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SUBSTRUCTURAL LOGICS

Associative Lambek Calculus L*

(Id)A⇒ A

(·L)
Γ, A, B,∆⇒ C
Γ, A · B,∆⇒ C

, (·R)
Γ⇒ A; ∆⇒ B

Γ,∆⇒ A · B
(→L)

Γ, B,∆⇒ C; Φ⇒ A
Γ,Φ, A→ B,∆⇒ C

, (→R)
A,Γ⇒ B

Γ⇒ A→ B

(←L)
Γ, B,∆⇒ C; Φ⇒ A
Γ, B← A,Φ,∆⇒ C

, (←R)
Γ, A⇒ B

Γ⇒ B← A

(CUT)
Γ, A,∆⇒ B; Φ⇒ A

Γ,Φ,∆⇒ B

LAMBEK (1958) : L, Γ , ε in (→R), (←R)

(CUT) is admissible in L, L*.
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LAMBEK (1961): Nonassociative Lambek Calculus NL
Formula structures (trees): formulas, (X,Y); sequents: X ⇒ A

(·L)
X[A, B]⇒ C
X[A · B]⇒ C

, (·R)
X ⇒ A; Y ⇒ B
(X,Y)⇒ A · B

(→L)
X[B]⇒ C; Y ⇒ A
X[Y, A→ B]⇒ C

, (→R)
(A, X)⇒ B
X ⇒ A→ B

(CUT)
X[A]⇒ B; Y ⇒ A

X[Y]⇒ B

NL* (W.B., BULINSKA): the empty structure Λ

(X,Λ) = (Λ, X) = X

(CUT) is admissible in NL (LAMBEK 1961) and NL*.
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A residuated semigroup: M = (M,≤, ·,→,←) s.t. (M,≤) is a poset,
(M, ·) is a semigroup, and→,← are binary operations on M,
satisfying the residuation law:

(RES) ab ≤ c iff b ≤ a→ c iff a ≤ c← b.

A residuated monoid: with identity 1, a · 1 = a = 1 · a.

A residuated groupoid: · need not be associative.

An assignment f of formulas inM (a homomorphism from the
formula algebra intoM). Extended to sequences of formulas:
f (ε) = 1, f (Γ, A) = f (Γ) · f (A), and similarly for structures.

(M, f ) |= Γ⇒ A iff f (Γ) ≤ f (A).

L (resp. L*) is strongly complete w.r.t. residuated semigroups (resp.
monoids). NL (resp. NL*) is strongly complete w.r.t. residuated
groupoids (resp. with identity).
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The rule EXCHANGE

(EXC)
Γ, A, B,∆⇒ C
Γ, B, A,∆⇒ C

L with (EXC) is strongly complete w.r.t. commutative residuated
semigroups. Analogous facts hold for L*, NL, NL*. In these
systems A→ B⇔ B← A is provable.
The (→,←)−fragment of L* with (EXC) amounts to BCI. The
analogous fragment of L is the Lambek–van Benthem calculus (of
semantic types) (VAN BENTHEM 1986).
The identity constant 1

(1L)
Γ,∆⇒ A

Γ, 1,∆⇒ A
, (1R) ⇒ 1

(1L)
X[Λ]⇒ A
X[1]⇒ A

, (1R) Λ⇒ A
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Lattice operations ∧,∨ and constants >,⊥; Full Lambek Calculus FL; (ONO
1993, JIPSEN 2004). FL is strongly complete w.r.t. residuated lattices, i.e.
residuated monoids which are lattices.

Modalities (in linguistics MOORTGAT 1995)

(♦L)
Γ, < A >,∆⇒ B

Γ,♦A,∆⇒ B
, (♦R)

Γ⇒ A
< Γ >⇒ ♦A

(¤L)
Γ, A,∆⇒ B

Γ, < ¤A >,∆⇒ B
, (¤R)

< Γ >⇒ A
Γ⇒ ¤A

Generalized Lambek Calculus (W.B., M. KOLOWSKA-GAWIEJNOWICZ, M.
KANDULSKI): fi n−ary connective, n ≥ 1, 0 ≤ i ≤ n, fi is the i−th residual of f0.
f0 = f (a multi-modal framework, also related to DUNN 1993).

Structures: formulas, (X1, . . . , Xn) f

( f L)
X[(A1, . . . , An) f ]⇒ A
X[ f (A1, . . . , An)]⇒ A

, ( f R)
X1 ⇒ A1; . . . ; Xn ⇒ An

(X1, . . . , Xn) f ⇒ f (A1, . . . , An)

( fiL)
X[Ai]⇒ B; (Y j ⇒ A j) j,i

X[(Y1, . . . , fi(A1, . . . , An), . . . ,Yn) f ]⇒ B
, ( fiR)

(A1, . . . , X, . . . , An) f ⇒ Ai

X ⇒ f (A1, . . . , An)
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GRAMMARS

L a system of logic

G = (Σ, IG, S ) s.t. Σ a finite alphabet, IG a finite relations between
symbols from Σ and formulas (types), S a designated type (the
principal type).

IG(a) = {A : (a, A) ∈ IG}
G assigns type A to the string a1 . . . an, ai ∈ Σ, if there exist types
Ai ∈ IG(ai), s.t. A1, . . . , An ⇒ A is provable; the set of all such strings
x is denoted by L(G, A). L(G) = L(G, S ) is the language of G.

If antecedents of sequents are trees, then G assigns types to trees.
Lt(G, A) consists of all trees T which arise from structures X s.t.
X ⇒ A is provable by replacing each leave A ∈ IG(a) by a.
Lt(G) = Lt(G, S ) is the tree language of G. L(G) is the yield of Lt(G).

One also considers trees determined by proof trees of sequents.
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(1) Context-free grammars (CFG’s)
Logic: sequents p1, . . . , pn ⇒ p, where pi, p atoms, axioms (Id)
p⇒ p, (CUT) the only rule.
A CFG (ε−free) is based on a theory, axiomatized by finitely many
assumptions (nonlogical axioms).
n1, v⇒ s; vt, n1 ⇒ v; d, n⇒ n1; n0 ⇒ n1, where n1 is the type of
noun phrase, n0 of proper noun, n of common noun, d of determiner,
v of verb phrase, vt of transitive verb phrase, s of sentence. In
linguistics, one usually writes s 7→ n1, v; n1 7→ d, n etc.
John passes every exam. n0, vt, d, n⇒ s.
The tree (John, (passes, (every ,exam))).
(2) Context-sensitive grammars (CSG’s)
Logic: the (·)−fragment of L with (CUT). A CSG is based on a
theory, axiomatized by finitely many assumptions A⇒ B s.t.
|A| ≥ |B|, where |A| is the total number of atoms in A.
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(3) Classical categorial grammars (CCG’s)
Logic: (→,←)−sequents of L. (Id), (→L), (←L).
Equivalently: (Id),and A, A→ B⇒ B and B← A, A⇒ B, (CUT).
The latter is, essentially, the reduction system AB of
AJDUKIEWICZ (1935) and BAR-HILLEL, GAIFMAN, SHAMIR
(1960).
IG: John: n1, passes: (n1 → s)← n1, every: n1 ← n, exam: n
John passes every exam.
n1, (n1 → s)← n1, n1 ← n, n⇒ n1, (n1 → s)← n1, n1 ⇒
⇒ n1, n1 → s⇒ s
Tree: (John (passes (every exam))).
Functor-argument (FA) structure: (John (passes (every exam)1)1)2.
CCG’s (like most categorial grammars) are lexical: logic is common
for all languages, the language specification is given by the lexical
type assignment IG only.
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(4) Lambek categorial grammars (L-grammars)

Logic: L (often its (→,←)−fragment)

Define: n1 = s← (n0 → s)

John: n0. From A, A→ B⇒ B one derives A⇒ B← (A→ B). So,
n0 ⇒ n1 is provable.

Also (A→ B)← C ⇔ A→ (B← C) is provable.
(n1 → s)← n1 ⇒ n1 → (s← n1) is provable.
((John passes) (every exam))

Generating trees: IG provides ai : Ai

Ai ⇒ Bi provable, B1, . . . , Bn ⇒ A by AB. This determines an
FA-structure with yield a1 . . . an.

One can generate all possible FA-structures, whence all possible
trees, on the generated strings (W.B. 1988).
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CURRY–HOWARD CORRESPONDENCE

Natural Deduction

(→E)
Γ⇒ A→ B; ∆⇒ A

Γ,∆⇒ B
, (→I)

Γ, A,∆⇒ B
Γ⇒ A→ B

The proof of A1, . . . , An ⇒ A represented as x1 : A1, . . . , xn : An ` M : A, where M
a (linear) lambda-term with free variables x1, . . . , xn.

ND-proofs determine denotations in a type-theoretic semantics of Montague style.

e⇒ (e→ t)→ t. x : e ` (λy : e→ t). (yx) : (e→ t)→ t.
The lambda-term denotes the (characteristic function of) family of all properties of
the individual assigned to x.

VAN BENTHEM 1986: every sequent provable in the (→,←)−fragment of L with
(EXC) admits only finitely many different readings (different normal ND-proofs).

WANSING 1992: Lambda-calculus for noncommutative systems (Curry–Howard,
normalization).

For Linear Logic: DE GROOTE 1996, ABRUSCI, RUET 1999
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STANDARD FRAMES
M = (M, ·) a semigroup. P(M) = {X : X ⊆ M}.
X · Y = {xy : x ∈ X, y ∈ Y}. X → Y = {z ∈ M : X · {z} ⊆ Y}.
Y ← X = {z ∈ M : {z} · X ⊆ Y}.
P(M) = (P(M),⊆, ·,→,←) a residuated semigroup. IfM a monoid,
then P(M) a residuated monoid with identity {1}. P(Σ+) the algebra
of ε−free languages on Σ. P(Σ∗) the algebra of languages on Σ.
L (also with ∧) is strongly complete w.r.t. powerset frames over
semigroups, and similarly for L* and powerset frames over monoids
(W.B. 1986). The (→,←,∧)−fragments are strongly complete with
respect to powerset frames over free semigroups and monoids,
respectively.
Without ·, one uses f (A) = {Γ : Γ⇒ A provable }. With ·, one
employs a Labeled Deductive System; from Γ⇒ A · B one infers
(Γ)A·B

1 ⇒ A and (Γ)A·B
2 ⇒ B.
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L is weakly complete w.r.t. algebras of ε−free languages, and
similarly for L* and algebras of languages (PENTUS 1993, 1996).

Proofs are involved; they employ the completeness w.r.t. special
relation frames (see below) and some complexity measures of
formulas.

NL is not weakly complete w.r.t. powerset frames over free
groupoids (tree models) (DOSEN 1994). Soundness and
completeness holds for some extensions of NL w.r.t. special classes
of tree models (VENEMA 1994, 1996).

The (→,←)−fragment of NL is (strongly) complete with respect
powerset frames over free groupoids (KANDULSKI 1988).

NL is (strongly) complete w.r.t. powerset frames over groupoids;
this naturally extends to Generalized Lambek Calculus and powerset
frames over abstract algebras (KOLOWSKA-GAWIEJNOWICZ
1996).
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RELATION FRAMES
P(U2) (a square relation algebra) is a residuated monoid with:
R ◦ S = {(x, y) ∈ U2 : ∃z((x, z) ∈ R and (z, y) ∈ S )}.
R→ S = {(x, y) ∈ U2 : R ◦ {(x, y)} ⊆ S }.
S ← R = {(x, y) ∈ U2 : {(x, y)} ◦ R ⊆ S }. IU = {(x, x) : x ∈ U}.
Relativized frames P(T ), where T a transitive relation. In definitions
of R→ S , S ← R write (x, y) ∈ T . They are residuated semigroups.
L (also with ∧) is strongly complete w.r.t. frames P(T ), where T is
an irreflexive, transitive relation, and similarly for L* and frames
P(U2). (ANDREKA and MIKULAS 1994).
Related results, e.g. for NL, total orderings T , and others
(KURTONINA 1995, W.B. and KOLOWSKA-GAWIEJNOWICZ
1997, SZCZERBA 1998, W.B. 2003).
Some proofs employ Labeled Deductive Systems of GABBAY
(1991); labeled formulas (x, y) : A.
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REFINEMENTS
Strong completeness proofs, using a definition of a model (M, f ) s.t.
the sequents true in (M, f ) are precisely the sequents provable in the
logic, yield representation theorems: embedding abstract algebras in
concrete algebras.
The strong completeness of L w.r.t. powerset frames over
semigroups yields: every residuated semigroup can be embedded
into P(M), for some semigroupM (W.B. 1986, 1997). Similar facts
hold for models of L*, NL also with ∧ and for the representation of
residuated semigroups (monoids) in relation frames (the embedding
weakly preserves identity: 1 ≤ a iff IU ⊆ h(a)) (ANDREKA and
MIKULAS 1994, W.B. and KOLOWSKA-GAWIEJNOWICZ 1997).
The assignment f (A) = {Γ :` Γ⇒ A} can be modified. Replace
` Γ⇒ A by `T Γ⇒ A, which means that Γ⇒ A has a proof in
which every formula belongs to T : a finite set of formulas, closed
under subformulas. This yields: if ` Γ⇒ A is valid, then `T Γ⇒ A.
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In this way the subformula property can be proved for systems with nonlogical
axioms and (CUT).

Another modification. f (p) = {Γ ∈ T + :`T Γ⇒ p or c(Γ) > n}, where c(Γ) is a
natural measure of complexity of Γ. One proves that for (→,←,∧)−formulas A,
f (A) is a co-finite language. This yields: (1) FMP for product-free L, L*, BCI
with ∧, (2) the completeness of these systems w.r.t. regular languages (languages
accepted by finite state automata). (W.B. 1982, 1997, 2002, 2006).

MALL is strongly complete w.r.t. phase-space models, which are powerset frames
over commutative monoids with a designated subset 0 ⊆ M. All operations of
MALL are definable in terms of→,∧, 0. This yields a faithful interpretation of
MALL in BCI with ∧ (0 is a designated variable). I(p) = p→ 0. Similarly, Cyclic
MALL is faithfully interpretable in the product-free L* with ∧, the constant 0 and
the rule: from Γ,∆⇒ 0 infer ∆,Γ⇒ 0. So for consequence relations.

From FMP of BCI with ∧, proved by means of powerset frames, one obtains FMP
of MALL, and so for Cyclic Noncommutative Linear Logic (W.B. 1996, 2002).

A direct proof of FMP of MALL: LAFONT (1996). For FL and other
intuitionistic systems with ·,∨: OKADA and TERUI (1999), BELARDINELLI,
JIPSEN, ONO (2004).
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GENERATIVE POWER AND COMPLEXITY

(1) CCGs are weakly equivalent to ε−free CFGs (BGS 1960).

Every CCG is equivalent to a CFG. Straightforward: since AB
always reduces types, then rules A, A→ B⇒ B, B← A, A⇒ B can
be restricted to subtypes of types appearing in IG.

Every ε−free CFG is equivalent to a CCG; furthermore, the latter
employs types of the form p, p← q, (p← q)← r only.

This is nontrivial. Actually, it is equivalent to the Greibach Normal
Form theorem for CFGs: every ε−free CFG is equivalent to a CFG
with production rules of the form: a 7→ p, aq 7→ p, arq 7→ p, where
a ∈ Σ, p, q, r are variables (proved directly by S. Greibach 1967).

The proof in (BGS 1960) is combinatorial. A logical analysis is
given in (W.B. 1988, 1996). L derives the types assigned by the
CCG G′ from the rules of the CFG G. L(G′) ⊆ L(G) follows from
the strong soundness of L w.r.t. frames P(Σ+).
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(2) NL-grammars are weakly equivalent to ε−free CFGs. (without product W.B.
1986, with product KANDULSKI 1988).

Every ε−free CFG is equivalent to some NL-grammar. Now it is an easy
consequence of (1) and the fact that, for types restricted as above, a sequent Γ⇒ p
is provable in AB iff it is provable in NL (also L, L*, FL and so on); use cut
elimination.

Every NL-grammar is equivalent to a CFG. Now it is nontrivial, since NL can
expand types, e.g. A⇒ (B← A)→ B, A⇒ B→ (B · A).

NL restricted to simple sequents A⇒ B can be axiomatized as a term rewriting
system, based on rewriting rules, e.g. rewrite A on a positive position in C into
(B← A)→ B, and conversely for negative positions.

KEY LEMMA: A1, . . . , An ⇒ B is provable in NL iff there exist C1, . . . ,Cn,C s.t.
Ai ⇒ Ci by reducing rules only, C1, . . . ,Cn ⇒ C by AB, and C ⇒ B by expanding
rules only.

This shows that every NL-grammar is equivalent to a CCG (which generates the
same trees).
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(3) L-grammars are weakly equivalent to ε−free CFGs (PENTUS
1993).

Every L-grammar is equivalent to a CFG.

P a finite set of variables. |A| the total number of variables in A.
T (P,m) the set of all types A on P s.t. |A| ≤ m.

Binary Reduction Lemma: Let A1, . . . , An ⇒ An+1 be provable in L,
n ≥ 2, Ai ∈ T (P,m), for all i = 1, . . . , n + 1. Then, there exist k < n
and B ∈ T (P,m) s.t.:
(i) Ak, Ak+1 ⇒ B is provable in L,
(ii) A1, . . . , Ak−1, B, Ak+2, . . . , An ⇒ An+1 is provable in L.

Consequently, if G is an L-grammar on P and m is the maximal A,
for A appearing in IG, then G is equivalent to a CFG whose
production rules are all L-provable sequents A⇒ B and A, B⇒ C,
for A, B,C ∈ T (P,m).
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The proof of Binary Reduction Lemma is based on certain
proof-theoretic properties of L.

|Γ|p the number of occurrences of p in Γ

(I) Interpolation Lemma (ROORDA 1991): Let Γ,Φ,∆⇒ A be
provable in L. Then, there exists a type B s.t.:
(i) Φ⇒ B is provable in L,
(ii) Γ, B,∆⇒ A is provable in L,
(iii) for any variable p, |B|p ≤min(|Φ|p, |Γ,∆, A|p).

A type is thin, if each variable occurs at most once in it. A sequent is
thin, if it is provable in L, each type in this sequent is thin, and each
variable occurring in the sequent occurs twice in it.

(II) Every L-provable sequent is a substitution instance of an
L-provable sequent in which each variable occurs twice.

PENTUS proves Binary Reduction Lemma for thin sequents, using
free group models. By(I) and (II), it holds for arbitrary sequents.
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The method is applicable for other multiplicative systems. PENTUS applied it to
L*, Cyclic MLL and Noncommutative MLL.

BULINSKA (2005) extended it to theories on L with finitely many assumptions of
the form p⇒ q.

OPEN PROBLEM: What about assumptions p1, . . . , pn ⇒ p?

W.B. (1982) shows that even the (→)−fragment of L with assumptions of the form
p, q⇒ r and p→ q⇒ r is Σ0

1−complete, and the corresponding grammars
generate all ε−free r.e. languages. This also holds for L*.

The cardinality of T (P,m) is exponential in the size of P and m. Accordingly,
PENTUS’s transformation of an L-grammar G into an equivalent CFG is exptime
in the size of G.

By reducing SAT to the provability problems for L, L*, Cyclic and
Noncommutative MLL, PENTUS (2006) proves the NP-completeness of these
problems.

The universal membership problem for CFGs is polytime. So, if one provided a
polytime transformation of any L-grammar into an equivalent CFG, then she
would prove P=NP.
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(4) Again NL.
Interpolation Lemma (JÄGER 2004): Let X[Y]⇒ A be provable in
NL. Then, there exists a type B s.t.:
(i) Y ⇒ B is provable in NL,
(ii) X[B]⇒ A is provable in NL,
(iii) B is a subtype of a type occurring in X[Y]⇒ A.
This yields a new proof of the context-freeness of NL-grammars.
The provability problem for NL is polytime (AARTS 1995 without
product, DE GROOTE 2002 with product). So, we get a polytime
transformation of any NL-grammar into an equivalent CFG (but not
into a strongly equivalent CCG).
(W.B. 2005) uses this kind of interpolation to prove that: (i) the
consequence relation for NL is polytime, (ii) grammars based on
finite theories on NL are context-free. This holds for NL with
(EXC), with modalities, and Generalized Lambek Calculus.
BULINSKA (2006) extends these results for NL with 1.
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BACK TO LOGIC

FARULEWSKI (2006) uses interpolation (of the second kind) to prove Finite
Embeddability Property (FEP) for residuated groupoids (an open problem in
BLOK and VAN ALTEN 2005).

Residuated groupoids are closed under products, whence FEP is equivalent to
Strong FMP (FMP for Horn formulas). The Horn theory of residuated groupoids is
represented by the consequence relation for NL.

T a finite set of formulas, closed under subformulas, which contains all formulas
appearing in assumptions. We only consider formulas from T and sequents formed
out of these formulas.

X ∼ Y iff, for all A ∈ T , X ⇒ A is provable iff Y ⇒ A is provable. This
equivalence relation has a finite index.

LEMMA: If X ∼ Y , then, for any context Z[·]⇒ A on T , Z[X]⇒ A is provable iff
Z[Y]⇒ A is provable. (The proof uses interpolation).

M is the set of all trees X on T (a free groupoid).
S (Z[·]⇒ A) = {X ∈ M :` Z[X]⇒ A}. A closure operator on P(M):
C(U) =

⋂{S (Z[·]⇒ A) : U ⊆ S (Z[·]⇒ A)}. Every closed set is a union of some
equivalence classes of ∼, whence the family of closed sets is finite.
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The consequence relations for BCI with ∧ and BCI with ∨ are
undecidable (W.B. 2006).

Propositional Linear Logic (with exponentials) is undecidable. This
also holds for its fragment restricted to sequents with only negative
occurrences of formulas !A, where A contains no exponential (no
occurrences of ?, par, and lattice bounds) (LINCOLN et al. 1992,
KANOVICH 1995).

Negative occurrences of !A can be replaced by assumptions:
pA ⇒ A; pA ⇒ 1; pA ⇒ pA ⊗ pA, corresponding to:
!A⇒ A; !A⇒ 1; !A⇒!A⊗!A, provable in PLL. So, the
consequence relation for MALL is undecidable. By the
interpretation of MALL in BCI with ∧, mentioned above, our claim
holds (for ∨, we use the particular form of KANOVICH sequents).

The problem for BCI remains open (like the undecidability of
MELL). There is some natural connection with linguistics.
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The emptiness problem for CFGs: L(G) , ∅, for a CFG G.

This problem is decidable. As a consequence, we obtain the decidability of the
following problem: for a finite set of formulas T and a formula A, decide whether
there exists Γ ∈ T ∗ s.t. Γ⇒ A is provable in L*. It follows from the PENTUS
theorem for L*.

The order of a (→)−formula: o(p) = 0, o(A→ B) =max(o(A) + 1, o(B)). For
instance, o(p→ q) = 1, o(p→ (q→ r)) = 1, o((p→ q)→ r) = 2.

BCI-grammars provide languages closed under permutations. Grammars whose all
types are of order at most 1 and the designated type is a variable generate all
permutation-closures of CF-languages (W.B. 1983, VAN BENTHEM 1983); they
are not CF, in general. Nonetheless, the emptiness problem for BCI-grammars of
order at most 1 is decidable.

⇒ A is a consequence of assumptions⇒ A1, . . . ,⇒ An in BCI iff there exists a
sequence Γ on {A1, . . . , An}, s.t. Γ⇒ A is provable in BCI (the deduction theorem).

So,⇒ A is a consequence of these assumptions iff L(G) , ∅, where G is an
appropriate BCI-grammar. Assumptions can be reduced to formulas of order at
most 2. Then, the entailment problem for BCI is equivalent to the emptiness
problem for BCI-grammars of order at most 2.
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KLEENE STAR

Kleene algebra: M = (M,∨, ·,∗ , 0, 1) s.t.

(M,∨, 0) a join semilattice with the lower bound 0:

(a ∨ b) ∨ c = a ∨ (b ∨ c), a ∨ b = b ∨ a, a ∨ a = a, a ∨ 0 = a,

(M, ·, 1) is a monoid: (ab)c = a(bc), 1a = a = a1,

product · distributes over join ∨, and 0 is an annihilator:

a(b ∨ c) = ab ∨ ac, (a ∨ b)c = ac ∨ bc, a0 = 0 = 0a,

and * satisfies the following conditions:

(K1) 1 ∨ aa∗ ≤ a∗, 1 ∨ a∗a ≤ a∗,

(K2) if ab ≤ b then a∗b ≤ b; if ba ≤ b then ba∗ ≤ b,

where: a ≤ b iff a ∨ b = b.

KOZEN (1990, 1994)

An action algebra is a residuated Kleene algebra (PRATT 1991). With ∧: action
lattice.
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KA the class of Kleene algebras, ACTA the class of action algebras, ACTL the
class of action lattices.

Standard models: powerset frames over monoids, in particular P(Σ∗), relation
frames P(U2).

They are *-continuous: xa∗y =
∨{xany : n ∈ ω}.

KA* the class of *-continuous Kleene algebras, and similarly for other classes.
LANK the class of Kleene algebras P(Σ∗), REGK the class of their subalgebras
consisting of regular languages, RELK the class of Kleene algebras P(U2).

The Kozen completeness theorem: L(α) = L(β) iff α = β is valid in KA (α, β
regular expressions).

Consequences: Eq(KA)=Eq(KA*)=Eq(LANK)=Eq(REGK)=Eq(RELK). This
theorey is decidable (PS-complete).

KA is a qusi-variety, not a variety. Eq(KA) is not finitely axiomatizable.

PRATT (1991) shows that ACTA and ACTL are finitely based varieties. For
regular expressions α, β, α = β is valid in KA iff it is valid in ACTA (ACTL).
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JIPSEN (1994) axiomatizes Eq(ACTL) in the form of a sequent system: FL with 0
(the lower bound) and 1 plus certain axioms and rules for *. This system does not
admit cut elimination. The decidability of Eq(ACTA) and Eq(ACTL) remains
open.

W.B. (2007) axiomatizes Eq(ACTL*) as an extension of FL by the following rules
for *:

(*L)
(Γ, An,∆⇒ B)n∈ω

Γ, A∗,∆⇒ B
, (*R)

Γ1 ⇒ A; . . . ; Γn ⇒ A
Γ1, . . . , Γn ⇒ A∗

(*L) is an ω−rule. This system is denoted ACTω.

The total language problem L(G) = Σ∗ for CFGs is Π0
1−complete. Using the

theorem from (BGS 1960) we show that the problem L(G) = Σ+ for CCGs is also
Π0

1−complete. The latter is reducible to the provability problem for ACTω,
whence Eq(ACTL*) is Π0

1−hard, and the same holds for Eq(ACTA*).
Consequently, Eq(ACTA*) is strictly contained in Eq(ACTA), and similarly for
Eq(ACTL*) and Eq(ACTL).

PALKA (2007) proves cut elimination for ACTω and a theorem on the elimination
of negative occurrences of *, which shows that Eq(ACTL*) is Π0

1.
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OTHER TOPICS

(1) Proof nets

A graph-theoretic representation of proofs in multiplicative fragments of
substructural logics, introduced by GIRARD (1987) for MLL. For
noncommutative logics, they are planar graphs. Linguists use them to represent
semantic structures of expressions (C. RETORE, P. DE GROOTE, G. PENN, G.
MORRILL, R. MOOT). BECHET (2007) gives a new proof of the PENTUS
theorem for L* (context-freeness), applying proof nets. PENTUS (2006) uses
proof nets in his proof of NP-completeness of L and related systems.

(2) Bilinear Logic and pregroups

L* is a conservative fragment of Bilinear Logic BL; the latter is the multiplicative
fragment of both Noncommutative and Cyclic MLL. Some authors use BL rather
than L* or L as a logic for grammars (V.M. ABRUSCI, C. CASADIO). LAMBEK
(1999) introduces a simplified formalism, called Compact Bilinear Logic CBL,
which arises from BL by identifying ⊗ and its dual ‘par’. Models of CBL are
called pregroups. This system is essentially stronger than BL and incompatible
with intuitionistic and classical logics. (W.B., D. BECHET, C. CASADIO, A.
PRELLER, N. FRANCEZ, M. KAMINSKI, A. KISLAK-MALINOWSKA)
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(3) Unification-based learning

W.B. and PENN (1990) apply the method of unification to design some learning
algorithms for categorial grammars (earlier W.B. 1987, VAN BENTHEM 1987).
KANAZAWA (1996, 1998) develops and studies these algorithms in direction of
Gold’s paradigm: learning from positive data. Several authors have obtained
interesting results, e.g. D. BECHET, A. FORET, J. MARCINIEC, C. RETORE, C.
COSTA FLORENCIO, B. DZIEMIDOWICZ.

(4) Type-theoretic approaches

Many authors prefer to use richer formalisms, e.g. different versions of typed
lambda-calculus or higher-order intensional logic. STEEDMAN (1988), following
H.B. CURRY, applies certain systems of combinators. RANTA (1994) develops
the ‘formulas-as-types’ paradigm as a type-theoretic grammar. DE GROOTE
(2001) introduces Abstract Categorial Grammars, in which both syntactic and
semantic structures are represented by lambda-terms, and the two levels are linked
by a homomorphism.

<www.staff.amu.edu.pl/∼buszko>
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