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Outline of talk

1. Algebras (here, distributive lattices) with adjoint modalities

2. Gentzen and Belnap style sequent calculi

3. Rules of our calculus, soundness

4. Cut elimination argument

5. Consequences (completeness, decidability)

6. Conclusion and future plans
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Algebras with adjoint modalities

Classical algebraic modal logic

Boolean Algebra with De Morgan dual operators (�, ♦)

Non-classical algebraic modal logic

weaken the base and the duality

Heyting algebra with ’dual’ operators

Complete lattice with *adjoint* operators
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Distributive Lattices with Adjoint Modalities (DLAM)

Let A be a set, with elements called agents. A DLAM over A is a
bounded distributive lattice L with an A-indexed family of maps
{fA}A∈A : L → L, each with a right adjoint �A : L → L. The
following are then satisfied (for finite joins and meets):

fA(l) ≤ l′ iff l ≤ �Al′

fA(
∨
i

li) =
∨
i

fA(li)

�A(
∧
i

li) =
∧
i

�A(li)

In particular, fA⊥ = ⊥ and �A> = >; and all fA and �A are
order-preserving. If the lattice is complete, then the existence of
the right adjoints follows routinely provided the maps fA (exist
and) preserve arbitrary joins.
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Application

Reasoning about knowledge of agents A ∈ A

m, m′ ∈M : logical propositions

m ∨m′, m ∧m′: logical disjunction, conjunction

m ≤ m′: logical consequence

fA(m): appearance of agent A about m

All the propositions that appear to agent A

to be true when m holds in reality.

�A m: agent A knows that m
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Gentzen-style sequent calculi

Sequent calculi for reasoning about lattices are old; there are
two forms. The first [3,2] considers sequents of “atoms” t ≤ t′

and is useful to decide quasi-equations in lattice theory, e.g.

Γ ⇒ s ≤ t Γ ⇒ s ≤ t′

Γ ⇒ s ≤ t ∧ t′
R∧

The second kind (see [5]) considers sequents of terms, with the
sequent arrow to represent the lattice order ≤, and, with

t = t′ iff t ⇒ t′ and t′ ⇒ t,

decides the equational theory of distributive lattices, e.g. with

Γ ⇒ t Γ ⇒ t′
Γ ⇒ t ∧ t′

R∧

Ours is a generalisation of this second kind.
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Gentzen-style sequent calculi, 2

[1] gives a Gentzen-style calculus (of the second kind) for mod-

elling epistemic actions as resources. The calculus allows rea-

soning about systems, modelled by a quantale Q acting on a

Q-module of epistemic propositions and facts.

The calculus includes a cut rule; this appears to be non-admissible;

we seek to remedy this as a basis for automation of proof search.
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Belnap-style sequent calculi

Our calculus also includes agents, whose presence forces a richer

structure of sequents. Moortgat [4] attributes this to Belnap,

and exploits it (in a linguistic context) for residuated lattices with

modal operators. (Our work is thus a variation on Moortgat’s

work, distinguished by organisation of rules to allow Weakening

to be admissible.)
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Syntax of our calculus: Formulae, items, contexts

The set M of formulae m of our language is generated over a set

A of agents A and a set At of atoms p by the following grammar:

m ::= ⊥ | > | p | m ∧m | m ∨m | �A m | fA(m)

Items I, J, . . . and contexts Γ, ∆, . . . are generated by the following

syntax:

I ::= m | ΓA

Γ ::= {I, I, · · · , I}

Thus, contexts are finite sets of items, whereas items are either

formulae or contexts annotated with an agent.
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Syntax of our calculus: Contexts with holes

The notion of context-with-a-hole Γ[] is defined as follows:

Γ[] ::= (Γ, []) | (Γ, Γ[]A)

and so a context-with-a-hole is a context (i.e. a set of items)
together with either a hole or an agent-annotated context-with-
a-hole. Note that a context-with-a-hole is not a context.

The result Γ[Γ′] of applying Γ[] to a context Γ′, replacing the
hole [] by Γ′, is a context, defined recursively as follows:

(Γ, []) Γ′ = Γ, Γ′

(Γ, Γ′′[]A) Γ′ = Γ, Γ′′[Γ′]A

where the commas in the right-hand sides indicate set union.
This will often be applied in the particular case where Γ′ is a
single item (treated as a one-element set).
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Rules of our calculus: Axioms (initial sequents)

Γ, m ` m Id Γ[⊥] ` m
⊥L Γ ` > >R

Note that the ⊥L rule allows the ⊥ to appear anywhere (as

an item) deep inside the context, whereas the Id rule requires

the principal formula to appear at top level in the context.

This captures the requirement that (in the lattice interpretation)

fA(⊥) = ⊥ (this is not generally true for arbitrary elements).
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Rules of our calculus: Rules for the lattice operations

Γ[m1, m2] ` m
Γ[m1 ∧m2] ` m

∧L
Γ ` m1 Γ ` m2

Γ ` m1 ∧m2
∧R

Γ[m1] ` m Γ[m2] ` m
Γ[m1 ∨m2] ` m

∨L
Γ ` mi

Γ ` m1 ∨m2
∨Ri
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Rules of our calculus: Rules for the modal operations

Γ[mA] ` m′

Γ[fA(m)] ` m′
fAL Γ ` m

Γ′[ΓA] ` fA(m)
fAR

Γ[m] ` m′

Γ[(�Am)A] ` m′
�AL ΓA ` m

Γ ` �A m
�AR
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Rules of our calculus: Interaction between exponentiation

and meet

Finally, we need a rule (named K, following [4])

Γ[Γ′A, Γ′′A] ` m

Γ[(Γ′, Γ′′)A] ` m
K
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Example Derivations

m ` m
mA ` fA(m)

fAR

m ` �AfA(m)
�AR

m ` m
(�Am)A ` m

�AL

fA(�Am) ` m
fAL

m ` m
mA ` fA(m)

fAR

mA ` fA(m) ∨ fA(m′)
∨R

m′ ` m′

m′A ` fA(m′)
fAR

m′A ` fA(m) ∨ fA(m′)
∨R

(m ∨m′)A ` fA(m) ∨ fA(m′)
fA(m ∨m′) ` fA(m) ∨ fA(m′)

fAL

(Converse of the last is easy.)
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Example Derivations, 2

m, m′A ` m

mA, m′A ` fA(m)
fAR

mA, m′ ` m′

mA, m′A ` fA(m′)
fAR

mA, m′A ` fA(m) ∧ fA(m′)
∧R

(m ∧m′)A ` fA(m) ∧ fA(m′)
K

fA(m ∧m′) ` fA(m) ∧ fA(m′)
fAL
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Semantics of sequents; soundness:

Let L be a DLAM over A. An interpretation of the set M of formu-

lae (over the atoms At and agents A in L) is a map: [[−]]: At→ L.

Meaning of a formula: by induction on the structure, e.g.

[[m1 ∧m2]] = [[m1]] ∧ [[m2]], [[fA(m)]] = fA([[m]])

Meaning of an item

[[m]] = as above, [[ΓA]] = fA([[Γ]])

Meaning of a context

[[{I1, . . . , In}]] = [[I1]] ∧ . . . ∧ [[In]]
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Semantics of sequents; soundness:

Let L be a DLAM.

Definition. Truth.
A sequent Γ ` m is true in an interpretation [[−]] in L iff [[Γ]] ≤ [[m]].
A sequent Γ ` m is true in L iff true in every interpretation in L.

Definition. Satisfiability.
A sequent Γ ` m is satisfiable (in L) iff there is an interpretation
(in L) in which it is true.

Definition. Validity.
A sequent Γ ` m is valid iff it is true in all interpretations.

Theorem. Soundness.
Any derivable sequent is valid.
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Admissible Structural Rules

Lemma. The following Weakening rule is admissible

Γ′[Γ] ` m
Γ′[Γ′′[Γ]] ` m

Wk

Proof. Induction on the height of the derivation of the premiss.

As an example, we suppose the last step is by fAR, with premiss

Γ′[∆] ` m′, where ∆A = Γ and fA(m′) = m. By inductive hy-

pothesis, we can derive Γ′[Γ′′[∆]] ` m′, whence, by fAR, we can

derive Γ′[Γ′′[∆A]] ` fA(m′), i.e. we can derive Γ′[Γ′′[Γ]] ` m. �

Since (in the definition of ‘context’) we are using sets rather

than multisets or lists, there is no need to show admissibility of

Contraction or Exchange.
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Cut elimination

Theorem. The Cut rule is admissible

Γ′ ` m Γ[m] ` m′

Γ[Γ′] ` m′
Cut

Proof. Strong induction on the rank of the cut, where the rank

is given by the pair (size of cut formula m, sum of heights of

derivations of premisses).
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Cut elimination: example step

Suppose the cut formula is fA(m) and is principal in both pre-

misses:

Γ ` m
Γ′′[ΓA] ` fA(m)

fAR Γ′[mA] ` m′

Γ′[fA(m)] ` m′
fAL

Γ′[Γ′′[ΓA]] ` m′
Cut

transforms to

Γ ` m Γ′[mA] ` m′

Γ′[ΓA] ` m′
Cut

Γ′[Γ′′[ΓA]] ` m′
Wk
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Consequences (transitivity)

Theorem. From m ` m′ and m′ ` m′′ follows m ` m′′.
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Consequences (completeness)

Theorem. Let m, m′ be formulae (in a language over the set A
of agents. The following are equivalent:

1. m ` m′;

2. m ≤ m′ is true in all DLAMs over A;

3. m ≤ m′ is true in all complete DLAMs over A.

Thus, the sequent calculus is (w.r.t. the given semantics) sound

and complete.
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Consequences (proof of completeness, 3 implies 1)

Routine Lindenbaum-Tarski construction and completion.
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Consequences (decidability)

Straightforward, using the sub-formula property and a loop-checker.

Is there a simple variant that allows avoidance of a loop-checker?
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Conclusion and future plans

1. changing the representation, e.g. multi-sets or lists rather
than sets

2. proof-theoretic and implementation issues, e.g. invertibility
lemmas, termination, loop-checking

3. enriching the base: Heyting algebras, quantales (for Linear
Logic), systems [1]

4. comparing with other calculi for modal logics, e.g. deep infer-
ence systems (Guglielmi, Stouppa, Stewart, Brünnler, . . . )
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