On the structure of linear pseudo-BCK-algebras

Jan Kühr

Department of Algebra and Geometry
Faculty of Science
Palacký University at Olomouc
Olomouc, Czech Republic
kuhr@inf.upol.cz

Joint work with Anatolij Dvurečenskij
Every linear hoop/BL-algebra is an ordinal sum of linear Wajsberg hoops [Agliano & Montagna]

The \(\{ \to, 1 \} \)-subreducts of hoops are BCK-algebras satisfying the identity

\[
(x \to y) \to (x \to z) = (y \to x) \to (y \to z)
\]

[Blok, Ferreirim]

Every linear pseudo-hoop/pseudo-BL-algebra is an ordinal sum of linear Wajsberg pseudo-hoops [Dvurečenskij]

The \(\{ \to, \not\to, 1 \} \)-subreducts of pseudo-hoops are pseudo-BCK-algebras satisfying

\[?\]
Every linear hoop/BL-algebra is an ordinal sum of linear Wajsberg hoops [Agliano & Montagna]

The \(\{\to, 1\} \)-subreducts of hoops are BCK-algebras satisfying the identity

\[
(x \to y) \to (x \to z) = (y \to x) \to (y \to z)
\]

[Blok, Ferreirim]

Every linear pseudo-hoop/pseudo-BL-algebra is an ordinal sum of linear Wajsberg pseudo-hoops [Dvurečenskij]

The \(\{\to, \sim, 1\} \)-subreducts of pseudo-hoops are pseudo-BCK-algebras satisfying

?
Every linear hoop/BL-algebra is an ordinal sum of linear Wajsberg hoops [Agliano & Montagna]

The \{\rightarrow, 1\}-subreducts of hoops are BCK-algebras satisfying the identity

\[(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z)\]

[Blok, Ferreirim]

Every linear pseudo-hoop/pseudo-BL-algebra is an ordinal sum of linear Wajsberg pseudo-hoops [Dvurečenskij]

The \{\rightarrow, \sim, 1\}-subreducts of pseudo-hoops are pseudo-BCK-algebras satisfying
1. Every linear hoop/BL-algebra is an ordinal sum of linear Wajsberg hoops [Agliano & Montagna]

2. The \(\{\to, 1\} \)-subreducts of hoops are BCK-algebras satisfying the identity

\[
(x \to y) \to (x \to z) = (y \to x) \to (y \to z)
\]

[Blok, Ferreirim]

1. Every linear pseudo-hoop/pseudo-BL-algebra is an ordinal sum of linear Wajsberg pseudo-hoops [Dvurečenskij]

2. The \(\{\to, \sim \to, 1\} \)-subreducts of pseudo-hoops are pseudo-BCK-algebras satisfying

?
A **porim** (＝ partially ordered residuated integral monoid) is a structure \((A, \leq, \cdot, \to, \rightsquigarrow, 1)\) where

- \((A, \leq)\) is a poset with greatest element 1,
- \((A, \cdot, 1)\) is a monoid,
- \(c \leq a \to b\) iff \(c \cdot a \leq b\), and \(c \leq a \rightsquigarrow b\) iff \(a \cdot c \leq b\).

A **pseudo-hoop** [Georgescu, Leuștean & Preoteasa] is a porim satisfying

\[(x \to y) \cdot x = y \cdot (y \rightsquigarrow x).\]

A **Wajsberg pseudo-hoop** [Georgescu, Leuștean & Preoteasa] is a pseudo-hoop satisfying

\[(x \to y) \rightsquigarrow y = (y \rightsquigarrow x) \to x.\]
A **porim** (= partially ordered residuated integral monoid) is a structure \((A, \leq, \cdot, \rightarrow, \leadsto, 1)\) where

- \((A, \leq)\) is a poset with greatest element 1,
- \((A, \cdot, 1)\) is a monoid,
- \(c \leq a \rightarrow b\) iff \(c \cdot a \leq b\), and \(c \leq a \leadsto b\) iff \(a \cdot c \leq b\).

A **pseudo-hoop** [Georgescu, Leuştean & Preoteasa] is a porim satisfying

\[(x \rightarrow y) \cdot x = y \cdot (y \leadsto x).\]

A **Wajsberg pseudo-hoop** [Georgescu, Leuştean & Preoteasa] is a pseudo-hoop satisfying

\[(x \rightarrow y) \leadsto y = (y \leadsto x) \rightarrow x.\]
A **porim** (= partially ordered residuated integral monoid) is a structure \((A, \leq, \cdot, \rightarrow, \leadsto, 1)\) where

- \((A, \leq)\) is a poset with greatest element 1,
- \((A, \cdot, 1)\) is a monoid,
- \(c \leq a \rightarrow b\) iff \(c \cdot a \leq b\), and \(c \leq a \leadsto b\) iff \(a \cdot c \leq b\).

A **pseudo-hoop** [Georgescu, Leuștean & Preoteasa] is a porim satisfying

\[(x \rightarrow y) \cdot x = y \cdot (y \leadsto x).\]

A **Wajsberg pseudo-hoop** [Georgescu, Leuștean & Preoteasa] is a pseudo-hoop satisfying

\[(x \rightarrow y) \leadsto y = (y \leadsto x) \rightarrow x.\]
Pseudo-MV-algebras = bounded Wajsberg pseudo-hoops

Pseudo-BL-algebras = bounded pseudo-hoops satisfying

\[(x \to y) \to z \leq ((y \to x) \to z) \to z\]

\[(x \bowtie y) \bowtie z \leq ((y \bowtie x) \bowtie z) \bowtie z\]
Pseudo-MV-algebras = bounded Wajsberg pseudo-hoops

Pseudo-BL-algebras = bounded pseudo-hoops satisfying

\[(x \rightarrow y) \rightarrow z \leq ((y \rightarrow x) \rightarrow z) \rightarrow z\]
\[(x \rightsquigarrow y) \rightsquigarrow z \leq ((y \rightsquigarrow x) \rightsquigarrow z) \rightsquigarrow z\]
Porims = algebras \((A, \cdot, \to, \multimap, 1) \) of type \((2, 2, 2, 0)\) that satisfy:

\[
(x \to y) \multimap ((y \to z) \multimap (x \to z)) = 1, \\
(x \multimap y) \to ((y \multimap z) \to (x \multimap z)) = 1,
\]

\(1 \to x = x,\)

\(1 \multimap x = x,\)

\(x \to 1 = 1,\)

\((x \cdot y) \to z = x \to (y \to z),\)

\(x \to y = 1 \ \& \ y \to x = 1 \ \Rightarrow \ x = y.\)

A \textbf{pseudo-BCK-algebra} [Georgescu & Iorgulescu] is an algebra \((A, \to, \multimap, 1) \) of type \((2, 2, 0)\) satisfying (1)–(5) and (7).

Pseudo-BCK-algebras are the \{\to, \multimap, 1\}-subreducts of porims.
Porims = algebras \((A, \cdot, \rightarrow, \leadsto, 1)\) of type \((2, 2, 2, 0)\) that satisfy:

\[
(x \rightarrow y) \leadsto (((y \rightarrow z) \leadsto (x \rightarrow z))) = 1, \quad (1)
\]
\[
(x \leadsto y) \rightarrow (((y \leadsto z) \rightarrow (x \leadsto z))) = 1, \quad (2)
\]
\[
1 \rightarrow x = x, \quad (3)
\]
\[
1 \leadsto x = x, \quad (4)
\]
\[
x \rightarrow 1 = 1, \quad (5)
\]
\[
(x \cdot y) \rightarrow z = x \rightarrow (y \rightarrow z), \quad (6)
\]
\[
x \rightarrow y = 1 \quad \& \quad y \rightarrow x = 1 \quad \Rightarrow \quad x = y. \quad (7)
\]

A **pseudo-BCK-algebra** [Georgescu & Iorgulescu] is an algebra \((A, \rightarrow, \leadsto, 1)\) of type \((2, 2, 0)\) satisfying (1)—(5) and (7).

Pseudo-BCK-algebras are the \({\rightarrow, \leadsto, 1}\)-subreducts of porims.
Porims = algebras \((A, \cdot, \rightarrow, \simrightarrow, 1)\) of type \((2, 2, 2, 0)\) that satisfy:

\[
(x \rightarrow y) \simrightarrow ((y \rightarrow z) \simrightarrow (x \rightarrow z)) = 1,
\]

\[
(x \simrightarrow y) \rightarrow ((y \simrightarrow z) \rightarrow (x \simrightarrow z)) = 1,
\]

\[
1 \rightarrow x = x,
\]

\[
1 \simrightarrow x = x,
\]

\[
x \rightarrow 1 = 1,
\]

\[
(x \cdot y) \rightarrow z = x \rightarrow (y \rightarrow z),
\]

\[
x \rightarrow y = 1 \quad & \quad y \rightarrow x = 1 \quad \Rightarrow \quad x = y.
\]

A **pseudo-BCK-algebra** [Georgescu & Iorgulescu] is an algebra \((A, \rightarrow, \simrightarrow, 1)\) of type \((2, 2, 0)\) satisfying \((1)\)–\((5)\) and \((7)\).

Pseudo-BCK-algebras are the \(\{\rightarrow, \simrightarrow, 1\}\)-subreducts of porims.
Porims = algebras \((A, \cdot, \rightarrow, \rightsquigarrow, 1)\) of type \((2, 2, 2, 0)\) that satisfy:

\[
\begin{align*}
\text{1) } (x \rightarrow y) \rightsquigarrow ((y \rightarrow z) \rightsquigarrow (x \rightarrow z)) &= 1, \\
\text{2) } (x \rightsquigarrow y) \rightarrow ((y \rightsquigarrow z) \rightarrow (x \rightsquigarrow z)) &= 1, \\
\text{3) } 1 \rightarrow x &= x, \\
\text{4) } 1 \rightsquigarrow x &= x, \\
\text{5) } x \rightarrow 1 &= 1, \\
\text{6) } (x \cdot y) \rightarrow z &= x \rightarrow (y \rightarrow z), \\
\text{7) } x \rightarrow y = 1 &\quad \& \quad y \rightarrow x = 1 \quad \Rightarrow \quad x = y.
\end{align*}
\]

A **pseudo-BCK-algebra** [Georgescu & Iorgulescu] is an algebra \((A, \rightarrow, \rightsquigarrow, 1)\) of type \((2, 2, 0)\) satisfying (1)—(5) and (7).

Pseudo-BCK-algebras are the \(\{\rightarrow, \rightsquigarrow, 1\}\)-subreducts of porims.
Let $A = (A, \rightarrow, \leadsto, 1)$ be a pseudo-BCK-algebra. The relation \leq given by

$$x \leq y \text{ iff } x \rightarrow y = 1 \text{ (iff } x \leadsto y = 1)$$

is a partial order on A; 1 is the greatest element of (A, \leq). If (A, \leq) is a chain, then A is a linear pseudo-BCK-algebra.
Let $A = (A, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-BCK-algebra. The relation \leq given by

$$x \leq y \text{ iff } x \rightarrow y = 1 \text{ (iff } x \rightsquigarrow y = 1)$$

is a partial order on A; 1 is the greatest element of (A, \leq).

If (A, \leq) is a chain, then A is a **linear** pseudo-BCK-algebra.
A pseudo-\mathcal{L}BCK-algebra [Dvurečenskij & Vetterlein] is a pseudo-BCK-algebra $A = (A, \rightarrow, \rightsquigarrow, 1)$ satisfying the identity
\[(x \rightarrow y) \rightsquigarrow y = (y \rightsquigarrow x) \rightarrow x,\]
and the following “relative cancellation” property:
\[x \geq y \land x \geq z \land x \rightarrow y = x \rightarrow z \Rightarrow y = z.\]

- RCP can be replaced by the identity
 \[(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z)\]
- pseudo-\mathcal{L}BCK-algebras = the $\{\rightarrow, \rightsquigarrow, 1\}$-subreducts of Wajsberg pseudo-hoops and pseudo-MV-algebras
- pseudo-\mathcal{L}BCK-algebras = Bosbach’s cone algebras
A *pseudo-ℓBCK-algebra* [Dvurečenskij & Vetterlein] is a pseudo-BCK-algebra $A = (A, \to, \leadsto, 1)$ satisfying the identity

$$(x \to y) \leadsto y = (y \leadsto x) \to x,$$

and the following “relative cancellation” property:

$$x \geq y \quad \& \quad x \geq z \quad \& \quad x \to y = x \to z \quad \Rightarrow \quad y = z.$$

- RCP can be replaced by the identity

 $$ (x \to y) \to (x \to z) = (y \to x) \to (y \to z) $$

- *pseudo-ℓBCK-algebras* = the $\{\to, \leadsto, 1\}$-subreducts of Wajsberg pseudo-hoops and pseudo-MV-algebras
- *pseudo-ℓBCK-algebras* = Bosbach’s cone algebras
A **pseudo-ŁBCK-algebra** [Dvurečenskij & Vetterlein] is a pseudo-BCK-algebra \(A = (A, \rightarrow, \bowtie, 1) \) satisfying the identity

\[
(x \rightarrow y) \bowtie y = (y \bowtie x) \rightarrow x,
\]

and the following “relative cancellation” property:

\[
x \geq y \quad \& \quad x \geq z \quad \& \quad x \rightarrow y = x \rightarrow z \quad \Rightarrow \quad y = z.
\]

- RCP can be replaced by the identity

\[
(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z)
\]

- **pseudo-ŁBCK-algebras** = the \(\{\rightarrow, \bowtie, 1\} \)-subreducts of Wajsberg pseudo-hoops and pseudo-MV-algebras

- **pseudo-ŁBCK-algebras** = Bosbach’s cone algebras
A **pseudo-\mathcal{L}BCK-algebra** [Dvurečenskij & Vetterlein] is a pseudo-BCK-algebra $A = (A, \to, \leadsto, 1)$ satisfying the identity

$$(x \to y) \leadsto y = (y \leadsto x) \to x,$$

and the following “relative cancellation” property:

$$x \geq y \ & \ x \geq z \ & \ x \to y = x \to z \ \Rightarrow \ \ y = z.$$

- RCP can be replaced by the identity

 $$(x \to y) \to (x \to z) = (y \to x) \to (y \to z)$$

- **pseudo-\mathcal{L}BCK-algebras** = the $\{\to, \leadsto, 1\}$-subreducts of Wajsberg pseudo-hoops and pseudo-MV-algebras

- **pseudo-\mathcal{L}BCK-algebras** = Bosbach’s cone algebras
Let (I, \leq) be a non-empty chain. The ordinal sum of linear pseudo-BCK-algebras A_i ($i \in I$) such that $A_i \cap A_j = \{1\}$ for all $i \neq j \in I$ is a pseudo-BCK-algebra $\bigoplus_{i \in I} A_i = (\bigcup_{i \in I} A_i, \rightarrow, \leadsto, 1)$ where the operations \rightarrow, \leadsto are defined as follows:

\[
x \rightarrow y = \begin{cases}
x \rightarrow_i y & \text{if } x, y \in A_i, \\
1 & \text{if } x \in A_i \setminus \{1\}, y \in A_j, i < j, \\
y & \text{if } x \in A_i, y \in A_j, i > j,
\end{cases}
\]

\[
x \leadsto y = \begin{cases}
x \leadsto_i y & \text{if } x, y \in A_i, \\
1 & \text{if } x \in A_i \setminus \{1\}, y \in A_j, i < j, \\
y & \text{if } x \in A_i, y \in A_j, i > j.
\end{cases}
\]
\[y \in A_j \]
\[i < j \]
\[x \in A_i \]

\[x \rightarrow y = 1 = x \bowtie y \]
\[y \rightarrow x = x = y \bowtie x \]
Which linear pseudo-BCK-algebras arise as ordinal sums of linear pseudo-ŁBCK-algebras?

A linear pseudo-BCK-algebra is an ordinal sum of linear pseudo-ŁBCK-algebras iff it satisfies the identities

\[(x \to y) \to (x \to z) = (y \to x) \to (y \to z), \quad (H)\]
\[(((x \to y) \multimap y) \to x) \multimap x = (((y \multimap x) \to x) \multimap y) \to y. \quad (J)\]

The identity (H), as well as

\[(x \multimap y) \multimap (x \multimap z) = (y \multimap x) \multimap (y \multimap z), \quad (H')\]

holds in all pseudo-hoops, but there exist pseudo-hoops that do not satisfy (J) (though it holds in hoops).
Which linear pseudo-BCK-algebras arise as ordinal sums of linear pseudo-ŁBCK-algebras?

A linear pseudo-BCK-algebra is an ordinal sum of linear pseudo-ŁBCK-algebras iff it satisfies the identities

\[(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z), \quad (H)\]
\[(((x \rightarrow y) \bowtie y) \rightarrow x) \bowtie x = (((y \bowtie x) \rightarrow x) \bowtie y) \rightarrow y. \quad (J)\]

The identity (H), as well as

\[(x \bowtie y) \bowtie (x \bowtie z) = (y \bowtie x) \bowtie (y \bowtie z), \quad (H')\]

holds in all pseudo-hoops, but there exist pseudo-hoops that do not satisfy (J) (though it holds in hoops).
Which linear pseudo-BCK-algebras arise as ordinal sums of linear pseudo-ŁBCK-algebras?

A linear pseudo-BCK-algebra is an ordinal sum of linear pseudo-ŁBCK-algebras iff it satisfies the identities

\[(x \to y) \to (x \to z) = (y \to x) \to (y \to z), \quad (H)\]
\[
(((x \to y) \bowtie y) \to x) \bowtie x = (((y \bowtie x) \to x) \bowtie y) \to y. \quad (J)
\]

The identity \((H)\), as well as

\[(x \bowtie y) \bowtie (x \bowtie z) = (y \bowtie x) \bowtie (y \bowtie z), \quad (H')\]

holds in all pseudo-hoops, but there exist pseudo-hoops that do not satisfy \((J)\) (though it holds in hoops).
Let A be a linear pseudo-BCK-algebra. A cut of A is $X \subseteq A \setminus \{1\}$ such that

- $x < y$ for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \to, \simto,
- $y \to x = x = y \simto x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is trivial if $X = \emptyset$ or $X = A \setminus \{1\}$.

1. If A is the ordinal sum $A_1 \oplus A_2$ of linear pseudo-BCK-algebras A_1 and A_2, then $X = A_1 \setminus \{1\}$ is a cut of A. If A_1 and A_2 are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.

2. Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then $A_1 = (X \cup \{1\}, \to, \simto, 1)$ and $A_2 = (A \setminus X, \to, \simto, 1)$ are subalgebras of A, and $A = A_1 \oplus A_2$. If the cut X is non-trivial, then A_1, A_2 are non-trivial pseudo-BCK-algebras.
Let A be a linear pseudo-BCK-algebra. A **cut** of A is $X \subseteq A \setminus \{1\}$ such that

- $x < y$ for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow, \rightsquigarrow,
- $y \rightarrow x = x = y \rightsquigarrow x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is **trivial** if $X = \emptyset$ or $X = A \setminus \{1\}$.

1. If A is the ordinal sum $A_1 \oplus A_2$ of linear pseudo-BCK-algebras A_1 and A_2, then $X = A_1 \setminus \{1\}$ is a cut of A. If A_1 and A_2 are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.

2. Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then $A_1 = (X \cup \{1\}, \rightarrow, \rightsquigarrow, 1)$ and $A_2 = (A \setminus X, \rightarrow, \rightsquigarrow, 1)$ are subalgebras of A, and $A = A_1 \oplus A_2$. If the cut X is non-trivial, then A_1, A_2 are non-trivial pseudo-BCK-algebras.
Let A be a linear pseudo-BCK-algebra. A **cut** of A is $X \subseteq A \setminus \{1\}$ such that

- $x < y$ for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow, $\sim \rightarrow$,
- $y \rightarrow x = x = y \sim \rightarrow x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is **trivial** if $X = \emptyset$ or $X = A \setminus \{1\}$.

1. If A is the ordinal sum $A_1 \oplus A_2$ of linear pseudo-BCK-algebras A_1 and A_2, then $X = A_1 \setminus \{1\}$ is a cut of A. If A_1 and A_2 are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.

2. Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then $A_1 = (X \cup \{1\}, \rightarrow, \sim \rightarrow, 1)$ and $A_2 = (A \setminus X, \rightarrow, \sim \rightarrow, 1)$ are subalgebras of A, and $A = A_1 \oplus A_2$. If the cut X is non-trivial, then A_1, A_2 are non-trivial pseudo-BCK-algebras.
Let A be a linear pseudo-BCK-algebra. A cut of A is $X \subseteq A \setminus \{1\}$ such that

- $x < y$ for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow and \simrightarrow,
- $y \rightarrow x = x = y \simrightarrow x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is trivial if $X = \emptyset$ or $X = A \setminus \{1\}$.

1. If A is the ordinal sum $A_1 \oplus A_2$ of linear pseudo-BCK-algebras A_1 and A_2, then $X = A_1 \setminus \{1\}$ is a cut of A. If A_1 and A_2 are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.

2. Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then $A_1 = (X \cup \{1\}, \rightarrow, \simrightarrow, 1)$ and $A_2 = (A \setminus X, \rightarrow, \simrightarrow, 1)$ are subalgebras of A, and $A = A_1 \oplus A_2$. If the cut X is non-trivial, then A_1, A_2 are non-trivial pseudo-BCK-algebras.
Let A be a linear pseudo-BCK-algebra. A **cut** of A is $X \subseteq A \setminus \{1\}$ such that

- $x < y$ for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow, \leadsto,
- $y \rightarrow x = x = y \leadsto x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is **trivial** if $X = \emptyset$ or $X = A \setminus \{1\}$.

1. If A is the ordinal sum $A_1 \oplus A_2$ of linear pseudo-BCK-algebras A_1 and A_2, then $X = A_1 \setminus \{1\}$ is a cut of A. If A_1 and A_2 are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.

2. Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then $A_1 = (X \cup \{1\}, \rightarrow, \leadsto, 1)$ and $A_2 = (A \setminus X, \rightarrow, \leadsto, 1)$ are subalgebras of A, and $A = A_1 \oplus A_2$. If the cut X is non-trivial, then A_1, A_2 are non-trivial pseudo-BCK-algebras.
Let A be a linear pseudo-BCK-algebra. A **cut** of A is $X \subseteq A \setminus \{1\}$ such that

- $x < y$ for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow, \leadsto,
- $y \rightarrow x = x = y \leadsto x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is **trivial** if $X = \emptyset$ or $X = A \setminus \{1\}$.

1. If A is the ordinal sum $A_1 \oplus A_2$ of linear pseudo-BCK-algebras A_1 and A_2, then $X = A_1 \setminus \{1\}$ is a cut of A. If A_1 and A_2 are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.

2. Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then $A_1 = (X \cup \{1\}, \rightarrow, \leadsto, 1)$ and $A_2 = (A \setminus X, \rightarrow, \leadsto, 1)$ are subalgebras of A, and $A = A_1 \oplus A_2$. If the cut X is non-trivial, then A_1, A_2 are non-trivial pseudo-BCK-algebras.
Let A be a linear pseudo-BCK-algebra. A cut of A is $X \subseteq A \setminus \{1\}$ such that

- $x < y$ for all $x \in X$ and $y \in A \setminus X$,
- $A \setminus X$ is closed under \rightarrow, \rightsquigarrow,
- $y \rightarrow x = x = y \rightsquigarrow x$ for all $x \in X$ and $y \in A \setminus X$.

A cut is trivial if $X = \emptyset$ or $X = A \setminus \{1\}$.

1. If A is the ordinal sum $A_1 \oplus A_2$ of linear pseudo-BCK-algebras A_1 and A_2, then $X = A_1 \setminus \{1\}$ is a cut of A. If A_1 and A_2 are non-trivial pseudo-BCK-algebras, then the cut is non-trivial.

2. Let A be a linear pseudo-BCK-algebra and X be a cut of A. Then $A_1 = (X \cup \{1\}, \rightarrow, \rightsquigarrow, 1)$ and $A_2 = (A \setminus X, \rightarrow, \rightsquigarrow, 1)$ are subalgebras of A, and $A = A_1 \oplus A_2$. If the cut X is non-trivial, then A_1, A_2 are non-trivial pseudo-BCK-algebras.
Let A be a linear pseudo-BCK-algebra. For $a \in A \setminus \{1\}$ we put

$$X_a = \{ x \in A \setminus \{1\} \mid a \rightarrow x = x \}.$$

We have

$$X_a = \{ x \in A \setminus \{1\} \mid a \bowtie x = x \}.$$

If A satisfies the identities (H) and (J), then for every $a \in A \setminus \{1\}$, X_a is a cut of A. The cut is non-trivial provided that $X_a \neq \emptyset$.

Let A be a linear pseudo-BCK-algebra satisfying (H) and (J). The following statements are equivalent:

1. A is sum irreducible.
2. For all $a, b \in A$, if $a \rightarrow b = b$ (or $a \bowtie b = b$), then $a = 1$ or $b = 1$.
3. A is a pseudo-$Ł$BCK-algebra.
Let A be a linear pseudo-BCK-algebra. For $a \in A \setminus \{1\}$ we put

$$X_a = \{ x \in A \setminus \{1\} \mid a \rightarrow x = x \}.$$

We have

$$X_a = \{ x \in A \setminus \{1\} \mid a \bowtie x = x \}.$$

If A satisfies the identities (H) and (J), then for every $a \in A \setminus \{1\}$, X_a is a cut of A. The cut is non-trivial provided that $X_a \neq \emptyset$.

Let A be a linear pseudo-BCK-algebra satisfying (H) and (J). The following statements are equivalent:

1. A is sum irreducible.
2. For all $a, b \in A$, if $a \rightarrow b = b$ (or $a \bowtie b = b$), then $a = 1$ or $b = 1$.
3. A is a pseudo-\check{L}BCK-algebra.
Every non-trivial linear pseudo-BCK-algebra satisfying the equations

\[(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z) \quad (H)\]
\[((x \rightarrow y) \hyperlink{1}{\rightsquigarrow} y) \rightarrow x) \hyperlink{1}{\rightsquigarrow} x = (((y \hyperlink{1}{\rightsquigarrow} x) \rightarrow x) \hyperlink{1}{\rightsquigarrow} y) \hyperlink{1}{\rightsquigarrow} y) \quad (J)\]

can uniquely be represented as an ordinal sum of non-trivial linear pseudo-ŁBCK-algebras.

For every linear pseudo-BCK-algebra \(A\), the following statements are equivalent:

1. \(A\) satisfies the identities \((H)\) and \((J)\).
2. \(A\) is an ordinal sum of linear pseudo-ŁBCK-algebras.
3. \(A\) is a \({\rightarrow, \hyperlink{1}{\rightsquigarrow}, 1}\)-subreduct of a linear pseudo-hoop.
4. \(A\) is a \({\rightarrow, \hyperlink{1}{\rightsquigarrow}, 1}\)-subreduct of a linear pseudo-BL-algebra.
Every non-trivial linear pseudo-BCK-algebra satisfying the equations

\[(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z) \quad (H)\]
\[(((x \rightarrow y) \sim y) \rightarrow x) \sim x = (((y \sim x) \rightarrow x) \sim y) \sim y \quad (J)\]

can uniquely be represented as an ordinal sum of non-trivial linear pseudo-ŁBCK-algebras.

For every linear pseudo-BCK-algebra \(A \), the following statements are equivalent:

1. \(A \) satisfies the identities (H) and (J).
2. \(A \) is an ordinal sum of linear pseudo-ŁBCK-algebras.
3. \(A \) is a \(\{\rightarrow, \sim, 1\} \)-subreduct of a linear pseudo-hoop.
4. \(A \) is a \(\{\rightarrow, \sim, 1\} \)-subreduct of a linear pseudo-BL-algebra.
Every non-trivial linear pseudo-BCK-algebra satisfying the equations

\[(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z) \quad (H)\]
\[(((x \rightarrow y) \bowtie y) \rightarrow x) \bowtie x = (((y \bowtie x) \rightarrow x) \bowtie y) \bowtie y \quad (J)\]

can uniquely be represented as an ordinal sum of non-trivial linear pseudo-ŁBCK-algebras.

For every linear pseudo-BCK-algebra \(A\), the following statements are equivalent:

1. \(A\) satisfies the identities \((H)\) and \((J)\).
2. \(A\) is an ordinal sum of linear pseudo-ŁBCK-algebras.
3. \(A\) is a \{\(\rightarrow\), \(\bowtie\), \(1\)\}-subreduct of a linear pseudo-hoop.
4. \(A\) is a \{\(\rightarrow\), \(\bowtie\), \(1\)\}-subreduct of a linear pseudo-BL-algebra.
Every non-trivial linear pseudo-BCK-algebra satisfying the equations

\[(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z) \quad (H)\]
\[(((x \rightarrow y) \bowtie y) \rightarrow x) \bowtie x = (((y \bowtie x) \rightarrow x) \bowtie y) \bowtie y \quad (J)\]

can uniquely be represented as an ordinal sum of non-trivial linear pseudo-\mathcal{L}BCK-algebras.

For every linear pseudo-BCK-algebra A, the following statements are equivalent:

1. A satisfies the identities (H) and (J).
2. A is an ordinal sum of linear pseudo-\mathcal{L}BCK-algebras.
3. A is a $\{\rightarrow, \bowtie, 1\}$-subreduct of a linear pseudo-hoop.
4. A is a $\{\rightarrow, \bowtie, 1\}$-subreduct of a linear pseudo-BL-algebra.
Every non-trivial linear pseudo-BCK-algebra satisfying the equations

\[(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z) \quad (H)\]
\[(((x \rightarrow y) \bowtie y) \rightarrow x) \bowtie x = (((y \bowtie x) \rightarrow x) \bowtie y) \bowtie y \quad (J)\]

can uniquely be represented as an ordinal sum of non-trivial linear pseudo-ŁBCK-algebras.

For every linear pseudo-BCK-algebra \(A\), the following statements are equivalent:

1. \(A\) satisfies the identities \((H)\) and \((J)\).
2. \(A\) is an ordinal sum of linear pseudo-ŁBCK-algebras.
3. \(A\) is a \(\{\rightarrow, \bowtie, 1\}\)-subreduct of a linear pseudo-hoop.
4. \(A\) is a \(\{\rightarrow, \bowtie, 1\}\)-subreduct of a linear pseudo-BL-algebra.
Every non-trivial linear pseudo-BCK-algebra satisfying the equations

\[(x \to y) \to (x \to z) = (y \to x) \to (y \to z) \quad (H)\]
\[
(((x \to y) \bowtie y) \to x) \bowtie x = (((y \bowtie x) \to x) \bowtie y) \bowtie y \quad (J)
\]
can uniquely be represented as an ordinal sum of non-trivial linear pseudo-ŁBCK-algebras.

For every linear pseudo-BCK-algebra \(A\), the following statements are equivalent:

1. \(A\) satisfies the identities (H) and (J).
2. \(A\) is an ordinal sum of linear pseudo-ŁBCK-algebras.
3. \(A\) is a \(\{\to, \bowtie, 1\}\)-subreduct of a linear pseudo-hoop.
4. \(A\) is a \(\{\to, \bowtie, 1\}\)-subreduct of a linear pseudo-BL-algebra.
A pseudo-hoop/pseudo-BL-algebra/pseudo-BCK-algebra which is a subdirect product of ones with an underlying linear order is said to be **representable**.
Representable pseudo-BCK-algebras/pseudo-hoops/pseudo-BL-algebras are axiomatized by the identity

\[(x \rightarrow y) \rightarrow u \leq ((((((y \rightarrow x) \rightarrow z) \rightarrow z) \rightsquigarrow w) \rightsquigarrow w) \rightarrow u) \rightarrow u.\]

(R)

For every pseudo-BCK-algebra \(A\), the following are equivalent:

1. \(A\) is a \(\{\rightarrow, \rightsquigarrow, 1\}\)-subreduct of a representable pseudo-BL-algebra;
2. \(A\) is a \(\{\rightarrow, \rightsquigarrow, 1\}\)-subreduct of a representable pseudo-hoop;
3. \(A\) satisfies the equations (R), (H) and (J).
A pseudo-hoop/pseudo-BL-algebra/pseudo-BCK-algebra which is a subdirect product of ones with an underlying linear order is said to be **representable**.

Representable pseudo-BCK-algebras/pseudo-hoops/pseudo-BL-algebras are axiomatized by the identity

\[(x \rightarrow y) \rightarrow u \leq ((((((y \rightarrow x) \rightarrow z) \rightarrow z) \bowtie w) \bowtie w) \rightarrow u) \rightarrow u.\]

\[(R)\]

For every pseudo-BCK-algebra \(A\), the following are equivalent:

1. \(A\) is a \(\{\rightarrow, \bowtie, 1\}\)-subreduct of a representable pseudo-BL-algebra;

2. \(A\) is a \(\{\rightarrow, \bowtie, 1\}\)-subreduct of a representable pseudo-hoop;

3. \(A\) satisfies the equations \((R)\), \((H)\) and \((J)\).
A pseudo-hoop/pseudo-BL-algebra/pseudo-BCK-algebra which is a subdirect product of ones with an underlying linear order is said to be **representable**. Representable pseudo-BCK-algebras/pseudo-hoops/pseudo-BL-algebras are axiomatized by the identity

\[(x \rightarrow y) \rightarrow u \leq ((((((y \rightarrow x) \rightarrow z) \rightarrow z) \rightsquigarrow w) \rightsquigarrow w) \rightarrow u) \rightarrow u.\]

\((R)\)

For every pseudo-BCK-algebra \(A\), the following are equivalent:

1. \(A\) is a \(\{\rightarrow, \rightsquigarrow, 1\}\)-subreduct of a representable pseudo-BL-algebra;
2. \(A\) is a \(\{\rightarrow, \rightsquigarrow, 1\}\)-subreduct of a representable pseudo-hoop;
3. \(A\) satisfies the equations \((R)\), \((H)\) and \((J)\).
A pseudo-hoop/pseudo-BL-algebra/pseudo-BCK-algebra which is a subdirect product of ones with an underlying linear order is said to be **representable**.

Representable pseudo-BCK-algebras/pseudo-hoops/pseudo-BL-algebras are axiomatized by the identity

\[(x \rightarrow y) \rightarrow u \leq (((((((y \rightarrow x) \rightarrow z) \rightarrow z) \wedge w) \wedge w) \rightarrow u) \rightarrow u).\]

(R)

For every pseudo-BCK-algebra \(A\), the following are equivalent:

1. \(A\) is a \(\{\rightarrow, \wedge, 1\}\)-subreduct of a representable pseudo-BL-algebra;
2. \(A\) is a \(\{\rightarrow, \wedge, 1\}\)-subreduct of a representable pseudo-hoop;
3. \(A\) satisfies the equations (R), (H) and (J).
A pseudo-hoop/pseudo-BL-algebra/pseudo-BCK-algebra which is a subdirect product of ones with an underlying linear order is said to be **representable**.

Representable pseudo-BCK-algebras/pseudo-hoops/pseudo-BL-algebras are axiomatized by the identity

\[(x \to y) \to u \le ((((((y \to x) \to z) \to z) \sim w) \sim w) \to u) \to u.\]

\((R)\)

For every pseudo-BCK-algebra \(A\), the following are equivalent:

1. \(A\) is a \(\{\to, \sim, 1\}\)-subreduct of a representable pseudo-BL-algebra;
2. \(A\) is a \(\{\to, \sim, 1\}\)-subreduct of a representable pseudo-hoop;
3. \(A\) satisfies the equations \((R)\), \((H)\) and \((J)\).
The class of all \(\{ \rightarrow, \rightsquigarrow, 1 \} \)-subreducts of representable pseudo-BL-algebras/pseudo-hoops is the variety of pseudo-BCK-algebras satisfying

\[
(x \rightarrow y) \rightarrow u \leq ((((((y \rightarrow x) \rightarrow z) \rightarrow z) \rightsquigarrow w) \rightsquigarrow w) \rightarrow u) \rightarrow u,
\]

\((R)\)

\[
(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z),
\]

\((H)\)

\[
(((x \rightarrow y) \rightsquigarrow y) \rightarrow x) \rightsquigarrow x = (((y \rightsquigarrow x) \rightarrow x) \rightsquigarrow y) \rightarrow y.
\]

\((J)\)
The class of all \(\{\rightarrow, \leadsto, 1\}\)-subreducts of representable pseudo-BL-algebras/pseudo-hoops is the variety of pseudo-BCK-algebras satisfying

\[
(x \rightarrow y) \rightarrow u \leq ((((((y \rightarrow x) \rightarrow z) \rightarrow z) \leadsto w) \leadsto w) \rightarrow u) \rightarrow u, \quad \text{(R)}
\]

\[
(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z), \quad \text{(H)}
\]

\[
(((x \rightarrow y) \leadsto y) \rightarrow x) \leadsto x = (((y \leadsto x) \rightarrow x) \leadsto y) \rightarrow y. \quad \text{(J)}
\]

THANK YOU