
History of the question

The logics of chequered subsets were �rst introduced in the paper:
Johan van Benthem, Guram Bezhanishvili, Mai Gehrke

Euclidean Hierarchy in Modal Logic. Studia Logica, vol. 75, pp.

327-344. Springer Netherlands, 2003.

A chequered subset in Rn is a �nite union of hyper-rectangular convexes,

i.e. products of convex subsets of R.

Figure: An example of chequered set in R2



Chequered subsets form a boolean algebra CH(Rn), closed under interior

and closure operators of Rn. The modal logic of such algebra is de�ned

as follows:

Ln = {φ|∀ν : PV → CH(Rn) Rn, ν |= φ}

Another modal logic, L∞ =
⋂

Ln corresponds to chequered sets in R∞.

All of the mentioned logics are normal extensions of S4 and Grz, and
can be described in Kripke semantics as follows:

Ln = L(V n), where V n = V n−1 × V under

standard product order and V is a �double fork�

frame.

L∞ = L(V ∗), where V ∗ =
⊔

V n

Figure: Frame V



Following the paper:
Tadeusz Litak

Some notes on superintuitionistic logic of chequered subsets of R∞.

Bulletin of the Section of Logic, vol. 33, pp. 81-86. University of Lodz,

2004.

we consider superintuitionistic analogs of those logics, which by

Blok-Esakia isomorphism are determined by the same Kripke frames:

ILn = ρLn = IL(V n)
Cheq = ρL∞ = IL(V ∗) =

⋂
ILn

These intermediate logics can also be described in topological semantics

if we restrict valuations to open chequered subsets.

It can be shown that Medvedev's logic of �nite frames ML is an

extension of Cheq. ML was proven to be not axiomatizable in �nite

number of variables in 1979 by Maksimova, Skvortsov and Shehtman.

We use similar method to prove the same for Cheq.



The results

The following results were obtained:

Theorem

For any natural number k, Cheq is not axiomatizable in k variables.

Corollary

Cheq is not �nitely axiomatizable.

Corollary

L∞ is not �nitely axiomatizable.



Outline of the proof

For the proof we construct two families of �nite Kripke frames Ψ(m,n)
and Ψi(m,n), for which the following holds true:

1 There doesn't exist a p-morphism V ∗ � Ψ(2n+2, n).
2 There exists a p-morphism V ∗ � Ψi(m,n) for any valid values of i,

m, n.
3 If a formula A contains only k propositional variables then if

Ψ(m, k + 2) 6|= A then Ψi(m, k + 2) 6|= A for some 1 ≤ i < k.

Using Yankov's characteristic formulas X(F ) these statements can be

rephrased as follows:

1 X(Ψ(2n+2, n)) ∈ Cheq
2 X(Ψi(m,n)) 6∈ Cheq
3 If A contains only k propositional variables then if

X(Ψ(m, k + 2)) ∈ (H + A) then X(Ψi(m, k + 2)) ∈ (H + A) for

some i.

If Cheq is axiomatizable in k variables then X(Ψ(2k+4, k + 2)) is in

some (H + A1 ∧ . . . ∧An) ⊂ Cheq, where Ai are axioms of Cheq,
which contradicts pt 2 and 3.



Figure: Frames Ψ(m, n) and Ψi(m, n)



There doesn't exist a p-morphism V ∗ � Ψ(2n+2, n).

In the next lemma d(u) denotes the length of the longest chain of

increasing elements starting from u. br(u) is the number of immediate

successors of u.

Lemma

If the frame F is such that ∀u ∈ F

If d(u) = 1 then br(u) ≥ 2.
If d(u) > 1 then br(u) ≥ 4.

and there exists a p-morphism V ∗ → F then

∀u ∈ F br(u) ≤ 2d(u)

If this lemma is applied to the frame Ψ(m,n) and u is its least element

then d(u) = n + 1, br(u) = m and there can't be a p-morphism

V ∗ � Ψ(m,n) if m > 2n+1.



There exists a p-morphism V ∗ � Ψi(m,n)

The p-morphism is constructed as shown in the following �gure:

The steps of the proof:

There exists p-morphism V 2 � Ψ(4, 1)
If V k � Ψ(m,n) then V k+1 � Ψ(m,n + 1)
If frame F has the greatest element then ∃r V r � F .



Further questions

This is a list of some unresolved questions, which are related to the

obtained result.

1 Can the same technique be used to prove non-�nite axiomatizability

of logics of Kripke frames F∗ =
⊔

Fn, where F is some other �nite

frame? Are such logics interesting from the geometric point of view?

2 Is Cheq decidable? This is a much harder question and perhaps

related to the long-standing problem on whether ML is decidable.


