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Basic structural rules

Letters «, 6 denote formulas in the language
{A\,V,\,/,,1,0}; T', 3, IT denote sequences of formulas, and
U denotes either a formula or the empty set.
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Basic structural rules

Letters «, 3 denote formulas in the language Tie
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{A\,V,\,/,,1,0}; T', 3, IT denote sequences of formulas, and RO

U denotes either a formula or the empty set. Substructurallogcs
Residuated lattices
Structural rules
Separated rules
eparated rules
F’ a, /6, E :> \Ij ( ) F, a, Qf, E :> \Ij ( ) zeﬁara:edequations
e C Simple rules
F, /8, CY, E :> \Ij F, Oé, E :> \Ij Cor:pletingrules
Completing equations
Cut elimination
ules without completion
F’E:>\Ij (_) Fj () Srooft t e
1 O . Open Problems
F, a, Z :> \Ij F :> \Ij (W) — (1) _|_ (O) BiFl))Iiography

The rules exchange (e), contraction (c), left (i) and right (0)
weakening are called structural.

The system FL full Lambek calculus is obtained from LJ by
removing all structural rules and adding rules for -, \, /, 1, 0.



Substructural logics

We write ® gy, v, if the sequent = v is provable in FL from
the set of sequents {( = ¢)|¢p € D}.
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Substructural logics

We write ® gy, v, if the sequent = v is provable in FL from
the set of sequents {( = ¢)|¢p € D}.

A substructural logic (over FL) is a set of formulas closed
under gy, and substitution. (Equiv.: consequence relation).
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Substructural logics

We write ® Fgy, 9, if the sequent = ¢ is provable in FL from e
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the set of sequents {( = ¢)|¢ € }. The system FL
Basic structural rules
- -
A substructural logic (over FL) is a set of formulas closed e
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= many-valued (Lukasiewicz), -
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= pasic (Hajek),

= relevance (Anderson, Belnap),

= paraconsistent (Johansson),

= (the multiplicative additive fragment of) linear logic (Girard).

An equivalent Hilbert-style system has inference rules
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Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is
an algebra L = (L, A, V, -, \,/,1) such that

= (L,A\,V) is a lattice,
= (L,-,1)is a monoid and
m foralla,b,ce L,ab<csa<c/b<b<a\c

An FL-algebra expands a residuated lattice by an extra
constant 0. FL donotes the variety of FL-algebras.
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= (L,A\,V)is a lattice,
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An FL-algebra expands a residuated lattice by an extra
constant 0. FL donotes the variety of FL-algebras.

Theorem. FL is an equivalent algebraic semantics for it Fgy,.
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N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated
Lattices: an algebraic glimpse at substructural logics, Studies
In Logics and the Foundations of Mathematics, Elsevier,
2007.
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Separated rules

A structural rule of the form Tite
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A structural rule of the form Tite
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Lemma The interpretation of a separated structural rule is
equivalent, over the theory of FL, to an equation.



Separated rules

Consider the separated structural rule
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L'y, 8,0,0,v,A =V

Its interpretation is equivalent to the quasiequation

aca < 0and bchb < 0andcafbc < d=— cbfac < d

Title

Overview

The system FL
Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
SEEIECO RS

Separated equations
Simple rules

Completing rules
Completing equations
Cut elimination

Rules without completion
Proof

Open Problems

Bibliography




Separated rules

Consider the separated structural rule Tie

Overview
The system FL

a, ’77 (0 :> /67 ’77 /8 :> F’ ’)/’ a, ¢’ /8’ ’7/7 A :> \:D Basic structural rules

Substructural logics

]:‘7 ,Y, /87 ¢7 Oé, /7’ A —S \Ij Residuated lattices

Structural rules

. . . 5 . . Separated rules
Its interpretation is equivalent to the quasiequation ST
eparated equations
Simple rules
aca < 0and bchb < 0andcafbc < d=— cbfac < d s s
ompleting equations
Cut elimination

For the choice of variables ¢ for aca, b for beb and f for ca fbe Rules witout completion

Proof

we obtain the equation Open Problems

Bibliography

b flad < d

where ¢ =cAa\0/a, b’ =bA0/cband " = f A ca\d/be.



Separated rules

Consider the separated structural rule me
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Separated equations

For a set of variables V', we define the set of separated
formulas (or terms) sep(V') as the smallest set such that

1. {0, T}UV Csep(V), (if T is in the language),
2. ift1,t5 € sep(V), then ty Aty € sep(V),

3. ifsisa{-,V,1}-term with no variable from V" and
t € sep(V), then s\t,t/s € sep(V).
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Separated equations

For a set of variables V', we define the set of separated
formulas (or terms) sep(V') as the smallest set such that
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A substitution ¢ is called separated, relative to V, if there are
variables x1,...,z, notin V and terms ¢y, ...,t, € sep(V)

such that o(z;) = x; A t;, for all 4, and o fixes all other
variables.
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An equation is called separated, if it is of the form o(¢) < z,
where o is a separated substitution, ¢t € sep(V') and z € V.



Separated equations
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variables x4, ...,z, notin V and terms t4,...,t, € sep(V) A
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An equation is called separated, if it is of the form o(¢) < z,
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Simple rules

A substructural rule is called simple if it is of one of the forms

T = T = I T, A=V LY, A=V
[Ty, A=W
T = T =
T, =

where ¥ Is a metavariable for formulas or the empty set, I', A
are metavariables for sequences of formulas and

5, X4,..., T, are specific sequences of metavariables for

sequences of formulas, and Yy is linear.
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Simple rules

A substructural rule is called simple if it is of one of the forms

T = T = I T, A=V LY, A=V
F,To,Ai\If
T = T =
T, =

where ¥ is a metavariable for formulas or the empty set, I', A
are metavariables for sequences of formulas and

5, X4,..., T, are specific sequences of metavariables for
sequences of formulas, and Yy is linear.

Lemma. The interpretation of a simple structural rule is
equivalent, over the theory of FL, to an equation of the form

o(to) <o(t1V...Vin),

where ¢; Is a product of variables, for all 7, ¢, Is linear, and o
is a simple (V' = ()) substitution.
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Completing rules

Theorem. [CGT] (cf. [Ter]) Every separated rule is
equivalent, over FL, to a simple rule.
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Completing rules

Theorem. [CGT] (cf. [Ter]) Every separated rule is e
equivalent, over FL, to a simple rule. The system FL
Basic structural rules
Substructural logics
Redundand premises: Remove premises that involve peadhael Bees
variables not occuring in the conclusion. Seperea s
Separated equations
Sequencing: Replace lower-case letters by upper-case ones.
Completing equations
F) Q{, Q :> \Ij P) 1__[7 H :> \Ij Cutelim.ination .
Rules without completion
F,Q’:>\If > F)H:}\If Proof

Open Problems
Bibliography

Linearizarion: Make sure all occurences of the variables are

distinct.
o= 0 a1 =0 a9 =0

a, =0 ~ a1, 0 = 0

Contexting: Uniformly enter a contextI', . A = U,

I'Nagr =0 I'as=9 oy, A=V T'asy, A=V
F,Cvl,afg = 0 ~ F,Oél,OéQ,Ai\If




Completing equations
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atas < ay VvV as
a1 Vas < G\p/D = ajas < G\p/D
a1 < G\p/D & ay < G\p/D = a1a: < G\p/D
Ga1D < p & GasD < p— GajasD <p

INoy, A=V TI'a, A=V
F,Oél,OZQ,A:>\P

(min)



Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut
elimination.

Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].
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Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut
elimination.

Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (W, B) are defined in [GJ].

To an FL-algebra L, we associate a Gentzen frame (W¢g, L).
Also, to a Gentzen frame (W, B), we associate its dual
algebra R(W), which is an FL-algebra.

Title

Overview

The system FL

Basic structural rules
Substructural logics
Residuated lattices
Structural rules
Separated rules
Separated rules
Separated equations
Simple rules
Completing rules
Completing equations
Rules without completion
Proof

Open Problems
Bibliography




Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut
elimination.

Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (W, B) are defined in [GJ].

To an FL-algebra L, we associate a Gentzen frame (W¢g, L).
Also, to a Gentzen frame (W, B), we associate its dual
algebra R(W), which is an FL-algebra.

Lemma. If L is an FL-algebra, then R(Wy,) is the
Dedekind-MacNeille competion of L.
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Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut
elimination.

Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (W, B) are defined in [GJ].

To an FL-algebra L, we associate a Gentzen frame (W¢g, L).
Also, to a Gentzen frame (W, B), we associate its dual
algebra R(W), which is an FL-algebra.

Lemma. If L is an FL-algebra, then R(Wy,) is the
Dedekind-MacNeille competion of L.

Theorem. [GJ] If (W, B) is a (cut-free) Gentzen frame, then
every sequent valid in R(W) is also valid in (W, B).
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Separated equations
Simple rules
Completing rules
Completing equations
Rules without completion
Proof
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Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut e
ellmlnatlon. The system FL

Basic structural rules
Proof: 1. Using syntactic arguments presented in [CT]. Subsiucrallogic
2. Using semantial arguments presented in [GJ]. Structural rles

Separated rules
Gentzen frames (W, B) are defined in [GJ]. S
To an FL-algebra L, we associate a Gentzen frame (Wy,,L). 2= .
Also, to a Gentzen frame (W, B), we associate its dual
algebra R(W), which is an FL-algebra. RS
Lemma. If L is an FL-algebra, then R(Wy,) is the R

Dedekind-MacNeille competion of L.

Theorem. [GJ] If (W, B) is a (cut-free) Gentzen frame, then
every sequent valid in R(W) is also valid in (W, B).

Theorem. [CGT] Let (W, B) be a cut free Gentzen frame
and let € be a simple equation. Then, (W, B) satisfies R(e) iff
R(W) satisfies €.



Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut e
ellmlnatlon. The system FL

Basic structural rules
Proof: 1. Using syntactic arguments presented in [CT]. Subsiucrallogic
2. Using semantial arguments presented in [GJ]. Structural rles

Separated rules
Gentzen frames (W, B) are defined in [GJ]. S
To an FL-algebra L, we associate a Gentzen frame (Wy,,L). 2= .
Also, to a Gentzen frame (W, B), we associate its dual
algebra R(W), which is an FL-algebra. RS
Lemma. If L is an FL-algebra, then R(Wy,) is the R

Dedekind-MacNeille competion of L.

Theorem. [GJ] If (W, B) is a (cut-free) Gentzen frame, then
every sequent valid in R(W) is also valid in (W, B).

Theorem. [CGT] Let (W, B) be a cut free Gentzen frame
and let € be a simple equation. Then, (W, B) satisfies R(e) iff
R(W) satisfies €.

Theorem. [CGT] Separated equations are preserved under
the Dedekind-MacNeille completion. (cf. [TV])



Rules without completion

Theorem. The rule

IS not equivalent to a rule that admits cut elimination.

o,fB=pf

B,oao= [

(we)
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Rules without completion

Theorem. The rule e
a) 6 :> 6 -I;r;zi?;st:z:;ulzr:ll rules
( we ) Substructural logics
/3 ’ Qf j /6 Residuated lattices
Structural rules
is not equivalent to a rule that admits cut elimination. e
Separated equations
Simple rules
Proof (Sketch) Assume that there is a set of rules R that is comlenoles
equivalent to (we) and admits cut elimination. So, there is a Cut efminaton
-
proof of ¢,p = ¢q from p,q = ¢ iIn FL + R, where p, q are Proot
propositional variables. oo

Fact (using [CT]) There is a cut free proof of ¢, p = v from
assumptions ¢ = v; p,q = v, ..., p,P,...,P,q = V... IN
FL + R, where v Is a new propositional variable.

So, we have

{P"g<v:incw} Fr, ap S

To disprove this, we will construct an algebra A in FL, and
elements a, b, c € A such that a”b < cforall n € w, but ba £ c.



Proof

We take A to be the totally ordered /-group based on the e
free group on two generators. L
Substructural logics
Fact [Ber] A satisfies: if 1 < 2™ < y, for all m € w, then A
™ < y~lay, forallm € w. SSEaBOES

Separated rules
Separated equations

Since A is based on the free group it is not abelian, hence Compltng s
not archimedian (it is totally ordered). So, there exist complting equaions
elements g, h € Awith 1 < g, h and g™ < h, for all m € w. s o mpiin

Open Problems
Bibliography

By the property of the constructed /-group, we get

g™ < h~lgh, namely ¢mh~! < h=1g, for all m € w. Now, let
a=¢g*, b=h"1',andc=h"1g.

We have a"b = ¢g°"h~'<h™lg = ¢, for all n € w; but

c=h"1g < h 1g? = ba, because 1 < g, S0 ba ¥« c.



Open Problems

= Characterize all structural rules that cannot be completed. e
The system FL
Basic structural rules
= Characterize all structural rules that are equivalent to Substucturlloges
equations. e
[Separated rules and rules over a single variable are.] Sopre s
Sir:ple rulesq
. . Completing rules
= Find all equations that are preserved under the Completing equains
Dedekind-MacNeille completion. T
[Simple equations and prelinearity are preserved.]

Bibliography

= Characterize the equations that correspond to rules that
admit cut elimination.

= Develop more general framework, like hypersequents, and
study the expressive power and cut elimination.
[We can prove standard completeness for all logics of the
form FL.+ linearity + simple rules.]
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