Bisimulations of descriptive frames

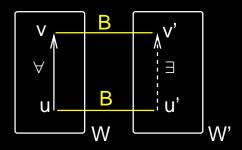
Nick Bezhanishvili, Gaëlle Fontaine and Yde Venema

University of Leicester and ILLC (Amsterdam)

Bisimulations of descriptive frames

Frames

Kripke frame



descriptive frame

Coalgebras

coalgebra for the powerset functor

$$A \stackrel{\pi}{\longleftarrow} B \stackrel{\pi'}{\longrightarrow} A'$$

$$\sigma \downarrow \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \sigma'$$

$$\mathcal{P}(\pi) \qquad \forall \qquad \mathcal{P}(\pi') \qquad \forall \sigma'$$

$$\mathcal{P}(A) \stackrel{\forall}{\longleftarrow} \mathcal{P}(B) \stackrel{\mathcal{T}(\pi')}{\longrightarrow} \mathcal{P}(A')$$

coalgebra for the Vietoris functor

$$A \stackrel{\pi}{\longleftarrow} B \stackrel{\pi'}{\longrightarrow} A'$$

$$\sigma \downarrow \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \sigma'$$

$$V(A) \stackrel{V}{\longleftarrow} V(B) \stackrel{V(\pi')}{\longrightarrow} V(A')$$

Outline

Recall:

- bisimulations for Kripke frames
- descriptive frames: in the Kripke semantic and as coalgebras
- bisimulations for coalgebras

Results:

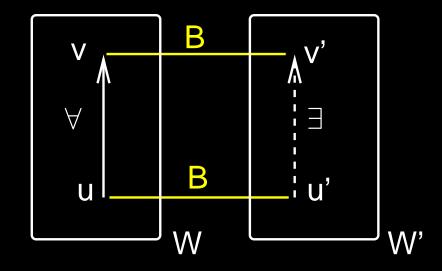
- definition of a bisimulation for descriptive frames
- properties of bisimulations for descriptive frames

Remark. restriction to frames (instead of models) for simplicity

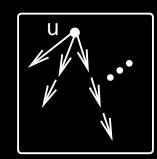
Bisimulation for Kripke frames

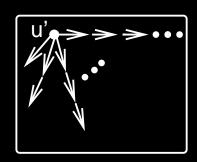
 $B \subseteq W \times W'$ is a bisimulation between (W,R) and (W',R') if

- back condition: if (u,u') in B and uRv, there exists v' s.t. (v,v') in B and u'R'v'
- forth condition: if (u,u') in B and u'R'v', there exists v s.t. (v,v') in B and uRv

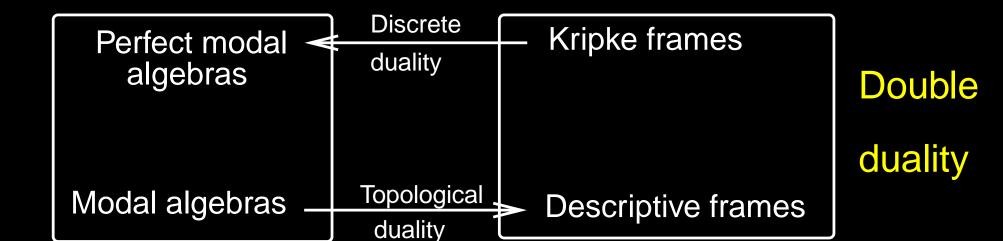


Remark: modal equivalence \neq bisimilarity





Descriptive frames



- Descriptive frame: (Stone space X, relation R) s.t.
 - for all $x \in X$, $\{y \mid xRy \}$ is closed
 - if U is clopen, then $\{x \mid \exists y \in U \text{ s.t. } xRy \}$ is clopen
- Result: every modal logic is complete with respect to a class of descriptive frames

Descriptive frames as coalgebras

A coalgebra for a functor F in a category C is a pair (A, σ : A \rightarrow F(A))

Frames

Kripke frame: (set W, relation R)

Coalgebras

coalgebra for the powerset functor P in Set:

(W, R[.]: W
$$\rightarrow \mathcal{P}$$
 (W))
R[.]: x \mapsto { y | xRy }

descriptive frame:
(Stone space X, relation R)

coalgebra for the Vietoris functorV in Stone Spaces:

$$(X, R[.]: X \rightarrow V(X))$$

R[.]: $x \mapsto \{ y \mid xRy \}$

Descriptive frames as coalgebras

Frames

- Kripke frame
- descriptive frame: (Stone space X, relation R)

Coalgebras

- ullet coalgebra for the powerset functor ${\mathcal P}$ in Set
- coalgebra for the Vietoris functor V in Stone Spaces:
 (X, R[.]: X → V (X))
 R[.]: x ↦ { y | xRy }

Def. If X Stone space, the Vietoris space of X is the space $(V(X), \tau)$, where

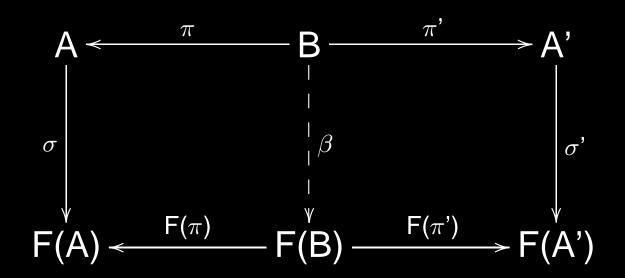
- ullet V(X) = { F \subseteq X | F closed }
- τ has as subbasis the sets

$$\begin{cases} [\ni] \ \mathsf{U} = \{ \ \mathsf{F} \ \mathsf{closed} \ | \ \mathsf{F} \subseteq \mathsf{U} \ \}, \\ <\ni> \mathsf{U} = \{ \ \mathsf{F} \ \mathsf{closed} \ | \ \mathsf{F} \cap \mathsf{U} \neq \emptyset \ \}, \end{cases}$$

where U ranges over open subsets of X.

Bisimulation for coalgebras

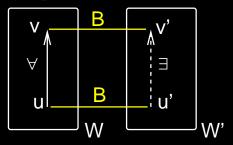
Definition. B bisimulation between (A,σ) and (A',σ') if there exists β : B \rightarrow F(B) s.t. the diagram commutes:



Bisimulations for descriptive frames

Frames

Kripke frame



Coalgebras

P-coalgebra

$$A \stackrel{\pi}{\longleftarrow} B \stackrel{\pi'}{\longrightarrow} A'$$

$$\sigma \downarrow \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \sigma'$$

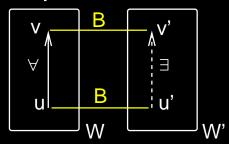
$$\mathcal{P}(\pi) \qquad \forall \qquad \mathcal{P}(\pi') \qquad \forall \sigma'$$

$$\mathcal{P}(A) \stackrel{\psi}{\longleftarrow} \mathcal{P}(B) \stackrel{\mathcal{P}(\pi')}{\longrightarrow} \mathcal{P}(A')$$

Bisimulations for descriptive frames

Frames

Kripke frame



descriptive frame

Coalgebras

P-coalgebra

$$A \stackrel{\pi}{\longleftarrow} B \stackrel{\pi'}{\longrightarrow} A'$$

$$\sigma \downarrow \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \sigma'$$

$$\mathcal{P}(\pi) \qquad \qquad \mathcal{P}(\pi) \qquad \mathcal{P}(\pi') \qquad \mathcal{P}(A')$$

$$\mathcal{P}(A) \stackrel{\pi}{\longleftarrow} \mathcal{P}(B) \stackrel{\pi'}{\longrightarrow} \mathcal{P}(A')$$

V-coalgebra

$$A \stackrel{\pi}{\longleftarrow} B \stackrel{\pi'}{\longrightarrow} A'$$

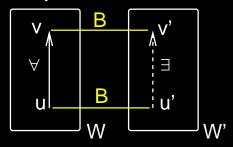
$$\sigma \downarrow \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \sigma'$$

$$V(A) \stackrel{\gamma}{\longleftarrow} V(B) \stackrel{\gamma}{\longrightarrow} V(A')$$

Bisimulations for descriptive frames

Frames

Kripke frame



descriptive frame

Coalgebras

P-coalgebra

$$A \stackrel{\pi}{\longleftarrow} B \stackrel{\pi'}{\longrightarrow} A'$$

$$\sigma \downarrow \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \sigma'$$

$$\mathcal{P}(\pi) \qquad \forall \qquad \mathcal{P}(\pi') \qquad \downarrow \sigma'$$

$$\mathcal{P}(A) \stackrel{\psi}{\longleftarrow} \mathcal{P}(B) \stackrel{\mathcal{P}(\pi')}{\longrightarrow} \mathcal{P}(A')$$

V-coalgebra

$$\begin{array}{c|cccc}
A & \stackrel{\pi}{\longleftarrow} B & \stackrel{\pi'}{\longrightarrow} A' \\
\sigma & & |\beta & |\sigma' \\
V(A) & \stackrel{\forall}{\longleftarrow} V(B) & \stackrel{}{\longrightarrow} V(A')
\end{array}$$

Theorem. B \subseteq W x W' is a bisimulation between descriptive frames (W,R, τ) and (W',R', τ ') iff

- B Kripke bisimulation between (W,R) and (W',R')
- **■** B \subseteq (W, τ) x (W', τ ') is closed

Results

Remind. bisimulation for descriptive frames = closed Kripke bisimulation

Hennessy-Milner property: bisimilarity = modal equivalence

Results

Remind. bisimulation for descriptive frames = closed Kripke bisimulation

- Hennessy-Milner property: bisimilarity = modal equivalence
- Link between Kripke bisimulation and bisimulation for descriptive frames?
 - If B bisimulation for descriptive frames, then B Kripke bisimulation
 - Main result:

Theorem. Let (W,R,τ) and (W',R',τ') be descriptive frames. If $B \subseteq W \times W'$ is a Kripke bisimulation between (W,R) and (W',R'), its closure \overline{B} is a Vietoris bisimulation between (W,R,τ) and (W',R',τ') .

Corollary. Kripke bisimilarity = bisimilarity for descriptive frames

Conclusion

- use coalgebras to get a notion of bisimulation for descriptive frames (bisimulation = closed Kripke bisimulation)
- nice link between Kripke bisimulations and bisimulations for descriptive frames

Further work

• generalize the link between \mathcal{P} on Set and \mathcal{V} on Stone Spaces to arbitrary F on Set and G on Stone Spaces?