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Overview

■ FL and substructural logics

■ Algebraic semantics: residuated lattices and FL-algebras

■ Structural rules

■ Cut elimination

■ Expressive power

■ Generating analytic calculi from FL + suitable axioms
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The system FL

Π⇒α Γ, α,∆⇒Ψ

Γ,Π,∆⇒Ψ
(cut)

α⇒α (Id)
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The system FL

Π⇒α Γ, α,∆⇒Ψ

Γ,Π,∆⇒Ψ
(cut)

α⇒α (Id)

Γ, α,∆⇒Ψ

Γ, α ∧ β,∆⇒Ψ
(∧Lℓ)

Γ, β,∆⇒Ψ

Γ, a ∧ β,∆⇒Ψ
(∧Lr)

Π⇒α Π⇒β

Π⇒α ∧ β
(∧R)

Γ, α,∆⇒Ψ Γ, β,∆⇒Ψ

Γ, α ∨ β,∆⇒Ψ
(∨L) Π⇒α

Π⇒α ∨ β
(∨Rℓ)

Π⇒β

Π⇒α ∨ β
(∨Rr)
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The system FL

Π⇒α Γ, α,∆⇒Ψ

Γ,Π,∆⇒Ψ
(cut)
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Γ, α ∧ β,∆⇒Ψ
(∧Lℓ)
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Γ, α,∆⇒Ψ Γ, β,∆⇒Ψ

Γ, α ∨ β,∆⇒Ψ
(∨L) Π⇒α

Π⇒α ∨ β
(∨Rℓ)

Π⇒β

Π⇒α ∨ β
(∨Rr)

Π⇒α Γ, β,∆⇒Ψ

Γ,Π, (α\β),∆⇒Ψ
(\L)

α,Π⇒β

Π⇒α\β
(\R)

Π⇒α Γ, β,∆⇒Ψ

Γ, (β/α),Π,∆⇒Ψ
(/L)

Π, α⇒β

Π⇒β/α
(/R)
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The system FL

Π⇒α Γ, α,∆⇒Ψ

Γ,Π,∆⇒Ψ
(cut)

α⇒α (Id)

Γ, α,∆⇒Ψ

Γ, α ∧ β,∆⇒Ψ
(∧Lℓ)

Γ, β,∆⇒Ψ

Γ, a ∧ β,∆⇒Ψ
(∧Lr)

Π⇒α Π⇒β

Π⇒α ∧ β
(∧R)

Γ, α,∆⇒Ψ Γ, β,∆⇒Ψ

Γ, α ∨ β,∆⇒Ψ
(∨L) Π⇒α

Π⇒α ∨ β
(∨Rℓ)

Π⇒β

Π⇒α ∨ β
(∨Rr)

Π⇒α Γ, β,∆⇒Ψ

Γ,Π, (α\β),∆⇒Ψ
(\L)

α,Π⇒β

Π⇒α\β
(\R)

Π⇒α Γ, β,∆⇒Ψ

Γ, (β/α),Π,∆⇒Ψ
(/L)

Π, α⇒β

Π⇒β/α
(/R)

Γ, α, β,∆⇒Ψ

Γ, α · β,∆⇒Ψ
(·L)

Π⇒α Σ⇒β

Π,Σ⇒α · β
(·R)

Γ,∆⇒Ψ

Γ, 1,∆⇒Ψ
(1L)

⇒1
(1R) Γ⇒

Γ⇒0
(0R)

0⇒
(0L)
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Basic structural rules

Letters α, β denote formulas in the language
{∧,∨, \, /, ·, 1, 0}; Γ,Σ,Π denote sequences of formulas, and
Ψ denotes either a formula or the empty set.
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Basic structural rules

Letters α, β denote formulas in the language
{∧,∨, \, /, ·, 1, 0}; Γ,Σ,Π denote sequences of formulas, and
Ψ denotes either a formula or the empty set.

Γ, α, β,Σ ⇒ Ψ

Γ, β, α,Σ ⇒ Ψ
(e)

Γ, α, α,Σ ⇒ Ψ

Γ, α,Σ ⇒ Ψ
(c)

Γ,Σ ⇒ Ψ

Γ, α,Σ ⇒ Ψ
(i) Γ ⇒

Γ ⇒ Ψ
(o)

(w) = (i) + (o)

The rules exchange (e), contraction (c), left (i) and right (o)
weakening are called structural.

The system FL full Lambek calculus is obtained from LJ by
removing all structural rules and adding rules for ·, \, /, 1, 0.
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Substructural logics

We write Φ ⊢FL ψ, if the sequent ⇒ ψ is provable in FL from
the set of sequents {( ⇒ φ)|φ ∈ Φ}.
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Substructural logics

We write Φ ⊢FL ψ, if the sequent ⇒ ψ is provable in FL from
the set of sequents {( ⇒ φ)|φ ∈ Φ}.

A substructural logic (over FL) is a set of formulas closed
under ⊢FL and substitution. (Equiv.: consequence relation).
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Substructural logics

We write Φ ⊢FL ψ, if the sequent ⇒ ψ is provable in FL from
the set of sequents {( ⇒ φ)|φ ∈ Φ}.

A substructural logic (over FL) is a set of formulas closed
under ⊢FL and substitution. (Equiv.: consequence relation).

Examples:
■ Classical,
■ intuitionistic,
■ many-valued (Łukasiewicz),
■ basic (Hajek),
■ relevance (Anderson, Belnap),
■ paraconsistent (Johansson),
■ (the multiplicative additive fragment of) linear logic (Girard).
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Substructural logics

We write Φ ⊢FL ψ, if the sequent ⇒ ψ is provable in FL from
the set of sequents {( ⇒ φ)|φ ∈ Φ}.

A substructural logic (over FL) is a set of formulas closed
under ⊢FL and substitution. (Equiv.: consequence relation).

Examples:
■ Classical,
■ intuitionistic,
■ many-valued (Łukasiewicz),
■ basic (Hajek),
■ relevance (Anderson, Belnap),
■ paraconsistent (Johansson),
■ (the multiplicative additive fragment of) linear logic (Girard).

An equivalent Hilbert-style system has inference rules

φ φ\ψ

ψ
(mp)

φ ψ

φ ∧ ψ
(adj)

φ

ψ\φψ
(n)

φ

ψφ/ψ
(n)
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Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid , is
an algebra L = 〈L,∧,∨, ·, \, /, 1〉 such that
■ 〈L,∧,∨〉 is a lattice,
■ 〈L, ·, 1〉 is a monoid and
■ for all a, b, c ∈ L, ab ≤ c⇔ a ≤ c/b⇔ b ≤ a\c.

An FL-algebra expands a residuated lattice by an extra
constant 0. FL donotes the variety of FL-algebras.
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Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid , is
an algebra L = 〈L,∧,∨, ·, \, /, 1〉 such that
■ 〈L,∧,∨〉 is a lattice,
■ 〈L, ·, 1〉 is a monoid and
■ for all a, b, c ∈ L, ab ≤ c⇔ a ≤ c/b⇔ b ≤ a\c.

An FL-algebra expands a residuated lattice by an extra
constant 0. FL donotes the variety of FL-algebras.

Theorem. FL is an equivalent algebraic semantics for it ⊢FL.
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Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid , is
an algebra L = 〈L,∧,∨, ·, \, /, 1〉 such that
■ 〈L,∧,∨〉 is a lattice,
■ 〈L, ·, 1〉 is a monoid and
■ for all a, b, c ∈ L, ab ≤ c⇔ a ≤ c/b⇔ b ≤ a\c.

An FL-algebra expands a residuated lattice by an extra
constant 0. FL donotes the variety of FL-algebras.

Theorem. FL is an equivalent algebraic semantics for it ⊢FL.

N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated
Lattices: an algebraic glimpse at substructural logics, Studies
in Logics and the Foundations of Mathematics, Elsevier,
2007.
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Structural rules

Γ, α, α,∆ ⇒ Ψ

Γ, α,∆ ⇒ Ψ
(c)

Γ,Π,Π,∆ ⇒ Ψ

Γ,Π,∆ ⇒ Ψ
(seq-c)
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Structural rules

Γ, α, α,∆ ⇒ Ψ

Γ, α,∆ ⇒ Ψ
(c)

Γ,Π,Π,∆ ⇒ Ψ

Γ,Π,∆ ⇒ Ψ
(seq-c)

Π ⇒ α

Γ, α, α, ∆ ⇒ Ψ

Γ, α, ∆ ⇒ Ψ
(c)

Γ, Π, ∆ ⇒ Ψ
(cut)

Π ⇒ α

Π ⇒ α Γ, α, α, ∆ ⇒ Ψ

Γ, α, Π, ∆ ⇒ Ψ
(cut)

Γ, Π, Π, ∆ ⇒ Ψ
(cut)

Γ, Π, ∆ ⇒ Ψ
(?)
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Structural rules

Γ, α, α,∆ ⇒ Ψ

Γ, α,∆ ⇒ Ψ
(c)

Γ,Π,Π,∆ ⇒ Ψ

Γ,Π,∆ ⇒ Ψ
(seq-c)

Π ⇒ α

Γ, α, α, ∆ ⇒ Ψ

Γ, α, ∆ ⇒ Ψ
(c)

Γ, Π, ∆ ⇒ Ψ
(cut)

Π ⇒ α

Π ⇒ α Γ, α, α, ∆ ⇒ Ψ

Γ, α, Π, ∆ ⇒ Ψ
(cut)

Γ, Π, Π, ∆ ⇒ Ψ
(cut)

Γ, Π, ∆ ⇒ Ψ
(?)

α ⇒ δ

α, α ⇒ δ

α1 ⇒ δ α2 ⇒ δ

α1, α2 ⇒ δ
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Structural rules

Γ, α, α,∆ ⇒ Ψ

Γ, α,∆ ⇒ Ψ
(c)

Γ,Π,Π,∆ ⇒ Ψ

Γ,Π,∆ ⇒ Ψ
(seq-c)

Π ⇒ α

Γ, α, α, ∆ ⇒ Ψ

Γ, α, ∆ ⇒ Ψ
(c)

Γ, Π, ∆ ⇒ Ψ
(cut)

Π ⇒ α

Π ⇒ α Γ, α, α, ∆ ⇒ Ψ

Γ, α, Π, ∆ ⇒ Ψ
(cut)

Γ, Π, Π, ∆ ⇒ Ψ
(cut)

Γ, Π, ∆ ⇒ Ψ
(?)

α ⇒ δ

α, α ⇒ δ

α1 ⇒ δ α2 ⇒ δ

α1, α2 ⇒ δ

α1 ⇒ α

α2 ⇒ α

α ⇒ δ

α, α ⇒ δ

α, α2 ⇒ δ
(cut)

α1, α2 ⇒ δ
(cut)

α1 ⇒ α α ⇒ δ

α1 ⇒ δ
(cut)

α1 ⇒ α α ⇒ δ

α2 ⇒ δ
(cut)

α1, α2 ⇒ δ
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Separated rules

A structural rule of the form

Υ1 ⇒ . . . Υk ⇒ Υ′

1
⇒ δ1 . . . Υ′

m ⇒ δm Υ′′

1
⇒ Ψ1 . . . Υ′′

n ⇒ Ψn

Υ0 ⇒ Ψ0(δ0)

is called separated, if Υ0, . . . ,Υ
′′

n
are sequences of

metavariables, Ψ,Ψ1, . . . ,Ψn range over formulas and the
empty set, and δ0, . . . , δm range over formulas that do not
appear in Υ0, . . . ,Υ

′′

n
.
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Separated rules

A structural rule of the form

Υ1 ⇒ . . . Υk ⇒ Υ′

1
⇒ δ1 . . . Υ′

m ⇒ δm Υ′′

1
⇒ Ψ1 . . . Υ′′

n ⇒ Ψn

Υ0 ⇒ Ψ0(δ0)

is called separated, if Υ0, . . . ,Υ
′′

n
are sequences of

metavariables, Ψ,Ψ1, . . . ,Ψn range over formulas and the
empty set, and δ0, . . . , δm range over formulas that do not
appear in Υ0, . . . ,Υ

′′

n
.

I(α1, . . . , αn ⇒ δ) = (α1 · . . . · αn ≤ δ)

I(α1, . . . , αn ⇒ ) = (α1 · . . . · αn ≤ 0)

I( s1 ... sn

s
) = (I(s1)& . . .&I(sn) =⇒ I(s))
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Separated rules

A structural rule of the form

Υ1 ⇒ . . . Υk ⇒ Υ′

1
⇒ δ1 . . . Υ′

m ⇒ δm Υ′′

1
⇒ Ψ1 . . . Υ′′

n ⇒ Ψn

Υ0 ⇒ Ψ0(δ0)

is called separated, if Υ0, . . . ,Υ
′′

n
are sequences of

metavariables, Ψ,Ψ1, . . . ,Ψn range over formulas and the
empty set, and δ0, . . . , δm range over formulas that do not
appear in Υ0, . . . ,Υ

′′

n
.

I(α1, . . . , αn ⇒ δ) = (α1 · . . . · αn ≤ δ)

I(α1, . . . , αn ⇒ ) = (α1 · . . . · αn ≤ 0)

I( s1 ... sn

s
) = (I(s1)& . . .&I(sn) =⇒ I(s))

Lemma The interpretation of a separated structural rule is
equivalent, over the theory of FL, to an equation.
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Separated rules

Consider the separated structural rule

α, γ, α⇒ β, γ, β ⇒ Γ, γ, α, φ, β, γ,∆ ⇒ Ψ

Γ, γ, β, φ, α, γ,∆ ⇒ Ψ

Its interpretation is equivalent to the quasiequation

aca ≤ 0 and bcb ≤ 0 and cafbc ≤ d =⇒ cbfac ≤ d
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Separated rules

Consider the separated structural rule

α, γ, α⇒ β, γ, β ⇒ Γ, γ, α, φ, β, γ,∆ ⇒ Ψ

Γ, γ, β, φ, α, γ,∆ ⇒ Ψ

Its interpretation is equivalent to the quasiequation

aca ≤ 0 and bcb ≤ 0 and cafbc ≤ d =⇒ cbfac ≤ d

For the choice of variables c for aca, b for bcb and f for cafbc
we obtain the equation

c′b′f ′ac′ ≤ d

where c′ = c ∧ a\0/a, b′ = b ∧ 0/cb and f ′ = f ∧ ca\d/bc.
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Separated rules

Consider the separated structural rule

α, γ, α⇒ β, γ, β ⇒ Γ, γ, α, φ, β, γ,∆ ⇒ Ψ

Γ, γ, β, φ, α, γ,∆ ⇒ Ψ

Its interpretation is equivalent to the quasiequation

aca ≤ 0 and bcb ≤ 0 and cafbc ≤ d =⇒ cbfac ≤ d

For the choice of variables c for aca, b for bcb and f for cafbc
we obtain the equation

c′b′f ′ac′ ≤ d

where c′ = c ∧ a\0/a, b′ = b ∧ 0/cb and f ′ = f ∧ ca\d/bc.
Alternatively, for the choice of variables c for aca and c for bcb
we obtain the equation

c′bf ′ac′ ≤ d

where c′ = c ∧ a\0/a ∧ b\0/b and f ′ = f ∧ ca\d/bc.
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Separated equations

For a set of variables V , we define the set of separated
formulas (or terms) sep(V ) as the smallest set such that

1. {0,⊤} ∪ V ⊆ sep(V ), (if ⊤ is in the language),
2. if t1, t2 ∈ sep(V ), then t1 ∧ t2 ∈ sep(V ),
3. if s is a {·,∨, 1}-term with no variable from V and
t ∈ sep(V ), then s\t, t/s ∈ sep(V ).
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Separated equations

For a set of variables V , we define the set of separated
formulas (or terms) sep(V ) as the smallest set such that

1. {0,⊤} ∪ V ⊆ sep(V ), (if ⊤ is in the language),
2. if t1, t2 ∈ sep(V ), then t1 ∧ t2 ∈ sep(V ),
3. if s is a {·,∨, 1}-term with no variable from V and
t ∈ sep(V ), then s\t, t/s ∈ sep(V ).

A substitution σ is called separated, relative to V , if there are
variables x1, . . . , xn not in V and terms t1, . . . , tn ∈ sep(V )
such that σ(xi) = xi ∧ ti, for all i, and σ fixes all other
variables.
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Separated equations

For a set of variables V , we define the set of separated
formulas (or terms) sep(V ) as the smallest set such that

1. {0,⊤} ∪ V ⊆ sep(V ), (if ⊤ is in the language),
2. if t1, t2 ∈ sep(V ), then t1 ∧ t2 ∈ sep(V ),
3. if s is a {·,∨, 1}-term with no variable from V and
t ∈ sep(V ), then s\t, t/s ∈ sep(V ).

A substitution σ is called separated, relative to V , if there are
variables x1, . . . , xn not in V and terms t1, . . . , tn ∈ sep(V )
such that σ(xi) = xi ∧ ti, for all i, and σ fixes all other
variables.

An equation is called separated, if it is of the form σ(t) ≤ z,
where σ is a separated substitution, t ∈ sep(V ) and z ∈ V .
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Separated equations

For a set of variables V , we define the set of separated
formulas (or terms) sep(V ) as the smallest set such that

1. {0,⊤} ∪ V ⊆ sep(V ), (if ⊤ is in the language),
2. if t1, t2 ∈ sep(V ), then t1 ∧ t2 ∈ sep(V ),
3. if s is a {·,∨, 1}-term with no variable from V and
t ∈ sep(V ), then s\t, t/s ∈ sep(V ).

A substitution σ is called separated, relative to V , if there are
variables x1, . . . , xn not in V and terms t1, . . . , tn ∈ sep(V )
such that σ(xi) = xi ∧ ti, for all i, and σ fixes all other
variables.

An equation is called separated, if it is of the form σ(t) ≤ z,
where σ is a separated substitution, t ∈ sep(V ) and z ∈ V .

Theorem. (Sets of) separated structural rules correspond to
(Sets of) separated equations.
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Simple rules

A substructural rule is called simple if it is of one of the forms

Υ′

1
⇒ . . . Υ′

n
⇒ Γ,Υ1,∆ ⇒ Ψ . . . Γ,Υm,∆ ⇒ Ψ

Γ,Υ0,∆ ⇒ Ψ

Υ′

1
⇒ . . . Υ′

n
⇒

Υ′

0
⇒

where Ψ is a metavariable for formulas or the empty set, Γ,∆
are metavariables for sequences of formulas and
Υ′

0
,Υ′

1
, . . . ,Υm are specific sequences of metavariables for

sequences of formulas, and Υ0 is linear.
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Simple rules

A substructural rule is called simple if it is of one of the forms

Υ′

1
⇒ . . . Υ′

n
⇒ Γ,Υ1,∆ ⇒ Ψ . . . Γ,Υm,∆ ⇒ Ψ

Γ,Υ0,∆ ⇒ Ψ

Υ′

1
⇒ . . . Υ′

n
⇒

Υ′

0
⇒

where Ψ is a metavariable for formulas or the empty set, Γ,∆
are metavariables for sequences of formulas and
Υ′

0
,Υ′

1
, . . . ,Υm are specific sequences of metavariables for

sequences of formulas, and Υ0 is linear.

Lemma. The interpretation of a simple structural rule is
equivalent, over the theory of FL, to an equation of the form

σ(t0) ≤ σ(t1 ∨ . . . ∨ tm),

where ti is a product of variables, for all i, t0 is linear, and σ
is a simple (V = ∅) substitution.
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Completing rules

Theorem. [CGT] (cf. [Ter]) Every separated rule is
equivalent, over FL, to a simple rule.
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Completing rules

Theorem. [CGT] (cf. [Ter]) Every separated rule is
equivalent, over FL, to a simple rule.

Redundand premises: Remove premises that involve
variables not occuring in the conclusion.

Sequencing: Replace lower-case letters by upper-case ones.

Γ, α, α⇒ Ψ

Γ, α⇒ Ψ  

Γ,Π,Π ⇒ Ψ

Γ,Π ⇒ Ψ

Linearizarion: Make sure all occurences of the variables are
distinct.

α⇒ δ
α, α⇒ δ  

α1 ⇒ δ α2 ⇒ δ

α1, α2 ⇒ δ

Contexting: Uniformly enter a context Γ,_,∆ ⇒ Ψ.

Γ, α1 ⇒ δ Γ, α2 ⇒ δ

Γ, α1, α2 ⇒ δ  

Γ, α1,∆ ⇒ Ψ Γ, α2,∆ ⇒ Ψ

Γ, α1, α2,∆ ⇒ Ψ
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Completing equations

α⇒ δ
α, α⇒ δ

a ≤ d =⇒ a2 ≤ d

a2 ≤ a

(a1 ∨ a2)
2 ≤ a1 ∨ a2

a2

1
∨ a1a2 ∨ a2a1 ∨ a

2

2
≤ a1 ∨ a2

a1a2 ≤ a1 ∨ a2

a1 ∨ a2 ≤ G\p/D =⇒ a1a2 ≤ G\p/D

a1 ≤ G\p/D & a2 ≤ G\p/D =⇒ a1a2 ≤ G\p/D

Ga1D ≤ p & Ga2D ≤ p =⇒ Ga1a2D ≤ p

Γ, α1,∆ ⇒ Ψ Γ, α2,∆ ⇒ Ψ

Γ, α1, α2,∆ ⇒ Ψ
(min)
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Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut
elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].
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Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut
elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (W,B) are defined in [GJ].
To an FL-algebra L, we associate a Gentzen frame (WL,L).
Also, to a Gentzen frame (W,B), we associate its dual
algebra R(W), which is an FL-algebra.
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Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut
elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (W,B) are defined in [GJ].
To an FL-algebra L, we associate a Gentzen frame (WL,L).
Also, to a Gentzen frame (W,B), we associate its dual
algebra R(W), which is an FL-algebra.

Lemma. If L is an FL-algebra, then R(WL) is the
Dedekind-MacNeille competion of L.
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Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut
elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (W,B) are defined in [GJ].
To an FL-algebra L, we associate a Gentzen frame (WL,L).
Also, to a Gentzen frame (W,B), we associate its dual
algebra R(W), which is an FL-algebra.

Lemma. If L is an FL-algebra, then R(WL) is the
Dedekind-MacNeille competion of L.

Theorem. [GJ] If (W,B) is a (cut-free) Gentzen frame, then
every sequent valid in R(W) is also valid in (W,B).
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Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut
elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (W,B) are defined in [GJ].
To an FL-algebra L, we associate a Gentzen frame (WL,L).
Also, to a Gentzen frame (W,B), we associate its dual
algebra R(W), which is an FL-algebra.

Lemma. If L is an FL-algebra, then R(WL) is the
Dedekind-MacNeille competion of L.

Theorem. [GJ] If (W,B) is a (cut-free) Gentzen frame, then
every sequent valid in R(W) is also valid in (W,B).

Theorem. [CGT] Let (W,B) be a cut free Gentzen frame
and let ε be a simple equation. Then, (W,B) satisfies R(ε) iff
R(W) satisfies ε.
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Cut elimination

Theorem. [CGT] (cf [Ter], [GO]) Simple rules admit cut
elimination.
Proof: 1. Using syntactic arguments presented in [CT].
2. Using semantial arguments presented in [GJ].

Gentzen frames (W,B) are defined in [GJ].
To an FL-algebra L, we associate a Gentzen frame (WL,L).
Also, to a Gentzen frame (W,B), we associate its dual
algebra R(W), which is an FL-algebra.

Lemma. If L is an FL-algebra, then R(WL) is the
Dedekind-MacNeille competion of L.

Theorem. [GJ] If (W,B) is a (cut-free) Gentzen frame, then
every sequent valid in R(W) is also valid in (W,B).

Theorem. [CGT] Let (W,B) be a cut free Gentzen frame
and let ε be a simple equation. Then, (W,B) satisfies R(ε) iff
R(W) satisfies ε.

Theorem. [CGT] Separated equations are preserved under
the Dedekind-MacNeille completion. (cf. [TV])
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Rules without completion

Theorem. The rule

α, β ⇒ β

β, α⇒ β
(we)

is not equivalent to a rule that admits cut elimination.
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Rules without completion

Theorem. The rule

α, β ⇒ β

β, α⇒ β
(we)

is not equivalent to a rule that admits cut elimination.

Proof (Sketch) Assume that there is a set of rules R that is
equivalent to (we) and admits cut elimination. So, there is a
proof of q, p⇒ q from p, q ⇒ q in FL +R, where p, q are
propositional variables.

Fact (using [CT]) There is a cut free proof of q, p⇒ v from
assumptions q ⇒ v; p, q ⇒ v; . . . ; p, p, . . . , p, q ⇒ v . . . in
FL +R, where v is a new propositional variable.
So, we have

{pnq ≤ v : n ∈ ω} |=FLR
qp ≤ v.

To disprove this, we will construct an algebra A in FLr and
elements a, b, c ∈ A such that anb ≤ c for all n ∈ ω, but ba 6≤ c.
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Proof

We take A to be the totally ordered ℓ-group based on the
free group on two generators.

Fact [Ber] A satisfies: if 1 ≤ xm ≤ y, for all m ∈ ω, then
xm ≤ y−1xy, for all m ∈ ω.

Since A is based on the free group it is not abelian, hence
not archimedian (it is totally ordered). So, there exist
elements g, h ∈ A with 1 < g, h and gm < h, for all m ∈ ω.

By the property of the constructed ℓ-group, we get
gm ≤ h−1gh, namely gmh−1 ≤ h−1g, for all m ∈ ω. Now, let

a = g2, b = h−1, and c = h−1g.
We have anb = g2nh−1≤h−1g = c, for all n ∈ ω; but
c = h−1g < h−1g2 = ba, because 1 < g, so ba 6≤ c.
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Open Problems

■ Characterize all structural rules that cannot be completed.

■ Characterize all structural rules that are equivalent to
equations.
[Separated rules and rules over a single variable are.]

■ Find all equations that are preserved under the
Dedekind-MacNeille completion.
[Simple equations and prelinearity are preserved.]

■ Characterize the equations that correspond to rules that
admit cut elimination.

■ Develop more general framework, like hypersequents, and
study the expressive power and cut elimination.
[We can prove standard completeness for all logics of the
form FLe+ linearity + simple rules.]
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