Luck Darnière^{*}, Markus Junker^{**}

This talk was given at the third conference on 'Algebraic and Topological Methods in Non-Classical Logics' which was held at St Anne's College and the Mathematical Institute, University of Oxford, England, 5-9 august, 2007.

1 Dimension and codimension

Let $\mathcal{L}_{\text{lat}} = \{\mathbf{0}, \mathbf{1}, \lor, \land, \le\}$ be the language of bounded lattices. Let $\mathcal{L}_{\text{HA}} = \mathcal{L}_{\text{lat}} \cup \{\rightarrow\}$. Heyting algebras, the algebraic models of intuitionistic propositional calculus, are the \mathcal{L}_{HA} -structures L whose \mathcal{L}_{lat} -reduct is a distributive bounded lattice and:

$$b \to a = \sup\{c \in L \mid c \land b \le a\}$$

We denote by L^* the **dual** of L, that is the same set with the reverse order. Let $\mathcal{L}_{HA^*} = \mathcal{L}_{lat} \cup \{-\}$. **Dual Heyting algebras** are \mathcal{L}_{HA^*} -structures which are duals of Heyting algebras, that is their \mathcal{L}_{lat} -reduct is a distributive bounded lattice and:

$$a - b = \inf\{c \in L \mid a \le b \lor c\}$$

For any given distributive bounded lattice the **spectrum** of L, denoted Spec(L), is the set of all prime filters of L, and for every a in L:

$$P_L(a) = \{ \mathbf{p} \in \operatorname{Spec}(L) / a \in \mathbf{p} \}$$

The smallest and largest elements of L are denoted **0** and **1** respectively, so $P_L(\mathbf{0})$ is the empty set and $P_L(\mathbf{1})$ is the spectrum of L. As a ranges over L, $P_L(a)$ form a basis of closed sets for the so-called Zariski's topology on Spec(L) which turns Spec(L) into a spectral space, that is a topological space homeomorphic to the spectrum of a ring. The following definitions for an element a and a prime filter **p** of L therefore come directly from algebraic geometry:

- height_L **p** is the foundation rank of **p** in Spec(L) for ' \subset '.
- coheight_L **p** is the foundation rank of **p** in Spec(L) for ' \supset '.
- dim_L $a = \sup \{ \operatorname{coheight}_L \mathbf{q} / \mathbf{q} \in P_L(a) \}$ if $a \neq \mathbf{0} (\dim_L \mathbf{0} = -\infty)$.

^{*}Dép. de mathématiques, UFR sciences, 2 Bd Lavoisier, 49045 Angers Cedex 01 (France) <code>luck.darniere_at_univ-angers.fr</code>

^{**}Mathematisches Institut, Universität Freiburg, Eckerstrasse 1, 79104 Freiburg (Germany) junker_at_mathematik.uni-freiburg.de

• $\operatorname{codim}_L a = \inf\{\operatorname{height}_L \mathbf{q} \mid \mathbf{q} \in P_L(a)\} \text{ if } a \neq \mathbf{0} \ (\operatorname{codim}_L \mathbf{0} = +\infty).$

Note that height and coheight, hence dim and codim, when they exist are ordinal-valued. However we will consider only finite values (an infinite dimension will mean that the dimension does not exist in the ordinals).

Example 1.1 Let *L* be the lattice of all closed subsets of an algebraic variety *X*. This is a dual Heyting algebra with A - B the topological closure of $A \setminus B$ (for $A, B \in L$). Then dim_{*L*} *A* (resp. codim_{*L*} *A*) is the usual geometric dimension of *A* (resp. codimension of *A* in *X*).

It follows immediately from the definition that the (co)dimension has at least the following property in any distributive bounded lattice L:

 $\dim_L a \lor b = \max(\dim_L a, \dim_L b)$ $\operatorname{codim}_L a \lor b = \min(\operatorname{codim}_L a, \operatorname{codim}_L b)$

However, from a model-theoretic point of view, these notions have a nicer behaviour in dual Heyting algebras. Indeed the above definitions are second order, but can easily be made first order in the class of dual Heyting algebras. Let us define:

 $b \ll a \iff \forall c \in L(a \leq b \lor c \Rightarrow a \leq c)$

Proposition 1.2 For any element a of a dual Heyting algebra L and any positive integer n:

1. dim_L $a \ge n$ iff there exists $a_0, \ldots, a_n \in L$ such that:

 $\mathbf{0} \neq a_0 \ll \cdots \ll a_n \leq a$

2. $\operatorname{codim}_L a \ge n$ iff there exists $a_0, \ldots, a_n \in L$ such that:

 $a \leq a_n \ll \cdots \ll a_0$

This proposition reflects the fact that the dimension was initially defined geometrically in terms of length of chains of *closed sets*, and that any dual Heyting algebras L is canonically represented (via the map $a \mapsto P_L(a)$) as an \mathcal{L}_{HA^*} -substructure of the dual Heyting algebra of all *closed subsets* of SpecL.

2 The finitely presented case

To any element a of a distributive bounded lattice L one can attach four magnitudes: its dimension and co-dimension as an element of L but also as an element of L^* . In the case of a finitely presented Heyting algebra L, all the four notions are first order definable because L and L^* are both dual Heyting algebras (L is bi-Heyting). Let us first consider the case of H_n , the free Heyting algebra with n generators. **Proposition 2.1** Let a be any element of $H_n \setminus \{1\}$.

- 1. $\operatorname{codim}_{H_n} a$ and $\operatorname{dim}_{H_n^*} a$ are infinite.
- 2. If a is \wedge -irreducible then $\dim_{H_n} a$ is finite.
- 3. $\operatorname{codim}_{H_n^*} a$ is finite.

So the dual codimension seems the most interesting one while dealing with H_n . However the dimension carries also some information on the set K_n of \wedge -irreducible elements of H_n . This set can be canonically identified with the underlying set of the Kripke model constructed in [Bel86]. Our stratification of K_n by the dimension corresponds exactly to the 'levels' of [Bel86].

This remark generalises to all the results of this section: most of them are folklore (see [Bel86], [EK90], [Bez06] among many others) but we expect our interpretation in terms of (co)dimension to shed new light on them.

For any positive integer p let pL denote the set of elements of L such that $\operatorname{codim}_{L^*} a \geq p$. This is a filter of L (uniformly definable in the class of Heyting algebras) hence the quotient L/pL is a Heyting algebra.

Proposition 2.2 Let L be a finitely generated Heyting algebra and p a positive integer.

- 1. There are finitely many \wedge -irreducible elements a of L which do not belong to pL.
- 2. L/pL is finite, it is order-isomorphic (via the projection map) to the lower semi-lattice generated by the \wedge -irreducible elements of $L \setminus pL$.
- 3. pL is a principal filter whose generator is uniformly definable (in the class of Heyting algebras with a fixed number of generators).

As p ranges over the positive integers, the quotients L/pL form a projective system of finite Heyting algebra. We call **profinite completion** of L the projective limit \hat{L} of this system. This is a Heyting algebra which is \lor -complete and \land -complete, as a profinite lattice. The universal property of projective limits gives a canonical map from L to \hat{L} .

Proposition 2.3 Let L be a finitely presented Heyting algebra.

- 1. $\operatorname{codim}_{L^*} a$ is finite for every $a \neq \mathbf{1}$, in other words $\bigcap_{p \geq 0} pL = \{\mathbf{1}\}$ hence the canonical map from L the \hat{L} is an embedding.
- 2. $d(a,b) = 2^{-\operatorname{codim}_{L^*}(a \to b) \land (b \to a)}$ defines an ultra-metric distance on L, and \hat{L} is the completion of L for this distance.
- 3. The \wedge -irreducible elements of L and \hat{L} are the same. They are completely \wedge -irreducible.

This proposition suggests an analogy between the structure (and the modeltheory) of the profinite completion of a finitely presented Heyting algebra and the ring \mathbb{Z}_p of *p*-adically integers, which is both the completion of \mathbb{Z} for the *p*-adic distance and the projective limit of its finite quotients $\mathbb{Z}/p^l\mathbb{Z}$ (for all positive integers *l*). This analogy is sometimes misleading: while the ring \mathbb{Z}_p has a model-complete and decidable theory, the free Heyting algebra with *l* generators is undecidable for every $l \geq 2$. Nevertheless it leads us to the following questions, for every finitely presented Heyting algebra *L*, or at least for H_n .

Question 2.4 Is the inclusion of L into \hat{L} an existentially closed embedding?

This is essentially asking whether or not, when an equation t(x) = 1 (with t an \mathcal{L}_{HA} -term) has a solution in \hat{L} , then it has a solution in L. By analogy with Hensel's lemma for p-adic integers, one can sharpen this question:

Question 2.5 Is it possible to compute, for each \mathcal{L}_{HA} -term t, a positive integer p such that if $t(x) = \mathbf{1}$ has a solution in L/pL (possibly satisfying some additional conditions) then it has a solution in L?

Passing from existential formulas to arbitrary formulas we can even ask whether the inclusion of L into \hat{L} is an elementary embedding. In this direction one can prove:

Proposition 2.6 The set of generators of H_n is definable in H_n and in \hat{H}_n by the same formula.

3 The finite dimensional case

In order to use a geometric intuition it is more convenient in this section to dualize once for all, hence to work in dual Heyting algebras. A positive integer N is given, and a language $\mathcal{L}_{\mathrm{SC}_N} = \mathcal{L}_{\mathrm{HA}^*} \cup \{\mathrm{C}^i\}_{0 \leq i \leq N}$ where the C^i 's are unary function symbols. An *N*-scaled lattice (see [Dar06]) is an $\mathcal{L}_{\mathrm{SC}_N}$ -structure whose $\mathcal{L}_{\mathrm{HA}^*}$ -reduct is a dual Heyting algebra and for every a, b in L:

- $a = C^0(a) \vee C^1(a) \vee \cdots \vee C^N(a).$
- For every *i*, if $C^i(a) \leq b$ then $\dim_L C^i(a) b = i$.
- For every $i \neq j$, $\dim_L C^i(a) \wedge C^j(a) < \min(i, j)$.

Example 3.1 Let L be the lattice of all closed subsets of an algebraic variety X of dimension N. For any $A \in L$ let $C^i(A)$ be its i-th pure dimensional component, that is the (possibly empty) union of all the irreducible components of A of dimension i. This turns L into an N-scaled lattice. Notice that in this motivating example as well as in every N-scaled lattice, the \mathcal{L}_{SC_N} -structure is definable in the lattice structure.

Proposition 3.2 Every finitely generated substructure of an N-scaled lattice is finite.

This result, which contrasts with the situation in (dual) Heyting algebras, holds essentially because in N-scaled lattices the dimension of the elements is uniformly bounded (by N).

Theorem 3.3 The theory of N-scaled lattices admits a decidable model completion, axiomatized by the following two properties:

- Catenarity. For every r < q < p, if $C^{r}(c) < C^{p}(a)$ then there exists $b \in L$ such that $C^{r}(c) < C^{q}(b) < C^{p}(a)$.
- Splitting. If a (b₁ ∨ b₂) = a ≠ 0 then a = a₁ ∨ a₂ for some a₁, a₂ in L such that b₁ < a₁ = a a₂, b₂ < a₂ = a a₁ and b₁ ∧ b₂ = a₁ ∧ a₂.

It is worthwhile to notice that this last axiom only concerns the \mathcal{L}_{HA^*} -structure of the *N*-scaled lattice. It asserts that in a very strong sense there is no 'connected' elements in *L*, hence in particular no atom.

4 The general case?

Using a theorem of A. Pitts in [Pit92], S. Ghilardi and M. Zawadowski proved in [GZ97] the existence of a model-completion for the theory of Heyting algebras. The proof of Pitts being purely proof-theoretic, little is known about this model-completion, in particular no enlightening axiomatisation is given. They only noticed that the strict order \ll (see section 1) in the dual of any existentially closed Heyting algebra is dense. We can prove something more:

Proposition 4.1 The dual of any existentially closed Heyting algebra satisfies the splitting property of theorem 3.3.

This and other partial results then lead us to the following conjecture:

Conjecture 4.2 The theory of Heyting algebras whose dual has a dense \ll order and satisfy the splitting property, is the model-completion of the theory of Heyting algebras.

References

- [Bel86] Fabio Bellissima. Finitely generated free Heyting algebras. J. Symbolic Logic, 51(1):152–165, 1986.
- [Bez06] Nick Bezhanishvili. Lattices of intermediate and cylindric modal logics. Phd thesis, Universiteit van Amserdam, January 2006.
- [Dar06] Luck Darnière. Model-completion of scaled lattices. arXiv math 0606792, June 2006.

- [EK90] Marcel Erné and Ralph Kopperman. Natural continuity space structures on dual Heyting algebras. Fund. Math., 136(3):157–177, 1990.
- [GZ97] Silvio Ghilardi and Marek Zawadowski. Model completions and r-Heyting categories. Ann. Pure Appl. Logic, 88(1):27–46, 1997.
- [Pit92] Andrew M. Pitts. On an interpretation of second-order quantification in first-order intuitionistic propositional logic. J. Symbolic Logic, 57(1):33– 52, 1992.