

is a non-empty interval [h (v) , λ (y, z)] or [h (v) , λ (y, z)) where λ (y, z) satisfies

h (v) ≤ λ (y, z) ≤ min (h (y) , h (z)) .

Clearly λ (x, x) = h (x) .
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Lemma 2.12. The function λ is lower semi-continuous

lim inf
z→z0

λ (y, z) ≥ λ (y, z0) .

Proof. Fix y, z0 and choose some λ′ < λ (y, z0). By the definition of λ(y, z0) we
have that Cy,λ′ = Cz0,λ′ . Since h (z0) ≥ λ′ there is a neighbourhood U of z0 so
that U ⊂ Cz0,λ′ . For any z ∈ U one has z ∈ Cz,λ′ ∩ Cz0,λ′ . Hence Cz0,λ′ = Cz,λ′

and Cy,λ′ = Cz,λ′ . Thus λ (y, z) ≥ λ′ for z ∈ U and hence

lim inf
z→z0

λ (y, z) ≥ λ′.

Since λ′ < λ (y, z0) was arbitrary

lim inf
z→z0

λ (y, z) ≥ λ(y, z0)

and the result is proved. �

Lemma 2.13. The following inequality holds

min {λ (x, z) , λ (y, z)} ≤ λ (x, y) .

Proof. If min {λ (x, z) , λ (y, z)} = h (v), then there is nothing to prove. Recall that

{λ | Cy,λ = Cz,λ, λ ≤ h (y) , λ ≤ h (x)}
is connected and contains h (v). Suppose h (v) ≤ λ < min {λ (x, z) , λ (y, z)}, then
it follows that the identity Cx,λ = Cz,λ holds for λ. Similarly Cy,λ = Cz,λ. As a
result Cx,λ = Cy,λ and λ (x, y) ≥ λ. �

Definition 2.14. Define d on I × I by

d (x, y) = h (x) + h (y)− 2λ (x, y) .

Lemma 2.15. The function d is a pseudo-metric on I. If
(
Ĩ , d

)
is the resulting

quotient metric space, then the projection I → Ĩ from the topological space I to the
metric space is continuous.

Proof. Clearly d is positive, symmetric and we have remarked that for all x, λ (x, x) =
h (x) hence it is zero on the diagonal. To see the triangle inequality, assume

λ (x, z) = min {λ (x, z) , λ (y, z)}
and then observe

d (x, y) = h (x) + h (y)− 2λ (x, y)

≤ h (x) + h (y)− 2λ (x, z)

= h (x) + h (z)− 2λ (x, z) + h (y)− h (z)

≤ d (x, z) + |h (y)− h (z)|
but λ (y, z) ≤ min (h (y) , h (z)) and hence

|h (y)− h (z)| = h (y) + h (z)− 2 min (h (y) , h (z))

≤ h (y) + h (z)− 2λ (y, z)

= d (y, z)

hence
d (x, y) ≤ d (x, z) + d (y, z)

as required. �
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We can now introduce the equivalence relation x˜y if d (x, y) = 0 and the quotient
space I/˜. We write I/˜ = Ĩ and i : I → Ĩ for the canonical projection. The
function d projects onto Ĩ × Ĩ and is a metric there.

It is tempting to think that x˜y if and only if Cx = Cy and this is true if I is
compact Hausdorff. However the definitions imply a slightly different criteria: x˜y
iff

h (x) = h (y) = λ and Cx,λ′′ = Cy,λ′′ for all λ′′ < λ.

The stronger statement x˜y if and only if Cx = Cy is not true for all continuous
functions h on R2 as it is easy to find a decreasing family of closed connected sets
there whose limit is a closed set that is not connected.

Consider again the new metric space Ĩ that has as its points the equivalence
classes of points indistinguishable under d. We now prove that the projection i
taking I to Ĩ is continuous. Fix y ∈ I and ε > 0. Since λ (y, .) is lower semi-
continuous and h is (upper semi)continuous there is a neighbourhood U of y so that
for z ∈ U one has λ (y, z) > λ (y, y)− ε/4 and h (z) < h (y)+ ε/2. Thus d (y, z) < ε

for z ∈ U . Hence d̃ (i (y) , i (z)) < ε if z ∈ U . The function i is continuous and as
continuous images of compact sets are compact we have the following.

Corollary 2.16. If I is compact, then Ĩ is a compact metric space.

To complete this section we will show Ĩ is a uniquely arcwise connected metric
space, in which the arc between two points is isometric to an interval and give a
characterisation of compact trees.

Proposition 2.17. If I is a connected and locally connected topological space, and
h : I → R is a positive continuous function that attains its lower bound, then
its “contour tree” the metric space

(
Ĩ , d̃

)
is an R-tree. Every R -tree can be

constructed in this way.

Proof. It is enough to prove that the metric space Ĩ we have constructed is really
an R-tree and that every R-tree can be constructed in this way. Let x̃ any point
in Ĩ and x ∈ I satisfy i (x) = x̃. Then h (x) does not depend on the choice of
x. Fix h (v) < λ < h (x). We have seen that there is a y such that h (y)=λ and
y ≺ x moreover any two choices have the same contour through them and hence
the same ỹ (λ). In this way we see that there is a map from [h (v) , h (x)] into Ĩ
that is injective. Moreover, it is immediate from the definition of d that it is an
isometry and that Ĩ is uniquely arc connected.

Suppose that Ω is an R-tree, then we may fix a base point, and for each point
in the tree consider the distance from V it is clear that this continuous function is
just appropriate to ensure that the contour tree is the original tree. �

Remark 2.18. 1. In the case where I is compact, obviously Ĩ is both complete and
totally bounded as it is compact.

2. An R-tree is a metric space; it is therefore possible to complete it. Indeed the
completion consists of those paths, all of whose initial segments are in the tree2;
we have not identified a simple sufficient condition on the continuous function and
topological space Ω to ensure this. An R-tree is totally bounded if it is bounded
and for each ε > 0 there is an N so that for each t the paths that extend a distance

2We fix a root and identify the tree with the geodesic arc from the root to the point in the
tree.
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t from the root have at most N ancestral paths between them at time t − ε. In
this way we see that the R-tree that comes out of studying the historical process
for the Fleming-Viot or the Dawson Watanabe measure-valued processes is, with
probability one, a compact R-tree for each finite time.

Lemma 2.19. Given a compact R-tree, there is always a height function on a
closed interval that yields the same tree as its quotient.

Proof. As the tree is compact, path connected and locally path connected, there is
always as based loop mapping [0, 1] onto the tree. Let h denote the distance from
the root. Its pullback onto the interval [0, 1] is a height function and the natural
quotient is the original tree. In this way we see that there is always a version of Le
Gall’s snake [3] traversing a compact tree. �
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