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Outline

Recall:
& Dbisimulations for Kripke frames
& descriptive frames: in the Kripke semantic and as coalgebras

& bisimulations for coalgebras

Results:
& definition of a bisimulation for descriptive frames

& properties of bisimulations for descriptive frames

Remark. restriction to frames (instead of models) for simplicity



Bisimulation for Kripke frames

B C W x W'is a bisimulation
between (W,R) and (W’,R’) if

& back condition: if (u,u’) in B and
URv, there exists v’ s.t. (v,V') In
B and U'R'V’

& forth condition: If (u,u’) in B and
U'R’v’, there exists v s.t. (v,V))
iIn B and uRv

Remark: modal equivalence # bisimilarity
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Descriptive frames

Perfect modal < :L:irtite Kripke frames
algebras Double
duality
Modal algebras TZpO'Iig'Ca' = Descriptive frames
uality

& Descriptive frame: (Stone space X, relation R) s.t.
o forallx e X, {y| xRy }is closed
s if Uis clopen,then { x| 3y € Us.t. xRy } is clopen

& Result: every modal logic is complete with respect to a class of
descriptive frames



Descriptive frames as coalgebras

A coalgebra for a functor F in a category C is a pair (A, o: A — F(A))

Frames Coalgebras
& Kiripke frame: & coalgebra for the powerset
(set W, relation R) functor P in Set:

(W, RL]: W — P (W))
RL.]: x—{y|xRy}

& descriptive frame: & coalgebra for the Vietoris functor
(Stone space X, relation R) V) In Stone Spaces:
(X, R[.]: X =V (X))
R x— {y[xRy}



Descriptive frames as coalgebras

Frames Coalgebras
£ Kripke frame £ coalgebra for the powerset functor P in Set
& descriptive frame: & coalgebra for the Vietoris functor V in Stone Spaces:
(Stone space X, relation R) (X, RL]: X =V (X))

R[.]: x— {y| xRy}

Def. If X Stone space, the Vietoris space of X is the space (V(X), 1), where
o V(X)={FCX|Fclosed }

& 7 has as subbasis the sets

[>]U={Fclosed |FC U},
<3>U={Fclosed | FNU=#0},

where U ranges over open subsets of X.



Bisimulation for coalgebras

Definition. B bisimulation between (A,s) and (A’,o’) if there
exists 5. B — F(B) s.t. the diagram commutes:

F(A)



Bisimulations for descriptive frames
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Bisimulations for descriptive frames
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Bisimulations for descriptive frames

Frames Coalgebras
& Kripke frame & ‘P-coalgebra
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Theorem. B C W x W’ is a bisimulation between descriptive frames (W,R,7)
and (W',R’,7) iff

& B Kripke bisimulation between (W,R) and (W’,R’)
s BC (W, r)x(W',7)is closed



Results

Remind. bisimulation for descriptive frames = closed Kripke bisimulation

& Hennessy-Milner property: bisimilarity = modal equivalence



Results

Remind. bisimulation for descriptive frames = closed Kripke bisimulation

& Hennessy-Milner property: bisimilarity = modal equivalence

& Link between Kripke bisimulation and bisimulation for descriptive frames?

s If B bisimulation for descriptive frames, then B Kripke bisimulation

s Main result:

Theorem. Let (W,R,7) and (W’,R’,7") be descriptive frames.
If B C W x W’ is a Kripke bisimulation between (W,R) and (W’,R"), its
closure B is a Vietoris bisimulation between (W,R,7) and (W’,R’,7).

Corollary. Kripke bisimilarity = bisimilarity for descriptive frames



Conclusion

& use coalgebras to get a notion of bisimulation for descriptive frames
(bisimulation = closed Kripke bisimulation)

& nice link between Kripke bisimulations and bisimulations for descriptive
HEIES

Further work

& generalize the link between P on Set and V on Stone Spaces to
arbitrary F on Set and G on Stone Spaces?
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